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Abstract - We introduce the Hierarchically Growing Hyperbolic Self-Organizing Map
(H? SOM) featuring two extensions of the HSOM (hyperbolic SOM): (i) a hierarchically grow-
ing variant that allows for incremental training with an automated adaptation of lattice size
to achieve a prescribed quantization error and (ii) an approzimate best match search that uti-
lizes the special structure of the hyperbolic lattice to achieve a tremendous speed-up for large
map sizes. Using the MNIST database as a benchmark dataset, we show that the H? SOM
yields a highly efficient visualization algorithm that combines the virtues of the SOM with
extremely rapid training and low quantization & classification errors.

Key words - Hyperbolic Self-organizing maps; Growing network; Hierarchical
Clustering; Exploratory Data Analysis

1 Introduction

The rapid employment of technological advances has led to a continuously growing volume
of large data sets. At the same time, the meaning of “large” is perpetually under revision.
The Self-Organizing Maps as introduced by Kohonen [3] have become a standard tool for
the exploratory analysis of such data and have been extensively used for visualization pur-
poses. A central parameter affecting the resolution of the SOM is the area of its map size.
With a linearly increasing map area, the number of nodes in a SOM increase quadratically.
Therefore, the training of large maps can be computationally quite expensive. Several ap-
proaches have been suggested to overcome this problem. Koikkalainen and Oja [4] proposed
the Tree-Structured Self-Organizing Map (TS-SOM), which consists of a fixed number of
SOMs arranged in a pyramidal structure. The training of the pyramid is computed level-
wise where the best match search is performed as a tree search reducing the complexity to
O(log N). A Growing Hierarchical SOM has been proposed by Rauber et al. [11]. Their
approach combines individually growing SOMs with a hierarchical architecture and has suc-
cessfully been applied to the organization of document collections and music repositories.
Lately, Pakkanen et al. [10] have described the Evolving Tree, which is constructed as a
freely growing network utilizing the shortest path between two nodes in a tree as the neigh-
borhood function for the self-organizing process. All of these approaches achieve a favorable
computational complexity. However, the visualization of the learned hierarchies remains a
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demanding task. Either a map metaphor is not applicable, or the transition between maps
within or across the hierarchies introduces discontinuities making it hard to visualize and
maintain the surrounding context. Thus, without guidance the user might be easily lost
within the tree structure. Lamping and Rao [5] discovered that hyperbolic space is ideally
suited to embed large hierarchical structures. Their discovery motivated the introduction
of the hyperbolic SOM (HSOM) [12]. In this contribution we show that the HSOM can be
naturally extended to a Hierarchically Growing Hyperbolic SOM (H2SOM) that combines the
virtues of hierarchical data organization, adaptive growing to a required granularity, good
scaling behaviour and smooth, map-based browsing, thereby combining several strengths of
separate, previous approaches with a single, uniform architecture.

2 Hyperbolic Geometry

Most of our spatiotemporal thinking is deeply rooted in the world of Euclidean geometry
following Euclid’s five axioms. However, hyperbolic space [1] offers a completely consis-
tent non-Euclidean geometry that is characterized by being negatively “curved”. Standard
textbooks on Riemannian geometry, e.g. [1, 6] show that the relationships for the area A
and circumference C for a circle of radius r are then given by A(r) = 4msinh?(r/2) and
C(r) = 2msinh(r), respectively. This bears two remarkable asymptotic properties: (i) for
small radius r the space “looks flat” since A(r) ~ mr? and C(r) ~ 27r. (i) For larger r both
A and C grow asymptotically exponentially with the radius.

Naturally, there exists no isometric embed-
ding of IH? into IR? , since a projection of the
negatively curved space into flat space intro-
duces distortions in either length, area or an-
gle. However, a locally isometric embedding
into IR?is possible: we obtain a “wrinkled”
structure, which resembles a saddle at every
point of the surface. Sometimes, Nature ap-
proximated the growth behaviour of a hyper-
bolic surface, e.g. in some corals that need
to maximize their contact area with the sur-
rounding water that carries vital nutrients. Figure 1: A local embedding of H?in IR? would
In Figure 1 it can be seen, that this is lead- look very similar to such a leather-coral for which
ing to structures resembling a 3-dimensional nature found a solution to maximize its contact
local embedding (of a patch) of the hyper- area iI-l order to absorb vital nutrients from the sur-
bolic plane remarkably well. rounding water.

The geometric properties discussed above

make the hyperbolic space an ideal candidate for embedding large hierarchical structures
[5, 7]. For its display on a flat 2D screen one may choose the projection of IH 2on the
Poincaré Disk that has a number of convenient beneficial properties for visualization: First,
it is locally shape preserving, with a strong “fish-eye” effect: The origin of JH? - corresponding
to the “fish-eye” fovea - is mapped almost faithfully, while distant regions become exponen-
tially “squeezed”. Second, the model allows to translate the original IH?in a very elegant
way. Thus, the fovea can be moved to any other part of the infinite hyperbolic plane. This
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enables the user to selectively focus on interesting portions of a map painted on JH? while still
keeping a coarser view of its surrounding context. For further details on the construction of
the Poincaré Disk and the Mdbius transformations to translate the fovea, see e.g. [12, 8, 13].

3 Hierarchically Growing Hyperbolic Maps

3.1 Network Architecture

The core idea of the hierarchically growing Hyperbolic Self-Organizing Map is to employ the
same sort of grid already underlying the plain HSOM and its applications [12, 8, 13]:

1. Initialization: We start with a ring of n; equilateral hyperbolic triangles centered at
the origin of JH? as shown in Figure 2(a). The ny + 1 vertices of the triangles form the
network nodes of the first level of the hierarchy.

2. Growth Step: We can expand each node in the periphery of the existing network by
surrounding it with the vertices of additional n, — 2 equilateral triangles (forming a
regular hyperbolic “nj-gon” around the selected node).

@ o o o _
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Figure 2: (a) The nodes at the vertices of - in this case n, = 8 - equilateral triangles form the first
level in the hierarchy of the HZSOM. (b) When a node meets a growth criterion, we generate a set of
np — 3 children nodes. In (c¢) the search path and the set of nodes visited during a best match search
are highlighted within a fully expanded hierarchy of 3 levels. Note, that the nodes are placed on an
equidistant grid in hyperbolic space, only the projection on the 2D Poincaré Disk introduces a strong
distortion of distances at the perimeter of the disk.

By repeating step 2 for all border nodes, we can generate a new “ring” level of the hierarchy.
The “branching” factor n; determines how many nodes are generated at each level and how
“fast” the network is reaching out into the hyperbolic space. It has a lower bound ruled by
hyperbolic geometry: The sum of the angles in a hyperbolic triangle is always less than .
Therefore, the angle « of a equilateral triangle has to obey o < /3. Since we are covering a
full circle with our triangles, c.f. Figure 2(a), also a = 27/n; holds, where n;, is the number
of nodes placed on the full circle. When combining the two conditions we see that we need a
branching factor of ny > 6 for the tessellation scheme. Consequently, since each node in the
tessellation has one parent and two sibling nodes, it has to have at least four children nodes.
Note, that there exists no upper bound for the number of childrens a node can have.
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3.2 Learning and Growing Procedure

The training of the hierarchical network largely follows the traditional SOM approach. To
each node a a reference vector w, is attached, projecting into the input data space X. In
addition, it will be convenient to attach to each node also its 2D position z, € C in the
complex Poincaré Disk |z| < 1 [1]. The center and the first n, nodes are initialized with the
mass of center of the training data and small variations from that, respectively. This initial
configuration is then trained in the usual way: After finding the best match neuron a*, i.e. the
node which has its prototype vector w,, closest to the given input x, a* = argmin,, ||w, — x||
all reference vectors are updated by the well known adaptation rule

d2 o
Awa = €(t) h(a,a") (x = wa), with h(a,a’) = exp (J;‘;) @

Here h(a,a*) is a bell shaped Gaussian centered at the winner a* and decaying with increasing
distance dgq+ of the neurons. We can then compute the hyperbolic node distances dg o+
conveniently from their associated positions z, in the Poincaré Disk:

dg.q+ = 2 arctanh <za—z_a*|> . (2)
’ |1 — 24Zg+]

During the course of learning, the width o(¢) of the neighborhood bell function and the learn-
ing step size €(t) are continuously decreased in order to allow more and more specialization
and fine tuning of the then increasingly weakly coupled neurons - just as in the standard
SOM approach.

After fixed training intervals we repeatedly evaluate for each node an expansion criterion. In
our experiments we have so far used the node’s quantization error as the growth criterion. If
a given threshold ©gr for a node is exceeded, that node is expanded as described in step 2
above. After the expansion step where all nodes meeting the growth criterion were expanded,
all reference vectors from the previous hierarchies become fixed and adaptation “moves” to
the nodes of the new structural level.

3.3 Fast Best Match Search

The peculiar, intrinsically “uniformly hierarchi- g
cal” structure of the hyperbolic grid offers an

intriguing possibility to significantly accelerate '}
the most time-consuming step in a SOM: we
can approximate the global search for the win-

k=3

computational complexity

k=2
ner unit a* by a fast tree search, taking as the
search root the initial center node of the growth " //fw‘i
process and following then the “natural” hierar- | //*/*/k:l
chical structure in the hyperbolic grid: starting - - — n:l()r:::r of no?zzooo

from this node, we recursively determine the k

best-matching nodes among its n; neighbors un- Figure 3: Scaling behaviour for n;, = 10.

til we reach the periphery. For k = 1, this will

generate a path with O(log,, N) comparisons, instead of O(N) for a global search. For
1 < k < ny we asymptotically must search O(NP) nodes, with exponent p = log,, k <1
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(restituting a full search with p = 1 for k = ny). Fig. 3 shows, for n, = 10, that the result-
ing scaling behaviour permits speed-ups of several orders of magnitude, as compared with a
global (standard SOM) search.

Both, the geometry of the hyperbolic lattice, together with the hierarchical growth scheme,
tend to organize the prototype vectors w, in such a manner that the above search scheme
provides a very good approximation to global search. In fact, our experiments indicate
that we may even truncate the tree branching factor to k = 1 for all search steps beyond the
innermost ring, leading to a “super-fast” search scheme (“SF-search”) scaling as O(k-log,,, N)
(lower curves in Fig. 3). For instance, in the test problem reported below we found that for
k =2 (k = 1) SF-search led to the correct best match unit or the very vicinity of it in 92%
(65%) of all cases, leading to maps that were on par with or even significantly outperformed
euclidian SOMs constructed with global search.

3.4 Visualization of Hierarchical Hyperbolic Maps

The distinctive difference of the H2SOM to other hierarchical SOM variants such as the
Tree-Structured SOM (TS-SOM) [4], the Hierarchical SOM [11], the Self-Organizing Tree
Algorithm (SOTA) [2] or the Evolving Tree by Pakkanen [9] is that the complete hierarchy
is embedded within a continuous, browsable space. When selecting a deeper level within
the hierarchy the user does not need to carry out a discrete “jump”, where the surrounding
context might be lost, but instead can traverse the complete hierarchy in a smooth way.
We believe that this is a very important property for visualization and have developed a
framework using the open source visualization library VTK! to display a 3D scene where the
user can interact with the Poincaré Disk in two ways: (i) The disk can be “grabbed” with
the mouse and freely moved in 3D space, such that a suitable viewpoint might be chosen.
(ii) With a drag operation, the focus of the map can be moved continuously in hyperbolic
space, such that a certain level of detail can be selected in a “focus & context”-like manner.
Depending on the underlying data set, graphical attributes such as glyph type, color, size or
even texture can be used to map selected attributes of the prototype vectors on the visualized
nodes. In the next section we give an example how we can move along a learned hierarchy
from a coarse overview into finer grained details of the data.

4 Application to the MINIST database

In order to benchmark the H*SOM we have chosen the MNIST database? of handwritten
digits as an example data set that features a large collection of rather high-dimensional
patterns. It consists of 60.000 training samples from approximately 250 writers and 10.000
test samples from a disjoint set of 250 other writers. We used the original 784-dimensional
dataset which resembles 28x28 pixel grey level images of the handwritten digits. Since we
used the scalar product as our data metric, all samples were normalized to length one.

"http://public.kitware.com/VTK/
’http://yann.lecun.com/exdb/mnist/
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Figure 4: An example navigation along the learned structure of the MNIST database. The neuron’s
prototype vectors are visualized as textures overlayed on the node’s glyphs. In (a) the overall coarse
structure of the dataset is shown. In (b) and (c¢) the user moved the focus to the “7”, “9”  “4” region
of the map, where the next structural level in the data can be observed.

4.1 Structuring of the data

In Figure 4(a) a H2SOM with a branching factor of n, = 12 is shown in a centered view,
such that the top-level structure of the dataset is visible as the innermost ring of nodes. The
prototype vectors are overlayed as textures on the node’s glyphs. The colors on the map are
just a visual hint to indicate the class to which the majority of training samples belong to in
the corresponding region of the map. The H2SOM can be seen to have learned the following
top level structure from the data: The upper three nodes resemble mixtures between “4”s,
“9”g and “7”s. Clockwise follows a node with a prototype looking like a blurred slanted “9”,
then two different orientated “17”s follow. At the bottom, three prototypes similar to an “8”,
“3” and “5” are shown, and then an articulated “0”, “2” and “6” appear. In Figure 4(b) the
user is moving the focus towards the one o’clock node which is then centered in Figure 4(c).
Here it can be seen, that at this next structural level the data splits up into equally slanted
“7”s at the top, “9”s to the right and “4”s at the bottom of the map.

4.2 Comparison to standard SOM

In order to assess the quality of the HZSOM, we have conducted several numerical experiments
and compared the data to the classical SOM. We have trained two standard SOMs of the sizes
of 13x13 (169 nodes) and 48x48 (2304 nodes) and two similar sized H2SOMs with 161 and
2461 neurons, respectively. In all cases 600.000 training steps were performed. The results
averaged over 10 runs (the large SOM was just trained twice) are given in Table 1. The most
prominent difference is the time needed for the training of the networks. The large SOM took
more than 18 hours to compute, while the large H2SOM using the “super-fast” SF-search
was finalized in 13 minutes. Despite using a full search for the SOM, the mean quantization
error of the maps with respect to the training data is comparable, with the H2SOM slightly
in advantage. When using the SOMs as a classification tool, we used (a) the SF-search with
k =2, and (b) a slower global search to find the best match nodes for the 10.000 test samples
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SOM H2SOM
13x13 48x48 ny = 8, 3 rings ny = 10, 4 rings
nodes || N=169 | N=2304 N=161 N=2461
QE 0.2094 | 0.1510 0.1993 0.1307
Lirain 1:07h 18:34h 0:09h 0:13h
tiest 7.8s 181s (a) 1.8s (b) 8.4s | (a) 3.0s (b) 110s
Class classification performance [%]
0 93.9 98.3 96.0 98.1 98.3 99.1
1 98.3 98.6 98.3 98.1 98.5 98.9
2 86.6 94.6 89.1 92.4 92.4 94.8
3 80.2 91.3 76.1 79.5 90.0 92.7
4 69.0 88.3 73.2 76.3 90.4 92.2
) 66.9 90.0 83.5 89.1 87.4 91.6
6 93.9 97.1 89.7 92.7 96.0 97.5
7 81.2 91.0 81.7 85.9 91.4 92.3
8 76.4 88.8 59.1 67.6 88.1 92.5
9 99.8 88.0 95.9 57.8 88.3 89.8
| total || 81.0 92.7 [ 80.5 85.3 | 922 94.6

Table 1: Comparison of the hierarchically grown HSOM (H2SOM) to similar sized standard
SOMs. The table shows the training times in hours and minutes for the map formation of
the 60000 training samples and the seconds for the best match lookups for the 10000 test
samples of the MNIST database, respectively. For the H*SOM the test runs were performed
with (a) the rapid SF-search with k¥ = 2 and (b) a slower global search. (All results were
obtained on a standard laptop running a Pentium-M processor with 1.5 GHz).

and their attached labels from the training data. In the first case, the overall performance
of the SOM is with 0.5% slightly better, though for several classes the H2SOM achieves the
same or better results. When using the slower global search only for retrieval after the fast
training of the H2SOMs, the classification performances for the latter become considerably
better and now clearly outperform the SOM.

5 Conclusions

In this paper we have presented the Hierarchically Growing Hyperbolic SOM (H2SOM), a
new extension to the hyperbolic SOM. In contrast to other, previous approaches the H2SOM
manages to combine (i) a growing scheme allowing for an incremental training of an adaptive
lattice structure to achieve a prescribed quantization error, (i) a hierarchical data organiza-
tion both yielding an excellent scaling behaviour and the possibility to explore the underlaying
structures in data and (%) last but not least a continuous, map-based browsing offering a
natural “focus & context” behaviour. Experiments with the MNIST database indicate, that
our proposed SF-search utilizing the intrinsically hierarchical structure of the hyperbolic
grid allows to train self-organized maps with a quality on par or even better than standard
euclidian SOMs but several magnitudes faster.
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