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Abstract - Spherical SOM, where neurons are arranged on spherical surface, is suitable
for clustering objects based on the trends such as the direction of vectors in multidimensional
space, for example, for classification of genes based on expression profiles. It is difficult
to arrange arbitrary number of neurons uniformly on spherical surface. To overcome this
difficulty, we propose spiral arrangement of meurons on spherical surface, which allows ar-
rangement of arbitrary number of neurons and call it as SphSOM-SPIRAL. Statistically, the
spiral arrangement has rather higher uniformity compare to icosahedron subdivision arrange-
ment which is generally used in Spherical SOM. We also propose a measure to access the
suitability of any SOM to any data set, and confirm for a particular set of gene expression
data that the Spherical SOM is more suitable than the Plane SOM.
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mity, suitability

1 Introduction

Self-organizing Maps (SOM) are clustering methods that can map high-dimensional
data to low-dimensional representation space [1]. In the present study we consider two types
of SOMs, one of them uses planar representation space called ‘ Plane SOM ’ and the other
uses spherical space called ‘ Spherical SOM. ’ Ritter first proposed Spherical SOM [2], whose
neurons are arranged on spherical surface by subdividing an icosahedron recursively, and it
is referred to as SphSOM-ICOSA. When we compare genes based on expression profiles, nor-
malization of profile vectors of gene expression to unity in length has advantage that genes
are compared by the trends of expression profiles and are classified based on similarity of
expression regulation in cells [3]. The normalized vectors are distributed on the surface of
an S-dimensional hypersphere, where S is the number of measurements for genes. Spheri-
cal SOM is adequate for clustering the normalized data. In the present paper, we propose
a method for arranging arbitrary number of neurons uniformly on Spherical SOM called
SphSOM-SPIRAL, compare the uniformity of neuron arrangement on spherical surface be-
tween SphSOM-SPIRAL and SphSOM-ICOSA, and show that SphSOM-SPIRAL makes it
possible to arrange neurons more uniformly on spherical surface in comparison to SphSOM-
ICOSA. We also propose a measure to select suitable neuron arrangements, that is, whether
spherical or Plane SOM is suitable for classification of high dimensional data, and demon-
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strate that Spherical SOM is more suitable for normalized gene expression profile vectors
than Plane SOM.

2 Method

2.1 Plane SOM and Spherical SOM

We use the term “Plane SOM” for a type of SOM whose neurons are arranged on plane
surface [1], and “Spherical SOM” for a type of SOM whose neurons are arranged on spherical
surface [2].

2.1.1 Arrangement of neurons

In Spherical SOM proposed by Ritter, neurons are arranged by subdividing an icosahe-
dron recursively [2]. Example of a triangle of an icosahedron and its three recursive divisions
are shown in Figure 1(a). We refer to this arrangement of neurons as I[COSAy , where N is
the number of recursive subdivision. The ICOSAx has 2+ 10 - 4" neurons (12, 42, 162, 642,
2562, 10242,...) Since it increases exponentially, we can’t always arrange arbitrary number
of neurons. To solve this problem, we proposed a method to arrange arbitrary number of
neurons by dividing a helix which goes around a sphere of unity radius (Fig. 1(c)) into pieces
of identical length [4]. While the arrangement has high uniformity, this method need numer-
ical integration to calculate the length of helix. In the present paper we use the concept of
generalized spiral points. The generalized spiral points are explicitly defined sets of points
[5]; where the set of points {(6k, #x)|0 < k < N} is determined by the Eq. 1.

2k

= —— -1 < N
hk N _1 R (0 < k < )
¢ = arccos(hg), (0<k<N)
Oy = Oy_1:=0, (1)

C
0, = Op 1+ —— |- (1Sk<N—1)
N(1-h2)

Here, C is a constant and was chosen as C = 3.6 so that the distance between successive
point will be approximately the same. Spherical coordinates 8 and ¢ can be transformed to
orthogonal coordinates by Eq. 2. (See Figure 1(b).)

x = cosfsing,y =sinfsin g, z = cos ¢ (2)

Using the generalized spiral points, we can arrange neurons of arbitrary number on the spher-
ical surface. We use the term “SphSOM-SPIRAL” to refer to a type of SOM whose neurons
are arranged by this method. The set of neighborhood neurons of a neuron 7 corresponding
to a particular radius r is the set of neurons that are within the Euclidean distance r from
7. (See Figure 1(e).)

324



Spherical SOM with arbitrary number of neurons and measure of suitability

(c) (d) (e)

Figure 1: (a) Recursive subdivision of a triangle of an icosahedron (b) Relation between axis x, y, z, 0, ¢
(¢) A helix on a sphere (d) Distortion when Plane SOM learns the data on the spherical surface (€)28
neurons are within radius 0.5 from the indicated neuron 7 i.e. f(n, 0.5)=28.

2.2 UNITIDINESS, the measure of uniformity

“Border effects” is one of the important disadvantages for Plane SOM. The problems
occur because the number of neighborhood neurons of a neuron near a border is different
from that of a neuron near the center. In the case of Spherical SOM, even though it has no
border, there is a problem how to arrange arbitrary number of neurons uniformly. In the
present study, uniformity means the equality of the number of neighborhood neurons in the
context of all the neurons in the map. The map is completely uniform in the case where the
number of neighborhood neurons is the same for each of the neurons of the map. The concept
of uniformity is represented by Eq. 3, where f(n,r) is the numbers of neurons within radius
r from neuron 7 (See Figure 1(e) as an example) and V(r) is the variance of f(n,r) for all
neurons.

2

Y, )2 = (3, fon )
V(r) = 3)

n2

The variance V' (r) can only be a real positive number or zero. When the number of neigh-
borhood neurons f(n,r) is the same for all neuron 1, V(r) is zero. An example for ICOSA3
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and SPIRAL3 are shown in Figure 2(a). In order to allow any value for radius r, we propose
the measure of uniformity UNTIDINESS by Eq. 4.

0=m/2
UNTIDINESS := / V (2sin(0/2)) do (4)
0=0
Here 2sin (0/2) is the length of chord for center angle §. UNTIDINESS can only be a real
positive number or zero. The more uniform is the neuron arrangement the less is the value
of untidiness. When the arrangement is completely uniform, UNTIDINESS is zero.

2.3 Initialization of weight vectors

Initialization of weight vectors with random values is not preferred because of the
reproducibility for maps. In this work, the weight vectors of Spherical SOM are initialized
on the basis of principal component analysis (PCA) for original data. Initially, principal axes
e1, e2 and eg with the three largest variance are estimated using the original data. Then,
the weight vector wj is initialized as

Wi = R(a:iel + yiez2 + zes). (5)

Here R is the radius of hypersphere.

2.4 N-measure, the measure of suitability

In this paper we compare two different type of SOM: Plane SOM and Spherical SOM.
When there are feature maps of a particular data set from different type of SOM, it is not
evident which map is the most suitable for a given data set because we can’t observe high
dimensional distribution directly. So we propose a measure of suitability. When a map is
generated by a learning process without distortion, the distances between neurons in spherical
surface should be linearly related with those between them in the original space. This linearity
can be a basis to determine whether spherical or planar arrangement of neurons is suitable
for a specific data set. This is carried out by plotting two distances between all pairs of
the neurons defined in representative space such as spherical or plane surface and in the
original space, respectively, which are called d-d plot. In Fig. 1(d), for example, neurons
on opposing corner of 2-dimensional plane arrangement are close in 3-dimensional space. So
the linear relation is broken in d-d plot because of the distortion occurred from projecting
high dimensional data of original space to representation space. The linearity is measured by
correlation coefficient in the regression analysis fashion. In regression analysis the sum of the
squares of differences between actual value y and the value 3 estimated with a given model
¥i = f(x;) is minimized (see Eq. 6.)

minimize Z (yi — 9s)? (6)

The coefficient of determination R? in regression analysis is defined by Eq. 7.

2 4 > (i — ?Ji)2
B=l e ")
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Here 7 is the avarage of y;;
=y v ®)
Yy = A Yi
7

R? means how the given data fit to the given model. It should be quantified how d-d plot

satisfy the linear model g; = kx;. Here, k for minimal square difference is represented in Eq.
9.

= )

This is applied to d-d plot as follows. For mapping ¢ and set on its domain , X :=
{lu=v[lue,veQ}and Y = {||®P(u) — 2(v)|||ue Q,v € Q}. The N-measure N can be
defined by combining these equations,

NS2, — .52
NS2Syy — 50252

Here Sy := Zyi, Sy 1= Zm?, Szy = inyi and Sy, = 23/12

(2 7 (2 7
N takes value between -1 and 1. The larger the value of N, the higher the linearity.

N =

(10)

3 Result and Discussion

3.1 Uniformity

We use the term SPIRALy to refer to spiral arrangement of a particular number of
neurons that is equal to the number of neurons in JCOSAy. The relations between the radius
r and the variance V (r) for ICOSA3 and SPIRALs are shown in Figure 2(a) and for ICOSA,
and SPIRAL, are shown in Figure 2(b) as an example. It shows V(r) in the case of helix is
mostly lower than that in the case of an icosahedron.
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Figure 2: relation between the radius and the variance (a) SPIRAL3 and ICOSA3 (b) SPIRAL, and
ICOSA,
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Table 1: UNTIDINESS of ICOSAy and SPIRALy for 0 < N <5

N  # of neurons UNTIDINESS of ICOSAy  UNTIDINESS of SPIRAL y
0 12 0.0000 0.2611
1 42 0.4253 0.4270
2 162 2.8707 0.9057
3 642 3.9360 1.8011
4 2562 10.4419 3.4898
b 10242 82.1324 6.8744

Table 1 lists the UNTIDINESS of ICOSAy and SPIRALy for N in range 0 < N < 5.
ICOSAq is completely uniform because it is an icosahedron itself. ICOSA; has smaller
UNTIDINESS than SPIRAL;. Since UNTIDINESS of ICOSApN increases quickly, it is larger
than that of SPIRALy when N is two or more. Figure 3 shows the relation between the
number of neurons and UNTIDINESS. By conventional method we can’t arrange arbitrary
number of neurons. So the UNTIDINESS for the permissible number of neurons are shown
by crosses on the dotted line. On the other hand, we can arrange any number of neurons by
proposed method and the solid line shows the relation between the number of neurons and
untidiness. The UNTIDINESS in case of the proposed method is much lower compared to the
conventional method.

The result shows that the proposed method has two advantages, (i) ability to select an
arbitrary number of neurons which is not possible in the conventional icosahedron method,
and (ii) improved uniformity of the arrangement of neurons. The arrangement by the pro-
posed approach is more uniform than the icosahedron approach when the number of neurons
are 43 or more. Thus the proposed approach relaxes the usability and improves the useful-
ness of the Spherical SOM. To determine whether plane or Spherical SOM is suitable for gene
expression profile vectors, we consider SphSOM-SPIRAL instead of SphSOM-ICOSA.
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Figure 3: Relation between UNTIDINESS and the number of neurons

3.2  Suitability

In order to demonstrate the validity of N-measure, we examine three data sets as follows:

e Randomly distributed 1800 points on a plane surface consisting of two axes. Variance
of each axis is unity.
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e Randomly distributed points on a spherical surface consisting of three axes. Initially
three dimensional 1800 vectors are randomly generated. Here, variance of each axis is
unity. Then all the vectors are normalized to unity in length.

e Actual 8-dimensional normalized gene expression profiles of Bacillus subtilis from time
series experiments in LB medium.

Figure 4 shows the d-d plots for those data with Plane SOM (upper) and Spherical
SOM (lower). In case of plane surface data (Fig. 4(a)), a linear relationship is observed in
the d-d plot of Plane SOM. The N-measure of Plane SOM (0.8901: see underlines in Table
2) is greater than that of Spherical SOM (0.3212). On the other hand, in case of spherical
surface data (Fig. 4(b)), a linear relationship is observed in the d-d plot of Spherical SOM.
The N-measure of Plane SOM (0.3782) is less than that of Spherical SOM (0.9764). The
N-measure increases when a SOM can represent a set of high dimensional data without much
distortion in the context of distances between all pairs in the original space. Thus, suitability
of SOM to a given data set can be estimated by N-measure. In case of actual 8-dimensional
gene expression data (Fig. 4(c)), the N-measure of Plane SOM (0.1682) is less than that of
Spherical SOM (0.6044). It shows Spherical SOM is suitable for the analysis of the data. We
suggest that Spherical SOM may be suitable for the analysis of normalized gene expression
data.
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Figure 4: d-d plot(upper:Plane SOM, lower:Spherical SOM). Horizontal axis means distance on rep-
resentation space and vertical axis means distance on data space

Table 2: N-measure

Data set Plane SOM  Spherical SOM
data on plane surface 0.8901 0.3212
data on spherical surface 0.3782 0.9764
data of normalized gene expression 0.1682 0.6044
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4 Conclusion

Conventional Spherical SOM that uses icosahedron subdivision arrangement, can not
arrange arbitrary number of neurons on spherical surface. Therefore we propose a SOM
with spiral arrangement of neurons on spherical surface (SphSOM-SPIRAL). We show that
SphSOM-SPIRAL is better than icosahedron based SOM in terms of flexibility of number
of neurons and uniformity of neuron arrangements. Thus the proposed approach relaxes the
usability and improves the usefulness of the Spherical SOM. To determine whether plane or
Spherical SOM is suitable for gene expression profile vectors, we proposed a measure called
N-measure. In the present paper, we observed that Spherical SOM is more suitable than
Plane SOM for classification of genes based on normalized gene expression profile vectors for
a particular set of microarray time-series data of B. subtilis.
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