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Abstract - K-Means and the Self-Organizing Map (SOM) are two important unsupervised
learning algorithms. The SOM is more robust in its convergence than K-Means but generally
requires the input data to be independent and identically distributed (iid). In both cases, for
sequential input, a time varying learning rate needs to be defined. In the context recognition
problem, iid data samples and varying learning rates are difficult to obtain. A K-Means type
algorithm referred to as the K-SCM is described. Using an integrate and fire type neuron
model the K-SCM with a constant learning rate can cluster non iid symbol string data. Using
real measured context data the clustering abilities of the K-SCM are demonstrated.
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1 Introduction

The K-Means algorithm [1] and its self-organizing generalization the Self-Organizing Map
(SOM) [2] are two of the most commonly used, unsupervised, learning algorithms. In a
typical application the K-Means is used to cluster a set of data {x(t) € R" : t = 1,...,}
while the SOM forms a topology preserving, vector quantization, of & the support of the
probability distribution of x denoted by py. Intrinsically the SOM, through the use of a
neighborhood function, is less sensitive to initial conditions and hence exhibits a robust
convergence compared to K-Means. The self-organization and convergence properties of the
SOM have been formally analyzed, with results typically confined to the one dimensional case
for example [3], [4], [5], [6]. One point in common to all of these analyzes is the requirement
that the x(¢) be independent and identically distributed (iid).

With the evolution of mobile technology and improvements in the development of various
types of low cost, low power, sensors the research area of context awareness is becoming
increasingly important. The aim in context awareness is to sense different characteristics of
a user’s environment, or state, and determine which context the user is in. Based on an
accurate recognition of the user’s context the idea is then to (semi-)automatically provide
services, applications etc. that may be required by the user in that context without requiring
any explicit input from the user. In general, part of the context recognition problem can be
viewed as the extraction of features, in this case user contexts, from the fusion of multiple
information sources. Feature extraction or context recognition by unsupervised clustering
has many advantages in terms of personalization and the possibility of not needing any user
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interaction during learning. These advantages have been discussed in more detail in Flanagan
[7]. It would seem that K-Means or the SOM are potentially applicable to the context
recognition problem. However, the context recognition problem has some characteristics
which make their application difficult.

In the context recognition problem the information sources can be very diverse ranging from
3-axis accelerometers to location information from the GSM/GPS network, to the identities
of the people in the user’s immediate environment. If the output of each of these sources is
represented by a real number x; € R, then the fusion of the sources is represented by the
vector x = (x1,...,xy) which is suitable for use in K-Means or the SOM. However this first
requires some form of normalization etc of the individual components x; in order to achieve a
reasonable result. Another alternative is to perform feature extraction on the signal(s) from
individual information sources, interpret the features as states of the source and represent
each state by a symbol. The data vector x, representing the fusion of the sources, is now
replaced by a symbol string s = (s1,...,S,) with the s; the symbolic representation of the
state of source i. Kohonen and Somervuo [8] and Somervuo [9] have used symbol string data
as input to the SOM, where the SOM is used in batch mode. Clustering of symbol string
data using the Symbol String Clustering Map (SCM) is described in [10]. However even if
it is possible to cluster or vector quantize symbol string data there is still the problem that
when using the SOM or the SCM, the input data samples need to be iid. Furthermore using
K-Means, SOM or SCM with sequential inputs also necessitates defining a learning rate «(t)
such that «a(t) — €,t — oo, where € = 0 or € =~ 0. Both the need for iid input data and
varying learning rate present challenges in context recognition.

Context recognition is based on recognizing a user’s context, however if we sample a users
context every second, successive samples are not likely to be iid. Another approach used
in Himberg et al [11], [12] is to time segment the context data sequence into independent
segments and use samples from successive segments as inputs. This approach still has many
problems one of which is significant computational and memory resources not available on a
mobile device where the feature extraction is performed. Another alternative is to transfer the
data to a central server where the feature extraction is performed and the results transmitted
back to the user device. This option also requires significant power and communication
resources. In both approaches there still remains the problem of deciding a rate of change
for the gain parameter «(t). Ideally data samples from all possible user contexts should be
used as input at some time before «(t) becomes very small, difficult when the number of
different contexts or the time durations of different contexts cannot be known a-priori. The
ideal solution would be to have a situation where o does not need to be changed and hence
there is continuous learning.

In a very general sense it is highly likely that whatever data processing occurs in the brain
there is not the condition that the data signals from sensory organs be iid and continuous
learning is possible. It seems that Artificial Neural Network (ANN) algorithms such as
the SOM, which are considered computational models of brain functions, do not respond
well to these conditions. The Integrate and Fire (I&F) neural models [13] are generative
neuron models, reproducing the spiking process measured in real neurons. The computational
abilities of spiking neurons is considered to be some form of temporal and/or rate coding of
the spikes. I&F neurons have been used for unsupervised clustering of real valued data using
temporal coding by Bothe et al [14]. Their approach depends on precise spike timing and
they have the problem of transforming real vector data into appropriate spike time delays.
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Figure 1: Basic neuron model of the K-SCM.

In what follows a K-Means algorithm using a set of I&F type neuron models is described
capable of clustering symbol string data in an unsupervised manner. Unlike other spiking
neuron models there is no explicit coding of information in the spike timings of the neurons.
For any input string s, which is modelled by a set of voltage sources, the winner node is the
first node to fire. Winner Take All (WTA), Hebbian learning is used to update the synaptic
weights such that the response of the winning neuron to the input is increased. The algorithm
is now referred to as the K-SCM. Furthermore, unlike the SOM or K-Means, for the K-SCM
to function the input data need not be iid and there is no learning parameters that need to
be adapted and hence continuous learning can be possible.

In Sec. 2 the I&F model of a K-SCM neuron is presented and some of its properties associated
with the winner determination and learning are mentioned. The means of determining the
winner and adapting the synaptic weights is described in Sec. 3. An example of clustering
symbol string context data with the K-SCM is given in Sec. 4 followed by the conclusion in
Sec. 5.

2 K-SCM Neuron Model

In this section the basic model of a K-SCM neuron is presented and some of its properties
described. Figure 1 shows an illustration of the neuron, not unlike the typical leaky integrate
and fire model [13], however here we use voltages and conductances rather than currents and
resistances to describe the model. The neuron has an internal voltage dV and output voltage
V,. Connected to the '+’ terminal is a capacitance C), in parallel with a conductance g, with
the second terminal of both elements grounded. Also connected to the '+’ terminal of the
neuron is a voltage source V; through a second conductance g,. Associated with the neuron
is the threshold voltage Vr which for dV' = V), > V then V,, = 1 and V,, = 0 otherwise. An
important point in the K-SCM is that the Vp of the neuron is allowed to vary.

A simple analysis shows that,

) = (1=t (1)

with 7 = C}p/(gi + gp) the time constant. The steady state value of V,, is given by V,,(c0) =
9i/(gi + gp) and if 0 < Vp < V,,(00) and V,(0) = 0 then the time ¢’ for Vj(¢) to exceed Vr is
given by,

t' = —7 log(1—Vr(gi +9p)/9:) - (2)
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Figure 2: Voltage source model for a symbol string.

These properties of the neuron are directly related to the determination of the winner for a
given input. Another important property of this model relevant to the learning stage of the
K-SCM is that if g; is increased and/or g, is decreased then for a constant Vr the time ¢’ is
decreased.

3 Winner Determination in the K-SCM

A K-SCM has a total of IV neurons and as in K-Means or the SOM for a given input the first
step is to determine the best matching neuron, or winner for that input. Before discussing
winner determination in the K-SCM a voltage source model of a symbol string input is
presented. The symbol string s = (s1,...,,) is considered as a fusion of the discrete states
of n information sources. Each source i has ¢; possible states and s;(t) € {¢i1, ..., iq, } at any
time t. Figure 2 shows an illustration of how the symbol string can be represented by a set
of voltage sources. Information source i has a set of ¢; voltage sources {11, ..., ¥iq } which
can be either [0V, 1V] and at any one time only one of the ¢;, = 1V and ;s = 0V, Vs # r.

All the voltage sources v;; of information source ¢ are connected to the '+’ node of neuron k
through a conductance gfj as illustrated in Fig. 3. The gfj correspond to the synaptic weights

and for our purposes gfj € [0,1]. Using the fact that conductances in parallel add together
we can define the equivalent g, of Fig 1 for each neuron k as,

g =G+ D> 9y 5Wy) (3)

where (1) = 1 if 1fy; = 0 and 6(¢)y;) = 0 otherwise. The equivalent value of g; from Fig. 1
for each neuron k is given by,

n qi

g = > g ol —dy) (4)

=1 j=1

Let VZ“ be the V, of Fig. 1 for each neuron k. For a given state of the 1;; and Vpk(O) =0,k
then V;,k (t) can be calculated using a simple numerical iteration

Vit+1) = Vi) = algl — V(O +95)) (5)

with a o« 1/05. If V;,k(oo) > Viﬁ then for some ¢’ < oo iterations the neuron fires. The
first neuron to fire is called the winner neuron. In the case that V;,k (00) < VE,Vk then no
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Figure 3: K-SCM circuit model with information sources and neurons.

neuron fires. For this reason the winner determination is modified so that the neuron fires if,
VE@®) > v(t)Vf, where v (0) = 1 and when V¥ (t) is saturated (i.c. gF — VF(t)(gF+gh)) < ¢,
with 0 < ¢ < 1) then 74(t) = % (t—1)*p, with 0 < p < 1 and p ~ 1. Furthermore if there
is a small random additive noise signal added to V;Dk (t) it is possible to show that for every
given input there is a winning neuron with probability 1.

After determining the winner neuron v for a given input the synaptic conductances g;; are
updated in a manner so as to decrease the time for V7 to exceed the threshold VTk for the
same input. This is achieved by increasing the synaptic weights g;; for which ¢;; = 1 and
decreasing the g}’ for which ¢;; = 0 as follows,

a(l—g;;), if ¥i; =1
Vo= gl + v . . 6
% % { a(l - gz’j)(o - 9@')7 if i =0 (©)

The learning is asymmetrical and as g;; — 1 then it is more difficult to decrease it. Note that
« is a constant learning factor. It turns out that in order for the K-SCM to find clusters in
the data it is also necessary to adapt V7 as,

ar(Vy(t) = V), ifVa(t) < Vg
VU == VU + p / . p 12 7
t= Vi {02(%”(15)—‘/%’)7 V() >V 0

with g < o constant gain factors. It can be shown that even if V7 is increased in this
manner for the same input the time to fire of neuron v still decreases consistent with the
update of the synaptic weights g;’.

4 Clustering Context Data with the K-SCM

As an example of how the K-SCM can cluster symbol string data, a set of real measured data,
the Nokia Context database, publicly available at [15] is used. The data set consists of a set
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Figure 4: Sample of the symbol string data from recordings used to train the K-SCM.

of feature files for 43 different recording sessions. In each recording session the same user
carried a mobile phone, sensor box and laptop PC, going from home to the workplace or vice-
versa. During the journey the user walks, takes a bus and Metro and sometimes uses a car.
During the session, sensors recorded 3-axis acceleration, atmospheric pressure, temperature,
humidity etc. The ambient audio was recorded on the laptop using a microphone and sound
card. On the mobile phone, the user’s location was recorded as Cell ID and Location Area
Code (LAC) as defined by the GSM network. After each recording session the signals were
processed and basic features such as average sound level etc. extracted and quantized. Each
quantization level of each feature was assigned an integer number denoting the ”state” of the
source. The state of each of the sources, including time, was recorded once a second. Figure 4
shows an example extract from one such session. In the example of the K-SCM that follows
the input to the K-SCM is a symbol string using information sources, (”day-period”, "hour”,
"half-hour”, "LAC”) and from Fig. 4 at time 1068189935 the symbol string is of the form (2,
7, 2, 8) where once again the integers act as symbols representing states of the information
sources with their numerical value not significant. In fact each symbol represents the voltage
source 1;; of information source ¢ for which 1);; = 1 at that second.

During training of the K-SCM with N = 15 (i.e. easy to represent the result), time consecu-
tive samples of the data were used as input to the K-SCM (i.e. samples were not iid). The
results of training a randomly initialized K-SCM with this data are shown in Fig. 5. For the
sake of presentation the K-SCM is presented as a 5 x 3 grid, with each node (z,y) of the
grid representing a neuron k. Despite the fact that the K-SCM in Fig. 3 is fully connected
with every voltage source of every information source connected to every neuron through the
conductances gfj, in the real implementation if gfj < 0.001 then it is not represented in the
results that follow. In Fig. 5 (a) beside each node (x,y) is an associated symbol string en-
closed in ’[]’s. Inside these brackets in the ()’s are the symbols, or states, of each information
source for which the associated gfj > 0.001. The values of the gfj associated with the states
represented in Fig. 5 (a) are shown in Fig. 5 (b). For example node (1,2) (i.e. neuron 4) in
Fig. 5 (a) has associated symbol string [(2)(8)(2)(3,4)]. Note the K-SCM symbol strings can
have different dimension than the input. Referring to the weight string associated with node
(1,2) in Fig. 5 (b) we say, 12 (i.e. info. source 1, volt source 2) is connected to neuron 4
by g1y = 0.98, thag (i.e. info. source 2, volt source 8) is connected to neuron 4 by gas = 0.98,
1h3o is connected to neuron 4 by g§2 = 0.98, 143 is connected to neuron 4 by gf113 = 0.55
and 144 is connected to neuron 4 by gj, = 0.93 with all other gfj < 0.001. In terms of
the original context data we interpret the cluster defined by node (1,2) as representing the
”morning time”, "between 8:15 and 8:45” in locations 3 or 4. A similar interpretation can
be applied to symbol strings associated with the other nodes. It is found that the learned
symbol strings correspond to the most frequently occurring symbol strings in the training
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Figure 5: The result of training the K-SCM with a set of context data represented by symbol strings.

data, or else not so frequently occurring but quite different from the other symbol strings, for
example [(2)(7)(1)(1)] at node (2,3). This indicates the K-SCM is performing a clustering
of the symbol string data and similar results are obtained starting from other initial condi-
tions indicating its robustness. The same K-SCM (i.e. same parameter settings) with sensor
feature input (e.g. temperature, humidity etc.) also results in a clustering despite the very
different statistical nature of the data compared to the time/location example shown here.

5 Conclusions

Unsupervised clustering of data using the SOM or K-Means for context recognition, where the
data samples are not independent and identically distributed poses a problem. Furthermore
the sequential input mode of the SOM and K-Means are designed for real vector data rather
than symbol string data. The K-SCM consisting of a set of neuron models with integrate and
fire functionality has been described. The K-SCM operates with symbol string data which
need not be iid and furthermore, no varying learning rate needs to be defined. The K-SCM
when applied to real measured context data finds clusters in a robust, unsupervised manner.
Further analysis will show in more detail the operation of the K-SCM and which functions
are most important in the clustering.
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