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Abstract – Identification of the short DNA sequence motifs that serve as binding domains for 
transcription factors continues to be a challenging problem in computational biology. 
Currently popular methods of motif discovery are based on unsupervised techniques from the 
statistical learning theory literature. We present here a working prototype of a neural 
networks based system that aims to tackle the DNA regulatory motif identification problem. 
The system consists of three modules, the core module being a SOM-based motif-finder named 
SOMBRERO. The motif-finder is integrated in the prototype with a SOM-based pre-processing 
method that initialises SOMBRERO with relevant biological knowledge, as well as a self-
organizing tree method that helps the user to interpret SOMBRERO’s results. The system is 
demonstrated here using various datasets. 
 
Key words – Transcription factor binding sites, motif-finding, Self-Organizing Map, Self-
Organizing Tree.  
 
1   Introduction 
 
Given a collection of DNA regions that are believed to contain common regulatory elements, 
computational methods that aim to find transcription factor binding sites (TFBSs) typically proceed 
by identifying short DNA sequence “motifs” that are statistically overrepresented in the input. The 
motif identification problem is notoriously difficult, however, as motifs are short signals (6-20bp 
long) that are hidden amongst a great amount of statistical noise (promoter regions are typically 
thousands of base pairs long). No information usually exists as to the number of individual TFBSs 
contained in the input sample, and sequence variation exists such that one TFBS can be quite 
dissimilar from another of the same type. More than one transcription factor (TF) may have binding 
sites in the input sample, so it is not typically known even how many distinct motifs we expect to 
find.   
 Despite the difficulties, numerous motif prediction techniques have become available over the 
past few years. Many methods are based on statistical learning theory methods such as expectation-
maximisation (e.g. MEME [1]) and Gibbs sampling (e.g. AlignACE [2], Co-Bind [3] and 
BioProspector [4]). Such methods work through maximum likelihood parameter estimation of the 
motif model. Neural networks have rarely been applied to the motif-identification problem, one 
notable exception being ANN-Spec [5], where a Perceptron was combined with a Gibbs-sampler to 
increase the specificity of the estimated motif models. Alternative motif identification methods 
have also been proposed, including word enumeration, winnowing, and dictionary construction 
based methods [6-8]. 
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 An alternative approach to the motif identification problem can be defined by phrasing it as a 
clustering problem. For example, instead of defining the problem in terms of two models (the motif 
and the background) whose parameters have to be estimated by expectation maximisation or other 
such methods, consider the input sequence collection as a set of short overlapping substrings which 
may be clustered into a number of bins according to sequence similarity. After clustering, each bin 
would contain an alignment of similar substrings and therefore a motif. Given a large number of 
bins, a correspondingly large number of motifs would be found by the clustering approach. The 
vast majority of these motifs would not be TFBS motifs, and would instead be due to the 
background mutation patterns of the genome. Given an appropriate background model, TFBS 
motifs can be distinguished from motifs that represent background noise.  
 One unsupervised clustering algorithm suitable to our alternative phrasing of the motif-
identification problem is the Self-Organizing Map (SOM) [9]. We have previously shown that the 
SOM can be applied to the motif identification problem, and the SOMBRERO (Self-Organizing 
Map for Biological Regulatory Element Recognition and Ordering) framework resulted [10]. In the 
previous publication, we demonstrated that SOMBRERO’s approach to simultaneously 
characterising a complete set of motifs for a given dataset has advantages over traditional 
approaches. Specifically, the self-organized approach to motif identification helps to separate weak 
motif signals from large datasets, and improved motif detection performance in real biological 
datasets is observed [10].  
 In the current work, we show how two distinct self-organizing neural networks can be usefully 
integrated with SOMBRERO. One of the additional modules, based on the SOM, seeks to initialise 
the motif-finder with relevant biological information on known TFBSs, thus turning the original 
unsupervised approach into a semi-unsupervised one. Another subsystem, based on a self-
organizing tree algorithm, helps to resolve differences between the motifs that have been found by 
the core motif-finder.  
 
2   Methods  

2.1    Position Specific Scoring Matrices 
 
It is usually possible for TFs to bind to a set of related sequences that share some highly conserved 
positions as well as some more stochastically determined positions. The set of related sequences 
can be approximately represented by a consensus sequence, or more accurately by a position 
specific scoring matrix (PSSM). In describing an alignment of sequences, a PSSM gives the 
frequency of each base at each position in the alignment (see Figure 1). Similarity between a DNA 
substring and a PSSM is provided by a log-likelihood ratio score, S(x), defined as: 
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where pb is the background probability for base b and xib, a position in the indicator matrix for the 
string x, is 1 if base b is at position i of the string and 0 otherwise.  A high score S(x) indicates that 
the string x is more similar to the motif characterised by the PSSM f than to the background model. 
 
2.2   SOMBRERO 
 
SOMBRERO is based on the SOM, whose general structure is a two-dimensional (2-D) lattice of 
interconnected nodes. In SOMBRERO, PSSMs are embedded as models at each node on the SOM 
grid. The motif discovery problem aims to find over-represented features of length ℓ in an input 
dataset of DNA sequences. SOMBRERO, therefore, aims to align similar ℓ-mer sequences at the 
SOM nodes. With this aim in mind, the training algorithm proceeds as follows: 
1. An X x Y grid of nodes is created, and the coordinates of the nodes are denoted by z = (z1, z2). 

Each node contains a PSSM model fz and a count matrix cz that contains the number of base b at 
each position i in the current alignment.  
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2. A length ℓ is chosen, typically between 8 and 20, and the input sequences are segmented into 
every overlapping ℓ-mer (xj , j=1,…,N). The PSSM models are initialised using an ordered 
gradient random initialisation [10]. 

3. Each xj is assigned to the node with the maximum likelihood, i.e. the highest score Sz(xj).  
4. Update step: 

4.1. The count matrix cz is updated for each node, according to the current set of ℓ-mers 
aligned at the node. 

4.2. New models are generated by augmenting the profile matrix: 
 

 
(2) 

 
 where pb is the background probability model, β is a small scaling factor that helps to 

avoid zero probabilities, and Φ(|z - z'|) is a neighbourhood function that defines the 
proportion that a node will contribute to another node that is a distance |z - z'| away on the 
SOM. For our purposes, the Gaussian neighbourhood function 
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 is used. Here the term γ is a measure of the sharpness of the neighbourhood function and 
is defined as )log(/1 δγ ≡  so that adjacent nodes will contribute 1/δ of their counts to each 
other. In practice, δ ranges from 4 to 15 over the course of training. Thus, the 
contributions from fib

z to the counts of neighbouring nodes initially strongly enforce the 
similarity of nearby nodes, and end up contributing little at the end of training.  

5. Training repeats from step 3 until convergence (defined here as 100 cycles). Once convergence 
is reached, each string xj is assigned to its most similar node. In the case where two or more 
strings at a given node are overlapping strings in the input sequences, only the string with the 
larger Sz(xj), is kept. At this point, each node will have a PSSM motif in its final state as well as 
a list of ℓ-mers that contributed to the motif’s construction. 

6. In practice, various motifs of different lengths can exist in a single dataset. Therefore, separate 
SOMs can be trained from step 2 for various length ℓs. In our application, separate SOMs are 
typically trained across all even lengths between 8 and 20. 
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Figure 1. a) an alignment of binding sites, b) a 
consensus sequence representation of the alignment, 
where W = {A or T}, S = {C or G} and N represents any 
base, c) a PSSM representation, and d) a sequence logo 
representation, where the information content of each 
position is multiplied by the relative frequency of the 
letters to give letter height. 
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Figure 2. The effect on SOMBRERO performance of 
varying the SOM size as a factor of input dataset size. 
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7. Post processing steps: 
7.1. Significant features are distinguished from those that would be expected due to chance. A 

3rd order Markov chain model of the relevant background is used to generate random 
datasets, and these sets are used to find the expected number of occurrences of each 
motif, thus yielding z-scores for each node’s motif. 

7.2. Repetitive chains of DNA that exist throughout the genome may sometimes seem to be 
significant motifs, but are in fact uninteresting from the viewpoint of binding motif 
identification. Such repetitive motifs are filtered using a motif complexity score (given in 
[10]). Complexity here refers to a measure of the diversity of bases appearing in a PSSM.  

 In order to investigate the effect of varying the SOM lattice size, various sized SOMs were tested 
on artificial sequence datasets of varying lengths. Each sequence dataset was created using a 3rd 
order Markov model of E. coli intergenic sequences, and 10 instances of the gal4 binding motif 
were placed randomly in each dataset. The tests were run ten times to generate the average 
performance ratios displayed in Figure 2. Performance is defined here as PKPK UI , where K 
is the set of known motif sites and P is the set of predicted motif sites. The trend of getting better 
performance in larger datasets by increasing the SOM lattice size is clear in Figure 2. From this test 
and others, it was found that the optimum SOM performance can be obtained by keeping the ratio 
of lattice nodes to input dataset size in the order of one node to 10 base pairs. 
 
2.3   Initialising SOMBRERO using a PSSM SOM 
 
In the original description of the SOMBRERO algorithm, randomised and ordered SOM lattice 
initialisation strategies were explored [10]. Although no significant difference in motif-finding 
accuracy was observed between the two strategies, the ordered initialisation, where the PSSMs in 
each corner of the lattice were biased towards a particular base (and gradients of preference existed 
in other nodes), was chosen for the smoothness it introduced into the SOM training procedure. 
 An alternative approach to SOMBRERO initialisation has since been developed [11]. Many 
known binding motifs exist in databases such as TRANSFAC (www.gene-regulation.com), and the 
binding preferences displayed in these motifs are not randomly distributed. For example, if two 
transcription factors are related evolutionarily, it is highly likely that their DNA binding motifs also 
display some similarity. The challenge is to incorporate such knowledge into methods that aim to 
find novel motifs in a set of sequences.  
 It has previously been demonstrated that incorporating the binding preferences of an entire 
family of related motifs as a “biasing prior” for a Gibbs-sampler based motif finder improves the 
detection of motifs related to the given family [12]. Knowledge of familial membership of an 
unknown motif is rarely available, however, and incorporating an incorrect prior has a detrimental 
effect on motif-finding performance. Current motif-finding methods can only incorporate a single 
prior in a given motif-finding run, and therefore the choice of biasing prior is critical. However, the 
SOMBRERO lattice contains many PSSM models, and thus the opportunity exists for multiple 
priors to be used to initialise the lattice.  One effective way to order a set of known PSSMs into a 
structure suitable for initialising and biasing SOMBRERO is to train another SOM on the set of 
PSSMs and use the final node states from that SOM as the initial SOMBRERO node states.  
 When training a SOM on a set of PSSMs, PSSMs are again used as SOM node models. As 
distinct from the SOMBRERO algorithm, PSSM matrices, and not ℓ-mers, are to be clustered at the 
models. Clustering matrices on the SOM requires a matrix-matrix similarity measure. 
Pietrokovski’s [13] methods for aligning two PSSMs are used in this study. Under this schema, 
Pearson’s correlation coefficient is used for column-to-column comparisons, and a modified Smith-
Waterman algorithm [14] is used to find optimal (gapless) local alignments of PSSM pairs. In order 
to compare alignments of different widths, the method for the calculation of empirical p-values 
described by Sandelin & Wasserman [12] is followed exactly. The method involves extensive 
analysis with a set of 10,000 simulated PSSMs to determine the likelihood of any score given the 
lengths of aligned matrices. The simulated PSSMs reflect the properties of the PSSMs in the 
JASPAR database [15]. The training algorithm for the SOM of PSSMs proceeds as follows: 
1. The PSSM SOM lattice size is chosen as equal to the size required by the SOMBRERO grid, 

and each node model mj is initialised as a PSSM with random values.  
2. For each training set PSSM, xi (i=1,…,N): 

2.1. xi is aligned to every SOM node model mj using the alignment method described above. 
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2.2. The node w whose model mw has the best p-value score to xi is selected. 
3. Update step: 

3.1. At each node j, all clustered members are aligned to give the weighted alignment matrix 
Aj. The weight (Zv) of each member is calculated by the average p-value (pv) obtained in 
comparisons of profile v to all other members of the same node: Zv = 1 – pv. The node 
member with the highest Zv is designated as the alignment positioning template. 

3.2. New models are generated according to the equation: 
    

      (4) 
 

where align() is a function that aligns the columns of each xi (clustered at node k) to the 
relevant alignment positioning template at node j, and |j-k| is the distance on the SOM 
grid between nodes j and k.. The Gaussian sharpness factor, γ, is defined as before, but 
here δ ranges from 4 to 30 during training. The length of the new model depends on the 
quality of the alignment. Flanking columns with low information content (<0.4 bits) are 
excluded from the new model, to a minimum model length of 8 columns. Finally, each mj 
is normalised. 

4. The training process repeats from step 2 until convergence (100 cycles). 
The algorithm results in a grid of PSSMs that can be used as the initial states for a SOMBRERO 
grid of equal size. The effect of varying the initialisation strategy on SOMBRERO’s performance 
is illustrated in Figure 3. For this figure, two sets of artificial sequence data were created; one 
containing variable instances on the E4BP4 motif, and another containing variable instances of the 
CSRE motif. The motif instances were randomly embedded in sequences of various lengths. Three 
initialisation strategies were tested; the original ordered initialisation, a random initialisation and an 
initialisation using a PSSM SOM that has been previously trained on 257 mammalian PSSMs 
(including E4BP4, but not CSRE). From Figure 3, it may be seen that the latter initialisation 
improves motif-finding performance significantly in the E4BP4 set, especially in longer sequences. 
Performance is not significantly affected by using a PSSM SOM in the CSRE set, as CSRE was not 
in the dataset used to train the PSSM SOM. 
 
2.4   Displaying relationships between discovered motifs using the Self-Organizing 
Tree Algorithm 
 
As a consequence of SOMBRERO repeating the motif search over various values of ℓ, slightly 
different instances of the same motif may be discovered and reported as distinct motifs. In order to 
point out similarities between the discovered motifs to the user, a third subsystem is necessary. The 
Self-Organizing Tree Algorithm (SOTA) was first described by Dopazo & Carazo as an alternative 
means of automatically constructing a phylogenetic tree for a set of protein sequences [16]. The 
topology of the SOTA neural network takes the form of a binary tree. The tree begins with 2 
external elements, denoted as cells, connected by an ancestor, named a node. Training proceeds 
similarly to the SOM algorithm, but at the end of a training cycle the tree grows by splitting one 
cell. The tree stops growing when a predefined threshold has been reached, or when every cell has 
a single datapoint clustered within (as in our usage). SOTA is based on Fritzke’s growing self-
organizing network concept [17]. Many other forms of growing self-organizing maps have been 
described, but SOTA’s binary tree topology was deemed most suitable for this application. 
 In the current system, we apply SOTA to the hierarchical clustering of a set of the most over-
represented PSSMs outputted by SOMBRERO. The SOTA nodes and cells each contain a PSSM 
that evolves over the training period to represent a PSSM or set of PSSMs from the input dataset. 
Other than the change of neural network topology and associated cell-growing mechanism, the 
PSSM SOTA methodology (including the PSSM alignment method) is similar to the PSSM SOM 
described above, with the following specifics: 
1. Two cells, and a connecting node, are initialised as random value PSSMs mj.  
2. For each training set PSSM, xi, (xi, i=1,…,N): 

2.1. xi is aligned to every cell on the tree (mj) using the alignment method described above. 
2.2. The node w whose model mw has the best p-value score to xi is selected. 

3. Update step (only cells and immediate ancestors): 
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3.1. An alignment matrix Aj is constructed at each cell in the same manner as that described 
for the PSSM SOM. 

3.2. New models are generated according to: 
 

    (5) 
 

where the notation follows that of the PSSM SOM, and the learning rate 
( )tij Mt /1−=αη , where αsister=1/2 and αmother=1/8. 

4. The training process repeats from step 2 until Mt cycles are reached (Mt = 50). 
5. Growing phase: If the algorithm has not yet converged, the cell with the lowest resource value 

(Zi, defined above) is split, giving rise to two (initially) identical descendants. 
6. Training repeats from step 2 until convergence. Convergence is defined here as the point where 

every cell contains one and only one PSSM, although training can be stopped at any point in 
the growth of the tree. 

The resulting tree structure can be displayed to the user, and this allows the visualisation of the 
distinct motifs discovered by SOMBRERO. 
 
3.   Results 
 
The functionality of the complete SOMBRERO motif-finding system is briefly summarised in the 
demonstration outlined in Box 1. In this demonstration, SOMBRERO aims to identify motifs in an 
artificial dataset, generated using a 3rd order Markov model of yeast intergenic DNA. Within the 
artificial dataset are implanted 10 TFBSs for each of three TFs: GAL4, NF-κβ and CREB. 
SOMBRERO’s grid is initialised using a PSSM SOM that has been previously trained on a 
collection of 257 mammalian PSSMs. The collection includes the NF-κβ and CREB PSSMs, but 
not the GAL4 motif. As can be seen in Box 1, SOMBRERO identifies multiple motifs that match 
the known GAL4, NF-κβ and CREB PSSMs.  
 As an example of SOMBRERO’s performance in real genomic datasets, 10 datasets from the 
yeast genome are used to evaluate the performance of SOMBRERO with and without a prior 
initialisation in comparison with the popular motif-finders MEME [1] and AlignACE [2]. Each 
dataset contains a number of instances (given by the sites column) of a particular yeast 
transcription factor binding motif (as denoted by the name of the dataset). The prior initialisation 
refers to a SOMBRERO run that has been initialised using a PSSM SOM trained on the entire set 
of known yeast motifs contained in the SCPD database. The results in each dataset are described in 
Table 1 in terms of false negative rates (FN), false positive rates (FP) and performance (Perf). It 
can be seen from the table that the use of the prior initialisation allows SOMBRERO to gain the 
best performance rate in 8 of the 10 datasets. 
 
4.   Conclusion 
 
We have described an effective prototype of a neural networks based software pipeline that has the 
ability to automatically identify multiple DNA binding motifs in biological sequence datasets. The 
SOMBRERO system is the only existing motif-finding software program that can effectively 
incorporate a complete set of known TFBS PSSMs as prior knowledge, thereby offering improved 
performance. The SOMBRERO system is currently freely available as a standalone application for 
a variety of different systems (see http://bioinf.nuigalway.ie/sombrero for download). A web-based 
interface for the integrated system is currently being developed that will allow users to submit their 
data for analysis, and results will be returned on completion. One issue with the SOM-based 
approach to motif-finding is the computational cost of the SOMBRERO algorithm. Parallelisation 
has alleviated this problem somewhat (see Figure 4 for timing information on a SGI Origin 3800), 
but scaling up the SOMBRERO system to allow for the analysis of very large sequence datasets 
will require further optimisation and deployment on distributed computing resources. 
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Table 1. Comparison of motif detectors on 10 yeast promoter sequence datasets. The best performance rate in each 
dataset is highlighted in bold. 

  
SOMBRERO 

(original initialisation) 
SOMBRERO  
(with prior) MEME AlignACE 

 sites FN FP Perf FN FP Perf FN FP Perf FN FP Perf 
abf1 20 0.45 0.56 0.324 0.40 0.29 0.480 0.55 0.18 0.409 0.50 0.38 0.385 
csre 4 0.25 0.73 0.250 0.00 0.75 0.250 0.50 0.67 0.250 0.25 0.82 0.167 
gal4 14 0.07 0.24 0.722 0.07 0.07 0.867 0.29 0.17 0.625 0.21 0.08 0.733 
gcn1 25 0.60 0.29 0.345 0.44 0.33 0.438 0.92 0.80 0.061 0.60 0.44 0.303 
gcr1 9 0.22 0.69 0.285 0.00 0.41 0.588 0.44 0.44 0.385 0.33 0.63 0.316 
hstf 9 0.11 0.57 0.407 0.11 0.53 0.444 0.33 0.75 0.222 0.11 0.56 0.421 
mat 13 0.31 0.25 0.563 0.15 0.27 0.647 0.15 0.27 0.647 0.31 0.00 0.692 
mcb 12 0.08 0.65 0.344 0.08 0.31 0.647 0.25 0.25 0.600 0.08 0.08 0.846 
mig1 10 0.20 0.68 0.296 0.10 0.47 0.500 1.00 1.00 0.000 0.90 0.91 0.050 
pho2 6 0.50 0.91 0.083 0.33 0.80 0.182 1.00 1.00 0.000 1.00 1.00 0.000 

Avg  0.32 0.61 0.333 0.22 0.42 0.500 0.56 0.45 0.323 0.43 0.47 0.379 

Box 1. Demonstration of the SOMBRERO system.  
Step 1: 257 documented mammalian TF binding motifs are 
clustered using a 20x10 PSSM SOM. A portion of the trained 
SOM is displayed in a). Nodes 1,7 and 2,7 contain seven 
members of the REL family of motifs, including the NF-κβ 
motif.  
Step 2: The final state of the PSSM SOM is used to initialise 
a 20x10 SOMBRERO grid. The input sequence dataset of 
2000bp is divided into ℓ-mers and clustered on the grid. 
Training repeats for all even values of ℓ between 8 and 18. 
The grid portion in b) shows some final nodes states on a 
SOMBRERO grid of ℓ = 12. Note that the motif in node 2,7 
has changed very little from the initial state. The NF-κβ motif 
is present in the input dataset, and thus reinforces the presence 
of the motif on the SOMBRERO grid. Contrast this with node 
1,8, whose motif has changed drastically from the initial state, 
due to the non-presence of the relevant motif. 
Step 3: The significance of every motif existing in the final 
SOMBRERO grids are calculated. Occurrences of the same 
motif may have been found in SOMBRERO grids that used 
different values of ℓ. In order to illustrate the relationships 
between various motifs for the user, the top scoring motifs (15 
used here) are clustered using the PSSM SOTA. The resulting 
tree is shown in c). The PSSM SOTA properly separates the 
motifs on the basis of the represented transcription factor. 
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