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Abstract - This work proposes a model of the development of visual object recognition,
based on the combination of two different artificial neural architectures, both supporting self-
organization: LISSOM and SOM. The former is a better approximation of the biological
computations in cortical areas, including lateral connections, the latter is best suited for a
simple synthesis of non localized processes, like object categorization.
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1 Introduction

Despite being vision largely the most studied function of the brain, with a huge collection
of neuroscientific and neurocomputational studies on early vision, object recognition remains
scarcely investigated and poorly understood yet. This gap is certainly not marginal since
for primates object recognition is the most valuable outcome of the visual system. Neuro-
computation can offer a methodology in shedding light inside natural vision by simulating
empirically assessable brain computations [17]. In this context a fertile concept has been
self-organization, applied in the first mathematical model able to simulate the spontaneous
development of important features in brain visual areas [23]. Since then self-organization has
been the basis of further development in modeling vision [18]. A promising architecture is
the LISSOM (Laterally Interconnected Synergetically Self-Organizing Map), where in a simple
formulation the main neural mechanisms of a cortical map are included: Hebbian plasticity,
competitive constrains, intercortical excitatory and inhibitory connections [19, 1].

This progress has been fruitful for several areas of vision, less for object recognition, a reason
is the scarce empirical knowledge of the relevant cortical functions. In a well-known review
Farah and Aguirre [5], comparing PET and fMRI studies on the neural substrates of human
visual recognition, concluded that “The pooled results of these studies can be summarized
by the following, rather anticlimactic, statement: visual recognition activates posterior brain
regions.”.

The direction proposed in this work is to combine neurocomputational architectures close to
realistic cortical computations with the more abstract SOM architecture suitable to synthesize
brain functions difficult to localize in specific areas. Moreover, using the SOM as a conceptual
final map in the model allows an easy combination of non visual inputs.

We believe that a main reason of the difficulty in understanding human visual recognition, and
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Figure 1: Scheme of the model architecture. The processing pathway is from the bottom to the top
of the figure.

the cause of its spread progressing in the brain, is the intimate relationship with the linguistic
organization of meaning [13]. Therefore, the model here proposed includes an encoding of
linguistic stimuli coincidental with the pure visual signals, representing the typical ostensive
naming condition of newborns. The two architectures are clearly faithful in different degree
in simulating actual brain computations, however they share the same focus on reproducing
the emergence of functions from input patterns, and therefore are both good candidates for
an exploration on how object recognition emerges in humans, which is the main purpose of
this model.

2 Modeling the development of visual recognition

Most computational models of recognition are aimed at reproducing the performances of the
mature visual system [6], this is common also in models based on neural networks [14]. We
believe that to understand how the brain areas involved in recognition gradually succeed in
developing their final functions would be a major key in revealing how humans can recognize
objects. There is a large evidence that the visual system develops thanks to epigenetic
interactions, even before eye disclosing [9, 10]. Moreover, it is known from developmental
psychology that perception of object entities take place in a period between 8 and 16 months
[12], where object naming constitute an important external input [15]. At 24 months even
a single ostensive naming can induce correct visual recognition [3], and at the same age
recognizing named object seems to involve more visual mechanisms, like shape processing,
compared to unnamed objects [20].
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The model here proposed is made of several artificial cortical layers, where all layers closer to
the eye’s input are of LISSOM type. The last map is a SOM, and does not correspond to any
specific area in the brain, it is a more abstract module synthesizing a function that certainly
involves many loci of the brain, probably extending also beyond the occipital and temporal
lobes, like in the prefrontal and in the perirhinal cortex. The overall scheme is depicted in
Fig. 1. There is a visual input, split into two color planes and an intensity plane, and the
linguistic input, coded into the SOM input vector.

2.1 The architecture for simulating cortical areas

In the LISSOM map each neuron is not just connected with the afferent input vector, but
receives excitatory and inhibitory inputs from several neighbor neurons on the same map.
The activation level a; of a neuron ¢ at a certain time step k is be given by:

az(k) =f (’YXfi T+ YR - ?ji(k_l) + ’VH}_ii . Z-,;(k—l)) : (1)

where the vectors ¢; and Z; are the activations of all neurons in the map where exists a lateral
connection with neuron ¢ of, respectively, excitatory or inhibitory type. Vectors é; and h; are
composed by all connection strengths of, respectively, the excitatory or inhibitory neurons
projecting to 7. The vectors ¥ and Z; are the afferent inputs and the corresponding synaptic
efficiencies. The scalars vx, vg, and g, are constants modulating the contributions. The
map is characterized by the matrices X, E, H, which columns are all vectors &, €, h for every
neuron in the map. The function f is any monotonic non-linear function limited between
0 and 1. The final activation value of the neurons is assessed after a certain settling time
K. All connection strengths adapt according to the general Hebbian principle, including a
normalization mechanism counterbalancing the overall increase of connections. The afferent
connections to a neuron ¢ will be modified at each training step by the following rule:
- T; + na;v "

A = ———— — T, (2)
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and similarly for weights € and h.

The LISSOM has been adapted as a model for vision [1], with an organization of the com-
ponents of input as receptive fields. The vector ¢ is now made of afferent signals organized
in a two dimensional fashion, and Z can be thought as a two dimensional function shaping
the receptive field. Therefore, using two orthogonal indexes r and ¢, equation (1) may be
rewritten as:

o) = f (vine - Tre + 08 5E +tfne- 567 3

where now ¥, is a vector composed by all values in a two-dimensional array, included in the
circular receptive field projected by the neural element x, .. There is a topological correspon-
dence between a translation of r, ¢ on the map and the translation of the field in the input
array.

As seen in Fig. 1 LISSOM maps are named in analogy of the corresponding cortical areas.
There are also lower maps called LGN, with relation to the biological Lateral Geniculate
Nucleus, with receptive field shaped by a classical “Mexican-hat” function, acting as “on-
center” and “off-center” cells, and color opponent cells [21].

491



WSOM 2005, Paris

Figure 2: Development of organizational domains in V1 (left) and V4 (right). The selectivity to
orientation (left) or hue constancy (right) is shown in gray scale.

2.2 The architecture for the abstract final map

The final map of the model is the well known SOM of Kohonen [11], where the learning rule
is on a winner-take-all basis. The map is made by M neurons, arranged in a two-dimensional
coordinate r, each associated with a vector # € R where N is the dimension of the input
data vectors ¥. Presenting an input v to the map there will be a winner neuron w satisfying;:

w=arg_min {7~} (4)

Once identified the winner, during training the neural vectors are updated using:

AZ;=ne” 2 (T— ), (5)

where 7 is the learning rate, o the amplitude of the neighborhood affected by the updating.
Both 7 and o are decreasing functions of the training epochs. In the computation of (4) the
components of ¢ encoding the linguistic input are weighted by a parameter increasing with
the training epochs, simulating the increase in attention to ostensive naming of objects.

3 Main features of the model

The set of natural images used in the experiment is the COIL-100 benchmark library [16], a
collection of 100 ordinary objects, each seen under 72 different perspectives.

The cortical map named V1, in relation with the primary visual area, collects its afferents
from the monochromatic sheets pair in the LGN, and is followed by the map V2, which has a
lower resolution and larger receptive fields. The main phenomena reproduced by this model
in these areas is the development of orientation domains, where many cells are sensitive to a
preferred orientation [22]. The training uses artificial elliptical blobs for the first 10000 steps
followed by natural images for other 10000 steps, after the initial formation of the orientation
domains. This procedure accords with the known role of spontaneous activity in the pre-natal
neural development and in the first period after eye opening [7, 2]. In the left side of Fig. 2
the emergence of the orientation domains during the training is shown.

The color path is processed by the LISSOM map V4, named as the biological area especially
involved in color processing [24]. The main feature of the cortical color process is color
constancy. It has been shown by psychophysical experiments in human infants that this
capability is not present from birth either, but develops sometimes between two and four
months of age [4]. The right part of Fig. 2 shows the development of domains with constant
hue inside the V4 map during the training. At the beginning there is a low sensitivity, peaked
in the middle range between red and green. At the end the color sensitivity of all patches is
uniformly distributed along the hue range.
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type of transformation image LOC map

avg stdv avg  stdv
rotation of 30° 0.781 0.140  0.903 0.102
rotation of 60° 0.648 0.221 0.756 0.181

size downscaling of 80% 0.637 0.119 0.794 0.129
size downscaling of 70% 0.547 0.126 0.655 0.181
translation of 10% 0.463 0.125 0.586 0.158
translation of 20% 0.207 0.133 0.397 0.155

Table 1: Correlations between images with viewpoint transformation (middle column), and the
corresponding LOC map (right column). The values are the average over all 100 objects.

The paths from V4 and V2 rejoin in the map LOC, which has larger receptive fields, and
correlates with the human LOC (Lateral Occipital Complex) brain area which seems to be
strongly involved in object recognition [8]. One of its main feature is a reasonable invariance
to size, specific visual cues, and some perspective transformation. The model LOC achieves by
unsupervised training, using all COIL-100 images in all possible view, a remarkable invariance
with respect to viewpoint, position and size. The quantitative assessment of invariance, visible
in Tab. 1 has been obtained by measuring the cross-correlation between images.

The highest map in the model is called OBJ, and is of SOM type. It processes as vector
input the whole content of LOC, ignoring the spacial organization of the data, and a vector
coding linguistic inputs. The common ostensive naming of object given to infants by adults
is simulated by the coding of all objects in a 100-dimension vector. Naming does not pose
a normative labeling on objects, it is just a signal coincidental with the visual input. The
organization of all objects in the map OBJ is shown in Fig. 3. The figure is obtained by
overlapping every neuron in the map with the object for which that neuron is the most
frequent winner. In the map coexist several overlapped organizations: by color, by shape,
by symmetries, producing a consistent categorization of most objects. The two prevalent
ordering criteria of OBJ, shape and color, are shown separately in Tab. 2. In both matrix each
neuron of the map is labeled according to the category of shape/color which mostly activate
it. If the difference between the prevailing category and the second one is not significant the
neuron is left blank. From experiment without the linguistic component in the OBJ input
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Table 2: Layout of objects in the OBJ map, according to their shape (left) and hue (right)
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characteristics. Shape prefixes: “h”=horizontal, “q”=quasi, “v”=vertical.
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Figure 3: Organization of objects in the OBJ map of the model. Each neuron of the map is labeled
using the base view of the object prevailing on that neuron.

it has been observed that the most significant influence of the linguistic component is the
concentration of activities induced by the same object in different views. Without language,
the average spread is on 9.6 neurons with an area of 48 units, in combination with language
it is reduced to 7.8 neurons in an area of 34 units. Figure 4 displays the difference between
activations with and without the language contribution.

4 Conclusions

A model for simulating the emergence of visual recognition has been introduced. It attempts
to overcome the gap of neuroscientific knowledge between lower and upper visual functions
with the combination of the two self-organizing artificial architectures LISSOM and SOM,
levering on their different features: a better biological plausibility for LISSOM and a wider
generality for the SOM. Nevertheless, being the model aimed at simulating a very complex
cognitive function, there are many limitations with respect to the human object recognition.
A strong simplification is in segregating processes in single modules, like color in V4, and in
neglecting backprojections in a pure hierarchical model. Also the treatment of the linguistic
contribution is drastically simplified. Despite these limitations, the model can reproduce
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Figure 4: Spread of the 72 views of an object in the OBJ map without linguistic input (middle) and
with linguistic input (right) for some objects (left). The brightness of units in the map is proportional
to the number of hits.

several mechanisms essential for visual recognition, without any explicit modeling of the
processing functions necessary for this goal, and looks like an interesting direction for further
investigations, with the inclusion of some of the missing pieces just mentioned.
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