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Abstract - We propose a generative model based on a Delaunay graph to learn the topology
of a set of points. It uses the mazimum likelihood principle to tune its parameters. This work
15 a first step towards a topological model of a set of points grounded on statistics.
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1 Introduction

In many applications [10, 1, 3], it is intended to model the topology of a manifold! M C
A C RP only known through a finite set v C M of M data points in a bounded domain A
of a D-dimensional euclidean space. M is the support of the probability density function
(pdf) p from which are drawn the data. In fact, this is not the topology of M which is of
interest, but the topology of manifolds MP"" called ”principal manifolds” of the distribution
p (in reference to the definition of Tibshirani [12]) which can be viewed as the manifold M
without the noise.

In this work, we assume that any sample of M is generated on MP™" and corrupted with
additive spherical gaussian noise with mean 0 and variance o2 ;... So that p is the convolution

over R” of some unknown pdf pP™*" with support MP"" and a Normal pdf N’ with isovariance
2

Onoise-

There are two families of approaches which deal with ”topology” : on one hand, the ”topol-
ogy preserving” approaches based on nonlinear projection of the data in lower dimensional
spaces with a constrained topology to allow visualization [5, 8]; on the other hand, the ”topol-
ogy modelling” approaches based on the construction of a structure whose topology is not
constrained a priori, so it better accounts for that of the data [2, 10] at the expense of the
visualisability. In this work, we expose a new approach part of the latter family.

A way to create an explicit model of the topology of MP™" is to define a graph G(W, E(w, v)),
where the set of vertices W is in one to one correspondence with a set w of Ny vector
prototypes in R” and E is a set of edges {i,j} connecting W; and W;. If the prototypes are
"well” located on the data distribution, and the graph is "well” chosen, then the topology of

In this paper, M is called a manifold for short, it is in fact a set of manifolds which may have various
intrinsic dimensions.
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the graph accounts for the one of the manifold MP"". We assume such a ”good” location may
be obtained using a Vector Quantization (VQ) algorithm (e.g. the Neural-Gas [9]) leading
the pdf of the prototypes to roughly approximate the pdf pP"*" of the data distribution. The
main problem we focus on, is the choice of a ”good” graph.

Each prototype w; is representative of the data for which it is the closest prototype among
w. All these data fall in a region M; which is the intersection between the manifold M and
the Voronoi cell V; of w; defined as [11]:

Vi =Vaw(wi) = {v e A|Vw; € w, v —wil| <lv—wjl} (1)

Let DG = DG(W, Ep(;) be the Delaunay graph of w, for which Ep is defined as the set of
edges which connect prototypes whose Voronoi cells share a common boundary:

Epg =Epg(w) ={{i,j} € (1,...,No)* | VinV; #0}. (2)

A set of pieces of M which are connected to M; is the set of manifolds M for which V; shares
a common boundary with V; i.e. such that w; is a Delaunay neighbor of w;. The Delaunay
graph is then an appealing candidate to model the topology of the data distribution. However,
it remains to prune it in a relevant way.

Martinetz and Schulten [10] devised an algorithm called ”Competitive Hebbian Learning”
(CHL) which forms a Topology Representing Network (TRN). The CHL constructs a graph
DG ¢y, whose topology approximate that of MP"": it considers each datum of v, looking
for its closest and second closest prototypes in w, and then creating an edge between both
these prototypes:

Ecpr = Ecyp(w,v) = {{i,j} € (1,...,No)* | v €v,v € V{i,j}} (3)

with V{i,j} = {U eE|ve V(A,Q\wi)(wj) N V(A,y\wj)(wi)}-

The set Vy; ;1 1s called the 2"@_order Voronoi cell associated to {w;,w;}. Such a cell exists
for any couple of Delaunay neighbors and only for them (see Figure 2). Notice that DGeopr,
is a graph, hence bears no information about the local dimension of the manifolds in the
collection M. However in most of the applications, it is sufficient to compute the topological
information needed, e.g. pathwise connectedness is useful to compute shortest paths on
manifolds [8, 15] or to explore the topology of high-dimensional labelled data [3].

Despite its simplicity and its low time complexity (O(DM Ny)) to model the topology, the
CHL algorithm is prone to a series of limits (see Figure 2):

1. There is no energy function minimized during the construction of the graph. Conse-
quently, there is neither way to check the quality of the graph obtained nor to compare
which one of two graphs is the best. In general, visual inspection is necessary to insure
the graph "looks like” the data distribution, which is not possible in dimension higher
than 3.

2. If the data set is corrupted with noise, the connectedness of the support manifold
including the noise M will be represented because one datum is sufficient to create
an edge. It would be more interesting to filter out the noise in order to represent the
connectedness of the principal manifolds MP""". Martinetz and Schulten proposed an
aging process by associating an ”age” to the edges and a kind of hit frequency high-pass
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filtering to prune older edges. But setting the age threshold and the aging machinery
to control the noise sensitivity, is neither trivial nor intuitive without any objective
criterion to do so (visual inspection is still needed).

3. The 2™¢-order Voronoi regions V{i,j}» which are the regions of influences of the Delaunay
edges, i.e. the regions which must contain at least one datum for the corresponding
edge to be created, may have no intersection at all with the segment [w;w;]. In other
words, data sampled from the segment [w;w;] itself may not give rise to it.

4. The desired graph, as a subgraph of DG, may span a set of points and segments.
However, the CHL without the aging machinery cannot keep isolated prototypes in
order to represent isolated bumps in the distribution, because for Ny > 2, there always
exists a first and a second closest prototypes to a datum, which are then connected.

5. The area of the region of influence of an edge may be very tiny depending on the location
of the prototypes, but this is not related trivially to the length of the corresponding seg-
ment. This may prevent an edge from being created in cases where it should obviously
be.

Two other approaches are known:

e The Optimally Topology Preserving Map (OTPM) proposed by Bruske and Sommer
[6] which uses just the same algorithm as TRN but with weaker hypotheses thanks to a
definition of topology preservation proposed by Villmann et al. [14] which states that
a graph optimally represents the topology of a set of points if it is identical to DG¢cpy.,.

e The Robust TRN (RTRN) proposed by the author [2], which attempts to take into
account the shape of the pdf of the data projected on the closest Delaunay segments to
decide wether the corresponding edges have to be pruned or not.

The OTPM shares the same limits as the TRN, the definition of optimally topology preser-
vation being self-referent, it cannot solve the item 1, and it ignores the aging process allowing
to filter the noise in item 2. The RTRN has been proposed to deal with item 2 to 5, and
defines another heuristic than the aging process to find the best model with noisy data. But
none of these approaches answers the first crucial point: in order to deal with data in dimen-
sions higher than 3 and to be confident with the result, we need an error function at least
intuitively relevant, at best statistically relevant. RTRN opened up the way by considering
the density of the data, and more intuitive regions of influence for the edges.

Here, we propose to go beyond all the previous limits by considering a statistical two-phase
approach:

e First, the Delaunay graph (or an approximation of it) of the prototypes is constructed
independently of the data set.

e Second, each edge and each vertex of the graph is the basis of a generative model so that
the entire set of edges and vertices generates a mixture of gaussian density functions.
The maximization of the likelihood of the data wrt the model, allows to tune the weights
of this mixture and leads to the emergence of the expected graph through the edges
with non-zero weights that remain at the end of the optimization process.

349



WSOM 2005, Paris

We first present the algorithm we use in section 2. Then we test it on toy problems in section
3 before the discussion and conclusion.

2 A Generative Gaussian Graph to learn topology

2.1 Computing the Delaunay graph

In that work, we consider a low dimensional space, so we can use available softwares to
compute the Delaunay graph, such as Qhull [4].

2.2 Generative Gaussian Graph

We assume the data have been generated by some set of points and segments constituting
the collection of manifolds MP"" which have been corrupted with additive spherical gaussian
noise with mean 0 and unknown variance o2, ... Then, we define a gaussian mixture model
to account for the observed data, which is based on both gaussian kernels that we call
"gaussian-points”, and what we call ”gaussian-segments”, forming a ” Generative Gaussian
Graph” (GGG).

The value at point v of a normalized gaussian-point centered on a prototype w; € w with
variance o2 is defined as: ¢°(v, w;,0) = (2r0?)~P/? exp(—%)

A normalized gaussian-segment is defined as the sum of an infinite number of gaussian-points
evenly spread on a line segment. Thus, this is the integral of a gaussian-point along a line
segment. The value at point v of the gaussian-segment [w,wy] associated to the edge {a, b}

with variance o2 is:

/ " (9r0?) Y exp (—M> dw

2
1 — 2 D1 (’U—’Up)2 Wq 20
g (v, {wg,wp},0) = (210 2 exp(— )
( { a } ) ( ) 202 ||U1b_wa,||
n(vwa) | _ n(v,wp)
2\—LP=1 (v—vp)? GI'f( V2 ) GI'f( V2 )
= (2m0°)" 7 exp (-5, ) -
2wy —wall
(4)
where ||.|| denotes the euclidean norm, v, is the orthogonal projection of v on the straight
line passing through w, and wy, and Yw, € {wq, wp}, n(v,wy) = % In the case

where w, = wy, we set g (v, {wg, wp},0) = ¢°(v, wa, 7).

The left part of the dot product accounts for the gaussian noise orthogonal to the line segment,
and the right part for the gaussian noise integrated along the line segment.The functions ¢°
and g' are positive and: Jgo g% (v, w;,0)dv = Jzo gt (v, {wa,wp},0)dv = 1, so they are both
probability density functions?. A gaussian-point is associated to each prototype in w and a
gaussian-segment to each segment [w,wy] such that the edge {a,b} € Epq.

The gaussian mixture is obtained by a weighting sum of the Ny gaussian-points and Ny
gaussian-segments, such that the weights = sum to 1 and are non-negative:

*Proof: gl(v7{waawb}70) = f[mawb]go(vaw70)dw/”wb _wtl” and f]R{DgO(an7U)dU = 1 so
Ja 80, fwa, wn}, oo =f o fa 80, w, 0 )dodw] s —wall = [, dw/lwy —wa| =1.
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1
p(v|m,w, o, DG) = ZZ?T (v, s, o) (5)

k=0 i=1

with Zk OZZ L mF =1 and Vi, k, ¥ > 0, where s? = w; and s} = {w,, w,} such that {a,b}
is the i*" edge in E pg- The welghts o (resp ) denote the probablhty that the datum v

was drawn from the gaussian-point associated to w; (resp.the gaussian-segment associated to
the i edge of the DG).

2.3 Measure of quality

The function p(v|m,w,o, DG) is the probability density of v given the parameters of the
model. We measure the likelihood of the data v wrt the parameters of the GGG model, i.e.
the probability density of the data set v assuming the data are iid:

M
P = P([,M,O’,DG) = Hp(vk|£awa UaDG) (6)
k=1

2.4 Learning the topology by maximizing the likelihood

The core idea is to prune from the DG the edges for which there is no chance they generated
the data. The algorithm is the following:

1. Initialize the location of the prototypes w using vector quantization [9].

2. Construct the Delaunay graph of the prototypes DG(W., Epqs(w)).

3. Initialize the weights w to 1/(No + N1) to give equiprobability to each vertices
and edges.

4. Given w and DG, find ¢* and 7* maximizing the likelihood P, or equivalently

minimizing the log-likelihood L= —log(P), subject to 0 >0, 7>0and ) . 7=1.

TET
5. Prune the edges e; € Ep, associated to the gaussian segment with probability

7ri1 = 0 where 7ri1 € .

The topology emerges from the edges with non-zero probabilities w. This graph is the one
which best models the topology of the data in the sense of the maximum likelihood wrt the
parameters w and o.

3 Experiments

In these experiments, we want to verify the relevance of the GGG to learn the topology
in various noise conditions. The principle of the GGG is shown on the Figure 1. On the
Figure 2, we show the comparison of the GGG to a CHL for which we filter out edges which
have a number of hits lower than a threshold T. The data and prototypes are the same for
both algorithms. We set T* such that the graph obtained matches as close as possible the
expected solution. We optimize separately o and m, by setting o to different candidate values,
and finding & using ”fmincon” Matlab constraint optimization function. The conditions and
conclusion of the experiments are given in the caption of the figures.
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(a) Initial Delaunay graph (b) Corresponding initial GGG (c) Optimal GGG (d) Non-zero probability edges

Figure 1: Principle of the Generative Gaussian Graph: (a) Data drawn from an oblique seg-
ment, an horizontal one and an isolated point with respective density {0.25;0.5;0.25}. The prototypes
are located at the extreme points of the segments, and at the isolated point. They are connected with
edges from the Delaunay graph. (b) The corresponding initial Generative Gaussian Graph. (c) The
optimal GGG obtained after optimization of the likelihood according to ¢ and z. (d) The edges of
the optimal GGG associated to non-zero probabilities model the topology of the data.

4 Discussion

We propose to model the topology of a data set, using a generative mixture model that
we call Generative Gaussian Graph. Although its time complexity is higher than that of
the Competitive Hebbian Learning, due to the learning phase based on maximization of the
likelihood, GGG is an attempt to avoid the limits of the CHL for modelling topology:

1. The likelihood of a mixture model is maximized. The quality is assessed by the
value of the likelihood, allowing comparisons. The higher is the likelihood of the
model, the higher is the topological similarity between the generative manifold
MPT of the observed data and the generative manifold based on points and
segments of the model.

2. No threshold is needed, and the noise is taken into account in the model so the
topology of the principal manifold MP™" is modelled.

3. The region of influence of a segment surrounds it. The segments associated to
edges of the graph are full part of the model.

4. The model can represent isolated bumps.

5. The area of the region of influence of a segment is proportional to its length.

Generative Gaussian Graph can be viewed as a generalization of gaussian mixtures to points
and segments: a gaussian mixture is a GGG with no edge. GGG provides at the same time
an estimation of the data distribution density more accurate than the gaussian mixture based
on the same set of prototypes and the same noise isovariance hypothesis, and intrinsically
an explicite model of the topology of the data set. Notice other generative models do not
provide any insight about the topology of the data, except the Generative Topographic Map
(GTM) [5], the revisited Principal Manifolds [12] or the mixture of Probabilistics Principal
Component Analysers (PPCA) [13]. However, in the two former cases, the intrinsic dimension
of the model is fixed a priori and not learned from the data, while in the latter the local
intrinsic dimension is learned but the connectedness between the local models is not.

There are several ways to follow to carry on with this work:

e learning by maximum likelihood the location and the noise covariance of each prototype;
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Onoise = 0.0 Onoise = 0.15 Onoise = 0.2

‘ #

-0.5 0 05 1 -05 0 05 1 -1 -05 0 05 1

(g) CHL: T* = 60 (h) CHL: T* = 65 (i) CHL: T* = 58

Figure 2: Learning the topology of a data set: 600 data drawn from a spirale and an isolated
point corrupted with additive gaussian noise with mean 0 and variance o2 ;... (a-c) The edges of
the GGG with non-zero weights allow to recover the topology of the principal manifolds except for
large noise variance (c) where a triangle was created at the center of the spirale. ¢* over-estimates
Onoise because the model is piecewise linear while the true manifolds are non-linear. (d-f) The CHL
without threshold (T=0) is not able to recover the true topology of the data for even small g,0i5¢. In
particular, the isolated bump cannot be recovered. The grey cells correspond to 2"%-order Voronoi cells
(darker cells contain more data). It shows these cells are not intuitively related to the edges they are
associated to (e.g. they may have very tiny areas (e), and may partly (d) or never (f) contain the
corresponding line segment). (g-h) The CHL with a threshold T" allows to recover the topology of the
data only for small noise variance (g) (Notice 71 < To = DGcpur(T2) € DGepr(Th)). Moreover,
setting T requires visual control and is not associated to the optimum of any energy function which
prevents its use in higher dimensional space.
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extending the gaussian graph to gaussian simplicial complexes (surfaces, volumes. .. ),
in order to get the full topological information of the data set (intrinsic dimension > 1);
extending the approach to non-linear segments, to better fit the shape of the principal
manifolds MP™™ and the density pP™*" over them:;

considering the Expectation-Maximization algorithm [7] and the Bayesian framework;
defining benchmarks and protocols for topology modelling in more than 3 dimensions,
in order to compare the approaches and discuss their generalization capacities;
exploring the conditions ensuring the existence of a maximum of the likelihood.

Generative Gaussian Graph is an attempt to bridge the gap between Statistics and

Computational Topology allowing the modelling of the topology of a data set to enter the
framework of statistical learning theory.
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