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Abstract - This paper proposes a generalized framework of SOM applicable to more extended data
classes rather than vector data. The generalization is realized by adopting the idea of a modular
network; thus it is called a modular network SOM (mnSOM), in which each nodal vector unit in
a conventional SOM is replaced by a function module such like a neural network or a trainable
algorithm. First, we introduce the basic idea of an mnSOM, and then by focusing on a class of mnSOM
that consists of multi-layer perceptron modules, the architecture and the algorithm are presented.
Finally, some applications to nonlinear dynamical systems are reported.
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1 Introduction

Kohonen proposed the idea of the self-organizing map more than 20 years ago, but fields of applica-
tion are still spreading in today’s information driven society [1,2]. Despite its increasing importance,
the conventional SOM and the most of its extensions can only deal with vectorized data. If one wishes
to deal with a non-vector dataset, then one needs to make the data vectorized in advance, otherwise
one needs to modify the SOM itself to adapt the data type. Therefore, generalizing the SOM family
is one of the unavoidable problems, in which the SOM algorithm is described independently of the
data type.

Our study aims to develop the generalized framework of the conventional SOM by adopting the
idea of a modular network, in what we call a modular network SOM (mnSOM) [3,4]. The idea of an
mnSOM is simple; every vector unit of the conventional SOM is replaced by a trainable function mod-
ule such like a neural network. Thus the architecture of the mnSOM is an assembly of the function
modules arrayed on a lattice (Fig. 1). The function modules can be designed to suit each application,
while keeping the backbone algorithm of the SOM untouched. This generalization strategy provides
both a high-degree of design flexibility and reliability to SOM users, because the mnSOM allows one
to choose the function modules from the great number of neural architectures already proposed; and
at the same time, the consistent extension method assures the theoretical consistency, e.g. statistical
properties, of the results. Furthermore, this strategy gives the functional capability of data processing
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Figure 1: The architecture of mnSOM

to all nodal units of the SOM. Thus, our mnSOM can be used as an assembly of data processors after
training. This is another advantage of an mnSOM.

As an example, let us consider the case that someone is trying to make a map of the weather
dynamics of the world’s cities [3,4]. In this case, the task is to generate a feature map that visualizes
the degree of similarities or differences between the weather dynamics of each city; if the weather of
New York and Tokyo are described by similar dynamics, then both cities are expected to be the neigh-
bors in the weather map, whereas if London and Singapore have different dynamics, then they will be
mapped far apart. Of course one could make a map by using a conventional SOM after vectorizing all
the weather data; however, such map would provide no information about the relationships between
the dynamics. To achieve this task, one should identify the weather dynamics of every city, and then
generate a feature map by comparing the dynamics. This is what one can do with an mnSOM. By
using an mnSOM, all one has to do is; (i) design a neural network that can learn the weather dynam-
ics of a single city, (ii) employ the neural network as the function module of the mnSOM, and (iii)
train the mnSOM by entering world wide weather data. In addition, the mnSOM can be used as an
assembly of weather forecast systems after training.

Similar ideas have already been proposed as the Operator Map and ASSOM [5,6], but our purpose
is to establish a more general and more flexible framework that takes over the operator case. Indeed,
the multi-layer perceptrons (MLPs) [3,4], the recurrent neural networks (RNNs) [7], SOMs, Neural
Gases (NGs), etc. are all available to act as function modules of an mnSOM. Operator Map and
ASSOM can be regarded as mnSOMs with linear operator modules and PCA modules respectively,
whereas an mnSOM with hebbian neuron modules becomes a conventional SOM.

In this paper, first the general idea of our mnSOM is introduced. Then focusing on a class of
mnSOM, i.e. the MLP-module-mnSOM, the architecture and the algorithm are presented along with
some applications to nonlinear dynamical systems.

2 Theoretical Framework

The architecture of our mnSOM is shown in Fig. 1. Basically, the architecture is such that each vector
unit of the conventional SOM is replaced by a function module. These modules are arrayed on a
lattice that represents the coordinates of the feature map. Many trainable algorithms can be employed
as function modules, though Fig. 1 illustrates an MLLP-module case. Since each module represents
a certain ‘functional feature’ determined by the module architecture, the entire mnSOM represents
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a map of functions. Therefore, one might draw analogies between the mnSOM and the functional
column structure or the functional map of the cortex.

Suppose that an mnSOM user is trying to map a set of I objects, {Cy,...,C}. Here we call the
mapping object ‘atom’, since it is the most elementary unit in the map space. In the conventional
SOM, each data vector is the atom, whereas in the previous example of the weather map, each atom
corresponds to each of the weather dynamics. It is not necessary that the entities of atoms are identi-
fied in advance, i.e., they are generally assumed to be unknown. For example, the equation describing
each of the weather dynamics is the entity of the atom, which is usually unknown. Instead, a sample
dataset observed from each atom is assumed to be available. Thus, let D; = {r;1,...,r; } be the
dataset observed from the ith object C;. In this paper, it is assumed that {r; ;} are vector data.

Now let the mnSOM have K function modules {M!, ..., MX}, which are designed to have an
ability of regenerating, or mimicking the atoms. (Here, let the subscripts represent the indexes of
mapping objects or datasets, whereas the superscripts mean the indexes of mnSOM.) Suppose that
the property of each function module M is determined by a parameter set w¥; thus in the case of
MLP-module-mnSOM, w* means the weight vector of the kth MLP module. Suppose further that
each function module M* is given a fixed position £* in the map space. Therefore, £* assigns the
coordinates of M* in the map space, while w* determines the position in the data space.

Under such a situation, the tasks for mnSOM are (i) to identify the entities of {C;} from the
observed datasets {D;} by adapting the function modules {M*}, and (ii) to generate a map that shows
the degree of similarities and differences between the atoms, in parallel. Note that the map generated
by the mnSOM is expected to show the relationships between the entities of the atoms; therefore,
direct comparisons between the datasets are meaningless for that purpose.

mnSOM users only need to give a definition of the measure representing the similarity between
an atom and a function module. Suppose that S f represents the degree of similarity between C; and
MF, described as follows.

sk 2 s(L(Ci, Mb)) (1)

Here L(C;, M*) is the distance measure and s(-) is a monotonically decreasing function. Both L(-,-)
and s(-) can be defined by the user depending on the module architecture. Since C; is unknown, the
similarity measure can be estimated from the observed dataset D;. One of the natural definitions is to
use the mean square error.
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Here, # is the approximation of r by the module M*.

The algorithm of the mnSOM consists of four processes: evaluative process, competitive process,
cooperative process and adaptive process. In the evaluative process, the similarity measure Sf.‘ is
evaluated for every combination of C; and M*. In the following competitive process, the module that
maximizes S f is determined as the best matching module (BMM) of C;. Thus, the index of the BMM,
denoted as k; here, is defined as follows.

ki £ arg max S¥ (3)
k

In the cooperative process, the degree of C; belonging to M* is given by the neighborhood function;

PMNC) = h(||¢° - &1|;T). (4)

l
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Here h(-;T) is the neighborhood function that shrinks by the calculation time 7', whereas & is the
position of M in the map space. By regarding P(MX|C;) as a conditional probability, the posterior
probability P(C;|M*) can be evaluated by Bayes’ rule.
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z,//f.‘ is calculated for all combinations of {C;} and {M*}. At last, all modules are trained to maximize the
expectation of the similarity measure in the adaptive process. Let (S*) be the expectation of similarity

measure of the kth module, which is given by
1 1
(s = > PCiMst = > uist. (©)
i=1 i=1

Then the module parameters {w*} are innovated so as to maximize {(S¥)} while {wf} are fixed. If
a direct calculation of the best {w*} for maximizing the expectation is impossible, then wk can be
innovated by using the gradient method as follows.

oSk

HSK) !
AwF = = kL 7
W= n,; Vit (7

Here 77 is a small constant that determines the learning rate. If the similarity measure is defined as (2),
then the adaptation process described in (7) becomes as follows.

1 J L
s -3 3

These 4 processes are iterated, shrinking the neighborhood function area until the network gets to
a steady state. Therefore, the algorithm of the mnSOM described above is the expectation maximiza-
tion (EM) algorithm.

2.1 Algorithm of an MLP-module-mnSOM

To consider the practical aspects of an mnSOM, we hereafter consider the case that the function mod-
ules are the MLPs. In this case, each module represents an input-output relation, namely, a function
or a system. Consequently, the atoms are also functions or systems. Now suppose that there are /
functions {f;(-), ..., fi(-)}, which are unknown initially. Instead, the sample datasets {Dy,..., Dy} are
assumed to be given. Here, D; = {(x;1,¥i1),.-.,(Xi/,¥is)} is a set of input-output vectors sampled
from the ith function. Thus, the vector pairs satisfy y; ; = fi(x; ;). The tasks of the MLP-module-
mnSOM are (i) to identify the unknown functions, and (ii) to generate a feature map of those func-
tions. In other words, the task of the mnSOM is to undertake a topological mapping from a function
space to a map space. Therefore, the MLP-module-mnSOM is a SOM in the function space rather
than one in the vector space.

540



Modular Network SOM:The Architecture, the Algorithm andApplications to Nonlinear Dynamical Systems

To complete the mnSOM algorithm, all one needs to do is to give an appropriate definition of the
similarity measure. In this case, the mean square error is employed as the measure. Thus,

Sk —[2(f.8" = ‘f”fi(x) - pitxrdx ©

Here g¥(-) denotes the function represented by the kth module M¥, and p;(x) is the probability density
function (pdf) of the input x of the ith data class. Since {f;(-)} are unknown, (9) cannot be evaluated
directly. However, it is approximated by the mean square error between the output vectors {y; ;} and
the outputs of modules. Thus,

J
Ll A
Ef £ 5> lyij = $ijIF = -5 (10)
j=1

Here, jff.‘,j is the output of M* for the input x;, j» 1€, jrﬁ i = g (x;, 7). In the competitive process, the
module that maximizes S f is determined as the BMM of C;. It means that the least mean square
error module for each class is determined as the BMM. In the following cooperative process, {w;‘} are
calculated by using the neighborhood function. If a Gaussian function is chosen as the neighborhood
function, then z,//f.‘ is given as follows.

exp |- ¢t - &1 1207
i = (11)
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In the adaptive process, the weight vectors {w¥} of all modules are innovated as follows.
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Therefore, the learning algorithm of MLP modules is given by the modified backpropagation algo-
rithm. (12) means that the BMM and its neighbors learn the class at a larger learning rate than other
modules. As the result, the map of functions is organized gradually through iterative learning.

3 Applications to Nonlinear Dynamical Systems

One of the application fields of an MLP-module-mnSOM would be the nonlinear dynamical phenom-
ena. To validate the effectiveness of our mmSOM, two simulations involved with nonlinear dynamical
systems were carried out.

Before describing the results, let us consider a situation in which there is a set of unknown non-
linear systems, and the observed time series data are available to be used. These nonlinear systems
are assumed to be derived from a single system, the hidden parameters of which continuously alter
the system. Therefore, if there are two systems determined by similar parameters, they are expected
to have similar dynamics. In such a situation, the tasks of the mnSOM are (i) to identify the unknown
systems from the observed time series data, and (ii) to arrange the systems in the order of the hidden
parameters in the map space. In other words, the mnSOM is expected to generate a map space as an
alternative expression of the hidden parameter space.
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Figure 2: Simulation result of logistic maps. (a) The parameter space (a, b) and the corresponding time series.
The boxes with thick frames were used for training the mnSOM (b) The map generated by the mnSOM. Each
box represents the time series generated by the corresponding module

The mnSOM of Logistic Maps The first simulation was to deal with time series data generated by
the logistic maps. In this simulation, the ith time series was generated by the following equation.

Xi(t+1) = fi (D) = —a; x:(0)* +a; — 1 + b; (13)

Here, a; and b; were the hidden parameters that determined the dynamics of the ith time series. Since
the waveforms are drastically changed by the parameters a and b, as shown in Fig. 2(a), the desired
map could not be generated from direct comparisons between the time series. Therefore, the tasks
of the mnSOM were to identify the dynamics {f;j(x)} from the observed time series, and to map them
while preserving the topology of the hidden parameter space (a, b). The MLP module structure was
1 input—4 hidden—1 output units. During the training phase, 15 time series produced by different
parameter sets (indicated by the thick frames in Fig. 2(a)) were presented to the mnSOM.

The result is shown in Fig. 2(b). Each box corresponds to the module in which the waveform
produced by the module is depicted. The modules indicated by the thick frames were the BMMs of
the training data. As the figure shows, the topology of the parameter space (Fig. 2(a)) was preserved
in the map space (Fig. 2(b)). Furthermore, the intermediate modules showed intermediate properties
due to the interpolation of given systems.

The mnSOM of Neuron Models The second simulation was involved with the nonlinear dynam-
ical phenomena of a biological neuron model. Here the Bonhoffer-van der Pol model (BVP model
or FitzHugh-Nagumo model) was used. The BVP model is regarded theoretically as a reduction
model of Hodgkin-Huxley equations, and it qualitatively reproduces various firing patterns of neu-
rons, including the case of chaotic oscillation [8]. The dynamics of the BVP model is described by
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Figure 3: Simulation result of BVP neuron models. (a) Firing patterns x(f) generated by a BVP model for the
periodical pulse train z(7) with different synaptic strengths A. (b) The time series of Ax(#) of each class (c) The
one dimensional map generated by the mnSOM and predicted Ax(r) by the modules

the following differential equations.

'5
m={@~§hw>m@ (14)

x(t) +by(t) —a
c

Y = - (15)
Here x(f) and z(¢) represent the membrane potential and the input pulse respectively, and y(¢) is a
hidden variable. a, b and ¢ are constants, whereas A is the parameter representing the input intensity.
In this simulation, it was assumed that z(f) was the stimulus pulse to the presynaptic neuron, while
A meant the synaptic strength as the hidden parameter. When A was changed, BVP model showed
various firing patterns as shown in Fig. 3(a). The 5 pairs of time series x(#) and z(¢) shown in Fig. 3(a)
were regarded as the observed recordings, and they were entered to an mnSOM for training.

The tasks of the mnSOM were (i) to identify the dynamics from observed recordings, and (ii)
to allocate these 5 systems in order according to the hidden parameter A. The mnSOM had a one
dimensional map space with 10 modules, which were Elman type recurrent MLPs. The inputs of the
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modules were x(f) and z(#), and the desired output was Ax(¢) = x(¢ + Ar) — x(¢) as shown in Fig. 3(b).
Thus, the learning task of each module was to predict the membrane potential change at At sec later.
Each module had two input and one output units corresponding to x(¢), z(¢#) and Ax(#), while the
number of the hidden (recurrent) units were set to 3.

Fig. 3(c) shows the result. Each box represents the module, and the waveform depicted in each
box represents the Ax(#) predicted by the module. The labeled modules are the BMMs of the given
time series. The mnSOM succeeded in aligning the 5 waveforms in order of the hidden parameter A
as well as in predicting Ax(¢).

The results of the logistic maps and the BVP models suggest that our mnSOM works as a ‘Self-
Organizing Bifurcation Map’ in applications involved with nonlinear dynamical systems.

4 Conclusion

In this paper, we have proposed a generalized framework of a SOM, which we named as an mnSOM.
The results of applications to nonlinear dynamical systems showed that our mnSOM had good abil-
ities; it worked as a parallel system identifier, a hidden-parameter finder and a system interpolator
between given systems. The mnSOM does not directly generate a map of observed data , but extracts
the essence e.g. the underlying dynamics or functions, and then generates the relevant map. These
advantages of our mnSOM are showing in just one of its aspects, because the mnSOM can show
another aspect by employing other types of modules. Considering this fact, our mnSOM is expected
to be a powerful tool in many application fields, being a generalization of the SOM family.
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