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Abstract - In this paper, we show how a topographic mapping can be created from a product
of experts. We learn the parameters of the mapping using gradient descent on the negative
logarithm of the probability density function of the data under the model. We show that the
mapping, though retaining its product of experts form, becomes more like a mixture of experts
during training.
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1 Introduction

Recently [2], we introduced a new topology preserving mapping which we called the Topo-
graphic Products of Experts (ToPoE). Based on a generative model of the experts, we showed
how a topology preserving mapping could be created from a product of experts in a manner
very similar to that used by Bishop et al [1] to convert a mixture of experts to the Generative
Topographic Mapping (GTM).
We begin with a set of experts who reside in some latent space and take responsibility for
generating the data set. With a mixture of experts [5, 6], the experts divide up the data space
between them, each taking responsibility for a part of the data space. This division of labour
enables each expert to concentrate on a specific part of the data set and ignore those regions
of the space for which it has no responsibility. The probability associated with any data point
is the sum of the probabilities awarded to it by the experts. There are efficient algorithms,
notably the Expectation-Maximization algorithm, for finding the parameters associated with
mixtures of experts. Bishop et al [1] constrained the experts’ positions in latent space and
showed that the resulting mapping also had topology preserving properties.
In a product of experts, all the experts take responsibility for all the data: the probability
associated with any data point is the (normalised) product of the probabilities given to it by
the experts. As pointed out in e.g. [4] this enables each expert to waste probability mass in
regions of the data space where there is no data, provided each expert wastes his mass in a
different region. The most common situation is to have each expert take responsibility for
having information about the data’s position in one dimension while having no knowledge
about the other dimensions at all, a specific case of which is called a Gaussian pancake in
[7]: a probability density function which is very wide in most dimensions but is very narrow
(precisely locating the data) in one dimension. It is very elegantly associated with Minor
Components Analysis in [7].
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In this paper, we review a method of creating a topology preserving mapping from a product
of experts. The resulting mapping is neither a true product of experts nor a mixture of
experts but lies somewhere in between.

2 Topographic Products of Experts

Hinton [3] investigated a product of K experts with
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where Θ is the set of current parameters in the model. Hinton notes that using Gaussians
alone does not allow us to model e.g. multi-modal distributions, however the Gaussian is
ideal for our purposes. To fit this model to the data we can define a cost function as the
negative logarithm of the probabilities of the data so that
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We will, as with the GTM, allow latent points to have different responsibilities depending on
the data point presented so we use the cost function:
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where rkn is the responsibility of the kth expert for the data point, xn. Thus all the experts are
acting in concert to create the data points but some will take more responsibility than others.
Note how crucial the responsibilities are in this model: if an expert has no responsibility for a
particular data point, it is in essence saying that the data point could have a high probability
as far as it is concerned. We do not allow a situation to develop where no expert accepts
responsibility for a data point; if no expert accepts responsibility for a data point, they all are
given equal responsibility for that data point (see below). For comparison, the probability of
a data point under the GTM is
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We wish to maximise the likelihood of the data set X = {xn : n = 1, · · · , N} under this
model. The ToPoE learning rule (6) is derived from the minimisation of C1 with respect to
a set of parameters which generate the mk.
We now turn our attention to the nature of the K experts which are going to generate the K
centres, mk. We envisage that the underlying structure of the experts can be represented by
K latent points, t1, t2, · · · , tK . To allow local and non-linear modeling, we map those latent
points through a set of M basis functions, f1(), f2(), · · · , fM (). This gives us a matrix Φ where
φkj = fj(tk). Thus each row of Φ is the response of the basis functions to one latent point, or
alternatively we may state that each column of Φ is the response of one of the basis functions
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to the set of latent points. One of the functions, fj(), acts as a bias term and is set to one
for every input. Typically the others are gaussians centered in the latent space. The output
of these functions are then mapped by a set of weights, W , into data space. W is M × D,
where D is the dimensionality of the data space, and is the sole parameter which we change
during training. We will use wi to represent the ith column of W and Φj to represent the row
vector of the mapping of the jth latent point. Thus each basis point is mapped to a point in
data space, mj = ΦjW .
We may update W either in batch mode or with online learning. To change W in online
learning, we randomly select a data point, say xi. We calculate the current responsibility of
the jth latent point for this data point,

rij =
exp(−γd2

ij)∑
k exp(−γd2

ik)
(5)

where dpq = ||xp−mq||, the euclidean distance between the pth data point and the projection
of the qth latent point (through the basis functions and then multiplied by W). If no weights
are close to the data point (the denominator of (5) is zero), we set rij = 1

K ,∀j.
Define m
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where we have used ∆n to signify the change due to the presentation of the nth data point,
xn, so that we are summing the changes due to each latent point’s response to the data
points. Note that, for the basic model, we do not change the Φ matrix during training at
all. It is the combination of the fact that the latent points are mapped through the basis
functions and that the latent points are given fixed positions in latent space which gives the
ToPoE its topographic properties. We have previously illustrated these on artificial data in
[2].

3 Product or Mixture?

A model based on products of experts has some advantages and disadvantages. The major
disadvantage is that no efficient EM algorithm exists for optimising parameters. [3] suggests
using Gibbs sampling but even with the very creative method discussed in that paper, the
simulation times were excessive. Thus we have opted for gradient descent as the parameter
optimisation method.
The major advantage which a product of experts method has is that it is possible to get very
much sharper probability density functions with a product rather than a sum of experts.
The responsibilities are adapting the width of each expert locally dependent on both the
expert’s current projection into data space and the data point for which responsibility must
be taken. Initially, rkn = 1

K ,∀k, n and so we have the standard product of experts. However
during training, the responsibilities are refined so that individual latent points take more
responsibility for specific data points. We may view this as the model softening from a true
product of experts to something between that and a mixture of experts.
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Figure 1: There is an initial competition to take responsibility for a specific data point but quickly
converge so that just a few latent points do so.

To illustrate this, we create an artificial 2 dimensional, 60 sample data set which lies close to
a single nonlinear manifold and train a ToPoE with 20 latent points arranged in a line in a
1 dimensional latent space. We may show the growth of the responsibilities from either the
perspective of a single data point (Figure 1) or from the perspective of an individual latent
point (Figure 2). Initially we see the latent points assuming a broad responsibility which
is refined in time till each latent point has only a responsibility for a few data points and
conversely each data point is being generated (under the model) by only a few latent points:
we have moved some way from the product of experts towards a mixture of experts.
However, the responsibilities do not, in general, tend to 0 or 1. Typically the responsibility
for a data point is shared between several latent points. In [2], we have shown that this
sharpening of the responsibilities takes place even when we use a non-local function to map
the latent points to feature space. In that paper, we used φkj = fj(tk) = tanh(jtk).
This feature of not quite having one expert take sole responsibility for a data point is, in fact,
rather useful for visualisation. We illustrate with a data set of 118 samples from a scientific
study of various forms of algae some of which have been manually identified. Each sample
is recorded as an 18 dimensional vector representing the magnitudes of various pigments. 72
samples have been identified as belonging to a specific class of algae which are labeled from
1 to 9. 46 samples have yet to be classified and these are labeled 0. Figure 3 shows the
projection of the 9 labeled classes (72 samples). Note that few of the samples could be said
to be lying at an integer coordinate on the map. Most lie between integral values and the
clusters are easily seen. When we zoom into the central part of this mapping (Figure 4, left),
we find that we can disambiguate the 8th and 9th classes. However, the right diagram in
that figure suggests that the remaining two classes are not completely distinguished. Figure
5 shows the projection of the whole data set including the unlabeled samples. From this, we
conjecture that

• there are other classes in the data set which have not yet been identified.
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Figure 2: The latent point initially has broad responsibilities but learns to take responsibility for only
a few data points.

• some of the unclassified samples belong to classes already identified.

• some may be simply outliers.

These are, however, speculations on our part and must be validated by a scientist with
biological expertise.
It is of interest to compare the GTM on the same data: we use a two dimensional latent
space with a 10×10 grid for comparison. The results are shown in Figure 6. The GTM
makes a very confident classification: we see that the responsibilities for data points are very
confidently assigned in that individual classes tend to be allocated to a single latent point.
This, however works against the GTM in that, even with zooming in to the map, one cannot
sometimes disambiguate the two different classes such as at the points (1,-1) and (1,1). This
was not alleviated by using regularisation in the GTM though we should point out that we
have a very powerful model for a rather small data set.
In fact, we can control the level of quantisation by changing the γ parameter in (5). For
example by lowering γ, we share the responsibilities more equally and so the map contracts
to the centre of the latent space to get results such as shown in Figure 7; the different clusters
can still be identified but rather less easily. Alternately, by increasing γ, one tends to get the
data clusters confined to a single node, that which has sole responsibility for that cluster.
We are, in effect, able to control how much our product of experts mapping moves towards
a mixture of experts.
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Figure 3: Projection of the 9 classes by the ToPoE.
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Figure 4: Left: zooming in on the central portion. Right: zooming in on the left side.
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Figure 5: The projection of the whole data set by the ToPoE.
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Figure 6: The projection of the algae data given by the GTM.
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Figure 7: By lowering the γ parameter, the ToPoE map is contracted.
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