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Abstract - In this paper we show how to build global and local RBF models once the Self-
Organizing Map has been trained using the Vector-Quantized Temporal Associative Memory
(VQTAM) method. Through the VQTAM, prototype vectors (centroids) of input clusters
are associated with prototype vectors of output clusters, so that the SOM can learn dynamic
mput-output mappings in a very simple and effective way. Global RBF models are built using
all the input prototypes as centers of M gaussian basis functions, while the hidden-to-output
layer weights are given by the output prototypes. Local RBF models are build in a similar
fashion, but using only K < M neurons. We evaluate the proposed RBF models and other
global/local neural models in a complex nonlinear channel equalization task.
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1 Introduction

Modern high-speed telecommunications impose severe quality requirements for radio link or
cellular telephony systems. Crucial for attaining such requirements are the design of adaptive
channel equalization algorithms capable to deal with several adverse effects, such as noise,
intersymbol interference (ISI), co-channel and adjacent channel interference, nonlinear dis-
tortions, fading, time-varying characteristics, among others [1]. Supervised neural networks,
such as MLP and RBF, motivated by their universal approximation property, have been
successfully used as nonlinear tools for channel equalization. It has been demonstrated that
the performance of MLP- or RBF-based adaptive filters usually outperform traditional linear
techniques in many common signal processing applications [2].

The Self-Organizing Map (SOM) is an important unsupervised neural architecture which,
in contrast to the supervised ones, has been less applied to adaptive filtering. For being a
kind of clustering algorithm, its main field of application is vector quantization of signals [3],
and hence, it is not used as a stand-alone function approximator, but rather in conjunction
with standard linear or nonlinear models [4]. Recently, the Vector-Quantized Temporal Asso-
ciative Memory (VQTAM) [5] method was proposed to enable the SOM to learn input-output
dynamical mappings, such as those commonly encountered in time series prediction, robotics
and control system applications. In these tasks the performance of the SOM was comparable
to or better than those of supervised neural architectures. In this paper we further explore
the function approximation ability of the VQTAM to design global and local RBF models for
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Figure 1: (a) Channel equalization by an adaptive filter and (b) a noisy nonlinear channel model.

adaptive filtering. By simulations we demonstrate the superior performance of the VQTAM-
based RBF models, when applied to nonlinear channel equalization, over the MLP and the
Least-Squares SOM-based (LESSOM) local regression model proposed in [6].

The remainder of the paper is organized as follows. Section 2 summarizes the VQTAM
technique. In Section 3 we show how to build global and local RBF models through VQTAM.
In Section 4 several computer simulations evaluate the performance of the VQTAM-based
RBF networks in nonlinear channel equalization. The paper is concluded in Section 5.

2 The VQTAM Approach

The VQTAM generalizes to the temporal domain a SOM-based associative memory technique
that has been used by many authors to learn static (memoryless) input-output mappings,
specially within the domain of robotics. In both cases, the input vector to be presented to
the SOM, x(t), is composed of two parts.

The first part, denoted x"(t) € RP, carries data about the input of the dynamic mapping
to be learned. The second part, denoted x°“(t) € R?, p > ¢, contains data concerning
the desired output of this mapping. The weight vector of neuron i, w;(t) € RPT9, has its
dimension increased accordingly. These changes are formulated as follows:

- (E) woo- ()

where wi(t) € RP and w?%(t) € RY are, respectively, the portions of the weight vector which
store information about the inputs and the outputs of the mapping being learned.

Depending on the variables chosen to build the vectors x™(t) and x°“!(t) one can use the
SOM to learn forward or inverse mappings. In this paper, we are interested in nonlinear
channel equalization, a complex adaptive filtering task corresponding to the learning of the
inverse model of the channel (see Fig. 1a). In this case, we have p > 1 and ¢ = 1, so that the
following definitions apply:

x™(t) = [y(t) y(t—1) --- y(t—p+ 1)]T and X% (t) = s(t — 1) (2)

where s(t) is the symbol transmitted at the time step ¢, y(¢) is the corresponding channel
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output, 7 > 0 is the symbol delay, p is the order of the equalizer, and the superscript T’
denotes the transpose vector. Without loss of generality, we assume 7 = 0.
During learning, the winning neuron at time step ¢ is determined based only on x(t):

i*(t) = argmin{[[x" (t) - wi" (£)|} (3)
For updating the weights, both x**(t) and x°“!(t) are used:

wil(t+1) = wit(e) +ah(i*, i)™ (1) - Wi (D) (4)

(2

WPt (E 1) = W) + (i i) (1) — wit (o) (5)

(2

where 0 < a < 1 is the learning rate, h(i*,i;t) = exp (—||r;(t) — r;=(¢)]|*/27%(t)) defines a
Gaussian-type neighborhood function, for which r;(¢) and r;+(¢) are the coordinates of neurons
7 and ¢* in the SOM array, respectively. The neighborhood decreases in time according to
v(t) = v (v /fyo)(t/ N) | where ~vo and ~yy are their initial and final values, respectively, and
N is the length of the training sequence.

In words, the learning rule in (4) performs the topology-preserving vector quantization of
the input space and the rule in (5) acts similarly on the output space of the mapping being
learned. As training proceeds, the SOM learns to associate the input codebook vectors wf”
with the corresponding output codebook vectors w9,

Once the SOM has been trained, its output z(¢) for a new input vector is estimated from

the learned codebook vectors, w24(t), as follows:

2(t) = W (t) (6)

where w = (w4l w§d ... wglﬁ]T is the weight vector of the current winning neuron
i*(t), found as in (3). For the channel equalization task we are interested in, we have set

g = 1. Thus, the output of the VQTAM-based equalizer is a scalar version of (6), given by:
2(t) = 3(t) = wii (t) (7)

where 5(t) is the estimated transmitted symbol at time t.

3 Building Efficient RBF Models from VQTAM

The VQTAM method itself can be used for function approximation purposes. However,
since it is basically a vector quantization method, it may require a large number of neurons
to achieve an accurate generalization. To improve its performance, we introduce two RBF
models obtained from a SOM network trained under the VQTAM scheme.

3.1 A Global RBF Model

For a trained SOM with Nj, neurons, a general Radial Basis Function network with N,
gaussian basis functions and ¢ output neurons can be built over the learned input and output
codebook vectors, wi and w9 as follows:
Np, out n
» » WG (XMt
Z(t) — g (in<t)7wgut?wén) —_ Zz—lNh 7 Z'< ( )) (8)
>y Gi(x™ (1))
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out:[

out out

out1T
Wy, Wa,; -+ W ]

oa ] is
the weight vector connecting the ith basis function to the ¢ output units, and G;(x™(t)) =
exp (—|x™(t) — wim||?/20?) is the response of this basis function to the current input vector
x'"(t), where wi" plays the role of the center of the ith basis function and o defines its spread.

Note that in (8), all the Nj; codebook vectors are used to estimate the corresponding
output. In this sense, we referred to the RBF model just described as the Global RBF
(GRBF) model, despite the localized nature of each gaussian basis. Also, since we have set
g = 1, the output vector of the GRBF network in (8), which is used to recover the current
transmitted symbol, reduces to a scalar output, z(t), defined as:

where z(t) = [21(t) 22(t) -+ 2,(t)]T is the output vector, w

SN WG (x (1))
S Gy(xin(t))

In the usual two-phase RBF training, the centers of the basis functions are firstly deter-
mined by clustering the x" vectors (e.g. using K-means algorithm) and then the hidden-to-
output layer weights are then computed through the LMS rule (or the pseudoinverse method).
In the GRBF model just described one single learning phase is necessary, in which SOM-based
clustering is performed simultaneously on the input-output pairs {x™(t),x°% (t)}.

It is worth contrasting the GRBF with two well-known RBF design strategies, namely the
Generalized Regression Neural Network (GRNN) [7] and the Modified Probabilistic Neural
Network (MPNN) [8]. In the GRNN, there is a basis function centered at every training
input data vector x™, and the hidden-to-output weights are just the target values x°“. The
MPNN and the GRNN share the same theoretical background and basic network structure.
The difference is that MPNN uses the K-means clustering method for the computation of
its centers. For the GRNN/MPNN models, the output is simply a weighted average of the
target values of training vectors close to the given input vector. For the GRBF, the output
is the weighted average of the output prototypes Wf“t associated with the input prototypes

wo close to the given input vector x'", as stated by Eq. (8).

2(t) = 5(t) = 9)

3.2 A Local RBF Model

Several authors have studied the problem of approximating nonlinear input-output mappings
through local models [6, 9]. According to this approach just a small portion of the modelled
input/output spaces are used to estimate the output for a new input vector.

In the context of the VQTAM approach, local modelling means that we need only 1 <
K < Np, prototypes to set up the centers of the basis functions and the hidden-to-output
weights of a RBF model. To this purpose, we suggest to use the weight vectors the first K

winning neurons, denoted by {i},45,...,4} }, which are determined as follows:
i1(t) = argmin {Ix™ () — wit||} = arg max {Gi(x"(1)} (10)
1 1
() = arg goin {Ix"(t) — wi"||} = arg max (Gi(x™(t))}
i3 (t) = arg min x"(t) —wi||} = arg max Gi(x™(t
40 Vit {1} Uk (0) -l Vi;é{i‘{,m,i}*{il}{ i)}
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The estimated output is now given by:

sy = o Ui G 07 1)
>kt Gig (X7 (1))

We referred to the local RBF model thus built as the KRBF model. It is worth noting that
the VQTAM and the GRBF become particular instances of the KRBF if we set K = 1 and
K = Ny, respectively.

A local RBF model was proposed earlier in [10]. First, a GRNN model is built and then
only those centers within a certain distance € > 0 from the current input vector are used to
estimate the output. This idea is basically the same as that used to build the KRBF, but
it suffers from the same drawbacks of the GRNN model regarding its high computational
cost. Furthermore, depending on the value of € the number of selected centers may vary
considerably (in a random way) at each time step. If € is too small, it may happen that no
centers are selected at alll This never occurs for the KRBF model, since the same number
of K centers is selected at each time step. More recently another local RBF model was
proposed in [11] based on a double vector quantization procedure. This method associates
a small cluster of input-output pairs {x"(t),x°“*(¢)} to each neuron, so that N, local RBF
models are built, one for each neuron. In the KRBF only a single local RBF model is built
dynamically from the K prototype vectors closest to the current input vector.

(11)

4 Simulations

To evaluate the proposed equalizers, we simulated a nonlinear noisy channel with memory
(Figure 1b). First, a linear channel is realized by the following equations:

hTv(t)
u(t) = , t=12,...,N
[l
where u(t) € R is the channel output, v(t) = [v(t) v(t—1) --- o(t—n+1)]T is the

tapped-delay vector containing the n most recent noisy symbols, h € R™ is the linear channel
impulse response, and N is the length of the symbol sequence.

A given noisy symbol at time ¢ is defined as v(t) = s(t) + w(t), where s(¢t) € R is the
transmitted (noise-free) symbol, w(t) ~ N(0,02) is a white gaussian noise sample. We
assume that data sequence {s(¢)}; and the noise sequence {w(t)}, are jointly independent.
The symbol sequence {s(t)}Y, is realized as a first-order Gauss-Markov process:

s(t) = as(t — 1) + be(t) (12)

where e(t) ~ N(0,02) is the white gaussian driving noise, and |a| < 1 for the sake of

stationarity. Thus, the symbol sequence is zero-mean gaussian s(t) ~ N(0,02), with power

o2 = 1512 o2. For a = 0, the source signal becomes a white gaussian noise sequence.
Finally, the output of the nonlinear channel, y(t), is obtained as follows:

y(t) = 0.2u(t) —0.2u>(t) + 0.04u3(t) + (13)
+0.9 tanh (u(t) — 0.1u?(¢) + 0.5u®(¢) — 0.1u*(¢) + 0.5)
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Figure 2: MSE versus the number of hidden neurons: (a) MLP x VQTAM, and (b) MLP x GRBF.

In the simulations we compare VQTAM-, GRBF-, KRBF-, MLP- and LESSOM-based
equalizers. The following parameters were used: a = 0.95, b = 0.1, O‘? =1, 0'12” = 0.03,
h=1[1 08 057, p=>5and N = 6000. The equalizers were trained online using the
first 5000 elements of the sequences {s(t),y(¢)}, while the remaining 1000 elements were
used to test their generalization performances. A total of 500 training/testing runs were
performed for a given equalizer in order to assign statistical confidence to the computation of
the Normalized Mean squared error (NMSE) to build prediction (generalization) error curves.
For each training/testing run, different white noise sequences {w(t),e(t)} are generated to
built new realizations of the signal sequences {s(t),y(¢)}.

The MLP equalizer has a single layer of Nj hidden neurons, all of them with hyperbolic
tangent activation functions, and a linear output neuron. Weights are updated through the
backpropagation algorithm with momentum term. The learning rate of all equalizers was set
to a = 1072, and held constant during training. For the VQTAM model, the parameters of
the neighborhood function were set to vo = 0.5N,, and vy = 1072.

The first simulation attempts to evaluate empirically how the number of hidden neurons
influences the generalization (prediction) performance the MLP, VQTAM and GRBF models
in the equalization task. The generalization performance of a given equalizer, for each value
of N, varying from 1 to 20, is evaluated in terms of the resulting values of NMSE. The results
are shown in Figures 2a and 2b.

In both figures the MLP performed better when few hidden neurons are used. However,
unlike the VQTAM and GRBF models, its performance does not improve as Ny, increases.
The minimum MSE for the MLP was obtained for N;, = 9. From this value on, the MSE
tends to increase due to overfitting. For the VQTAM and GRBF models, the MSE tends
to decrease since we are using more prototypes to quantize the input/output spaces, thus
reducing the associated quantization errors. For Ny > 16, the VQTAM performs better than
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Figure 3: MSE versus the number of local prototypes: KRBF x LESSOM.

the MLP. For Nj, > 12, the GRBF performs better than the MLP and VQTAM equalizers.
Note that the chosen type of channel nonlinearity favours the MLP equalizer, explaining
partially why the MLP had a better performance for a small number of hidden neurons.

In the second simulation, we evaluate the prediction performance of the local models
(KRBF and LESSOM) as a function of the number of prototype vectors used to build the
local models. For each input vector, the LESSOM builds the corresponding local model by
selecting the prototype vectors of the winning neuron and its (K — 1) closest neighboring
neurons. These prototypes are then used to set up a linear least-squares regression model.
For this simulation, we used N}, = 20 and varied K from 8 to 20. The results are shown in
Figure 3. One can easily note that the KRBF performed better than the LESSOM for all the
range of variation of K. For this simulation, the minimum MSE for the KRBF was obtained
for K = 8, while for the LESSOM the minimum was obtained for K = 15.

Finally, in Table 1 we show the best results obtained for the equalizers simulated in this
paper, assuming Ny, = 20. It is worth noting that the KRBF and the GRBF models performed
better than the other equalizers and presented the lowest variances in the results.

5 Conclusion

In this paper we introduced global and local RBF models built over the weight vectors of
a Self-Organizing Map trained under the Vector-Quantized Temporal Associative Memory
method. It was demonstrated that the proposed models performed better than the MLP and
the LESSOM model in nonlinear channel equalization tasks.

Acknowledgements: The authors thank CNPq (project #305275/2002-0) and FUNCAP
(project #1068/04) for their financial support.
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Table 1: Generalization performance of the several equalizers for N = 20.
Neural MSE
Equalizer mean | minimum | mazximum | variance

MLP 0,0785 | 0,0185 1,3479 0,0065
VQTAM 0,0583 | 0,0265 0,1428 | 3,33x10 %
GRBF 0,0500 | 0,0177 0,2198 | 6,79x10~ 2
KRBF (K =8) | 0,0487 | 0,0190 0,1723 | 4,67x10 2

LESSOM (K = 15) | 0,0991 | 0,0251 0,7721 0,0076
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