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Abstract - We study the relation between the equilibrium point of the SOM algorithm and
the minimum of the distorsion measure. After calculating the derivatives of the distorsion
measure, we show that these points are well separated in general. We illustrate, with a simple
example, how it occurs.
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1 Introduction

The extended variance or distorsion measure, is certainly the most popular criteria for as-
sessing the quality of the classification of a Kohonen map (see Kohonen [6]). This measure
yields us a assesment of model properties with respect to the data and overcome the absence
of cost function in the SOM algorithm. Moreover it has been shown that the SOM algorithm
is an approximation for the gradient of the distortion measure (see Graepel et al.[4]).
However, if it is proven that the Kohonen converges in some cases when the number of
observations tends to the infiny, it is also known that the limit doesn’t minimize the theoretical
distorsion measure (see for example Erwin et al. [2]). This property seems to be paradoxal,
in one hand SOM seems minimizing the distorsion for a finite number of observations, but
this behaviour is no more true for the limit, i.e. an infinity of observations.

In this paper we will investigate the relationship between SOM and distorsion measure, it is
organized as follow : first we recall the mathematical definition of the distorsion measure in
the discrete and continuous case, then we calculate the derivatives of the distorsion in the
continuous case, we deduce from this calculation that the point minimizing the limit distorsion
can be very far from the equilibrium point of the SOM and finally we illustrate, with a simple
example, why the apparent contradiction between the discrete and the continuous case occurs.

2 The distorsion measure
We adopt in this section the notation of Cottrell et al. [1]. We consider a set of units indexed
by I C Z% with the neighborhood function A from I — 1 := {i — j, 4,5 € I} to [0, 1] satisfying

A(k) = A(—k) and A(0) = 1, note that such neighborhood function can be discrete or
continuous. These units will be called in the sequel “centroids”. Let z := (z;);c; be the set
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of units, the Vorono tessellation (C; (x));; is defined by
Ci (2) = {w € [0, 1] llles — | < llos — | si k#i}
In case of equality we assign w € C; () thanks the lexicographical order.

2.1 Distorsion for the discrete case

We assume that the observations are in a finite set @ = {w1,---,w,} and are uniformly
distributed on this set. Then, the distorsion measure or extended variance is

Vo) =53 3 [ AG-) l - el

1€l weCyi(z) \JEI

It is well know that this function is not continuous with respect to the centroids (z;);e;y.

2.2 Distorsion for the continuous case

Let us assume that P is the distribution function of the observations. the theoretical distorsion
measure is

Vi) =5 S AG=9) [y - l?ap

ijel Ci(z)

In the sequel, we suppose that the distribution P has a density with respect to the Lebesgue
measure bounded by a constant B > 0.

3 Derivability of V (z)

Let us now write

Dr = {(mz = (x%,---,x?))iel € ([0, 1]d)1 ‘Vk € {1,---,d})

wf—x?”>0 sii;éj}

For i and j € I, let us note 7% the vector Hij:i”fn and let
j T4

MY = {u € RY/ <u— xi;xj,xi —a:j> :O}

be the mediator hyperplan. Let us note PV (w) the Lebesgue measure on MY. Fort and
Pages [3], show the following lemma :

Lemma 1 Let ¢ be a R valued continuous function on [0,1]%. For z € Dy, let be ®; (z) :=
fci(z) ¢ (w)dw. We note also (e1,---,eq) the canonical base of RY. The function ®; is con-
tinuously derivable on Dy and Vi # j,1 € {1,---,d}

L) (ot (557 ) e
T) = (W) = (MY, e) + ————— X —w],e A (w) dw
Bzvé-( ) Ci(@)nC; () @) 2< 1 |z — 4| 2 : «)
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8<I> (.’L‘) —

we then deduce the theorem

Theorem 1 If P (dw) = f (w) dw, where f is continuous on [0;1]%, then V is continuously
derivable on Dy and we have

g;/i (z) Eke[ fc w) P (dw)
+3 ZJEIZ;CEM# (A (k J) A(Z—J))

1 —=ki t
% Jeerei 12 = ol (375 + ey x (552 - w))

fw ))\;’Zldw
& (2)
where g_a‘c/q; (z) = :
021 (@)

Proof As the function V (z) is continuous on Dj, we only have to show that the partial
derivatives exist and are continuous. We note hé- € RI7I*4 the vector with all components null
except the component corresponding to mﬁ , which is A > 0. Then

V(ethi) V(@) _

h
3 Skjer, kjpi ME=1) fok (z+11) |z —wl|” P(dw)= % Sk jer. ki AkE—3) fck(m)”ﬂfj —wl|?P(dw)

h | .
8 e, M) o () 123 9P P~ S, M) oyl el Pla)

3 Lker ki AE—1) fC’k(m+hé)||wi+hé_w|| P(dw)—fck(w)||~’Ci—w||2P(dw)
h
: (f0¢(z+h§) ”w#hé*szP(dw)*fCi(m)”w"*w“%(dw))
h

SO

. V(z+hl)-V(z )
hmh—m% 3 Lkgel,kjri A (B = 1)

2 <ﬁkz er) + i X (255 - w) ,el>} Ao () dw

Joy@nai 125 = wl
=3 Dkjer,kyzi M (i =
Je @@ 1z = wll” 6l> + ||m Lo < (57 —w), 6l>} A (w) dw

_ 3 Lker,ops M=) [, (Hh,)nz —w||2+2h(zl—w!)+o(h) P(dw) fck(m)Hzi_w”?P(dw)
+ limp, 0 5

3oy (eny el 2hE o) U)o el P))
+limp_,0 h

1
2
)

1
2

r—’HQr—’H
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and

. V(z+hl)-V . .
limy, o LEY® 1 (AR =) — A G- )

fC (@)NCs( ”"EJ w||2 % ﬁlacci7el + acq,ix X<(mk—2|—zi_w)’el> ’\Iacci(w)dw
k ) llzi—zxll
t3 Zkelk;ézA(k—i)
fcmcz lzi — wl® {3 (75" 1) + s ><<($k+“—w),el> M (w) duw
(2) Il Il
~3 Shcrir Joopem 17— ol {5 (75 e) + oy x (252 - ) o) A (o) do
+Yoker Ak —1) Jo () (2f — w') P(dw)

finally
. V(z+ht)-V(z . . .
timy o YOIV — 00 (0 — 157, st (A (=)~ A~ )
Jey@nci@ ”:”J w]|* { <ﬁk €l>+||$,-—zk|| <(wk§wi—w)ael>}>\'£i (w) dw
+ 2 ker A fc ) w') P(dw) W

If we assume that the minimum of the extended variance, is reached in the interior of Dy (i.e.
that no centroids collapse), we deduce from the previous results that it doesn’t match the
equilibrium of the Kohonen algorithm. Indeed, a point z* := (z}),.; asymptotically stable
for the Kohonen algorithm will verify for all 7 € I :

ZA(i—k)/ (25 — w) P (dw) = 0
kel C(2)
and it can match with a minimum of the limit distorsion only if
%ZjEI Yokerpri Ak —7) =A@ — 7)) B
2 ; . . =
X Jewwne @ 1z — @l (%Wff + sy % (B - w)) f (@) Midw

but, in general, this term is not null.

4 Example of a Kohonen string with 3 centroids

The previous section has shown that the minimum of extended variance doesn’t match the
equilibrium of the Kohonen algorithm. We will illustrate this with a simple example. The
classical explanation (see Kohonen [5]) of local potential minimization by the Kohonen algo-
rithm is far from being satisfactory. Actually it seems that the minimum of the distorsion
measure always occurs on a discontinuity point, where the function is not derivable.

To illustrate this, let a Kohonen string be on segment [0, 1] (see figure 1), with a discrete
neighborhood

4.1 The theoretical difference

The equilibrium of SOM algorithm is reached on points z verifying

8:61 fC (z) (21 — w) P (dw) + fc2(w) (1 —w) P(dw) =0
au fc (2) xg —w) P (dw) + fC’2(m) (zo — w) P (dw) + ng(m‘) (z2 — w) P (dw) =0
s (@) = [y (23 = W) P (dw) + [y (0 (83 —w) P (dw) =0
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Figure 1: Kohonen string
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but the minima of the extended variance are reached on points = verifying

g—;fl (z) = fcl(x) z1 ) P (dw) + fcz(w) (r1 — w) P (dw) — % |:v3 — oim ”2 F(zgm) =0

(

s (@) = Jo, () (@2 = W) P (dw) + [, () (22 — w) P (dw) + [, (22 — w) P (dw)
|
(

w
w
1

~ s = 2 P (242) + § [l - =27 (2422) = 0 :
Bas (@) = Joy(o) (33 = @) P(dw) + fo () (3 — ) Pdw) +  [|21 — 2527 f (2522) = 0

If we assume, for example, that the density of observations is uniform U]y, then these two
sets of points have no point in common. Indeed, if the two sets are equal then

z3 — z‘l-;’vz — O
T — 1:2—5.:63 — O

Therefore, 1 = z2 = x3, but this point is clearly not an equilibrium of the Kohonen map.

4.2 Tllustration of the behavior of the distorsion measure

We will see that if you draw data with a uniform distribution on the segment [0, 1] and then
you compute the minimum of the extended variance, then these minimum is always on a
discontinuity point. The more observations you have, the more discontinuities you have but
the global function looks more and more regular. This is not surprising since we know that
the limit is derivable.

4.2.1 The method of simulation

Since we have no numerical algorithm to compute the exact minimum of variance, we proceed
by exhaustive research based on a discretization of the space of the centroids. To avoid too
much computation, the step of discretization is chosen as 0.001. The following figures are
obtained in the following way :

1. Simulate n “data” (wi,---,wy), chosen with an uniform law on [0, 1].

2. Search exhaustively, on the discretization of Dy, the string minimizing the extended
variance.

3. For the best string (27, 3, 23) the graphical representations are obtained in the following
way :
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e 3D Representation : we keep one centroid in the triplet (z7, =3, z3), then we move
the other around a small neighborhood of its optimal position. The level z is the
extended variance multiplied by the number of observations n.

e 2D Representation : we keep two centroids in the triplet (z7], =3, z3), then we
move the last one around a small neighborhood of it optimal position. The level
z is the extended variance multiplied by the number of observations n.

The following figures show the results obtained for a number of observations n varying from
10, 100 and 1000. We notice that, even for a small number of observations, the minima are
always on discontinuity points.

Figure 2: Distorsion measure for 10 observations
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Figure 3: Distorsion measure for 100 observations
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Figure 4: Distorsion measure for 1000 observations
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5 Conclusion

The Kohonen algorithm was supposed to give an approximation of the minimum of the
distorsion measure, but if it was the case, then why can the points of equilibrium of the
algorithm be different from the theoretical minimum of distorsion? We have shown on an
exemple that in discrete cases the minimum is reached on discontinuity points, so the local
derivability of the distorsion measure does not seem to be an important property and is not
a satisfactory explanation for the behavior of the Kohonen algorithm when the number of
observations is finite.
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