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Abstract - Contiguity Analysis is a straightforward generalization of Linear Discriminant Analysis 
in which the partition of elements is replaced by a more general graph structure. Applied to the 
graph induced by a Self Organising Map (SOM), Contiguity Analysis provides a set of linear 
projectors leading to a representation as close as possible to the SOM map. As expected, such 
projectors may only concern local parts of the SOM maps. They allow us to visualize the shapes of 
the clusters and the pattern of the elements within each clusters. In some contexts, they provide 
confidence areas for elements via a standard partial bootstrap procedure.  
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1   Introduction 
 
For many users, the Self Organizing Maps outperform both usual clustering techniques and 
principal axes techniques (principal components analysis, correspondence analysis, etc.).  On 
the one hand, the displays of identifiers of units within rectangular or octagonal cells allow for 
clear and legible printings. On the other hand, the SOM grid, basically non-linear, can be 
viewed as a compromise between a high-dimensional set of clusters and the two-dimensional 
plane generated by any pairs of principal axes. Some attempts have been made to propose some 
assessment procedures. Let us mention, among other works, the algorithm of Kleiweg [5] that 
complements the map by both a progressive darkening of the edges (which indicates stronger 
differences between the concerned cells) and a drawing of the minimum spanning tree joining 
the centroids of the non-empty cells; Cottrel and Rousset [2]  and Rousset and Guinot [11]   
propose in the same vein several noticeable improvements to visualize the distances between 
clusters.  The present paper proposes, through Contiguity Analysis (briefly reminded in section 
2),  a set of linear projectors providing a representation as close as possible to a SOM (section 
3 and 4). The sequence of processing is presented in section 5, with the help of an example of 
application. When a standard partial bootstrap procedure is applicable, we can then provide the 
clustered elements with confidence areas (ellipses)  (section 6).  
 
2  Principles of contiguity analysis  
 
Let us consider a set of multivariate observations, (n observations described by p variables, 
leading to a (n,p) data matrix X), whose n rows have an a priori graph structure. Thus, the n 
observations are also the n vertices of a symmetric graph G, whose associated matrix is M (mii' 
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= 1 if vertices i and i' are joined by an edge, mii' = 0 otherwise).  We denote by N the (n,n) 
diagonal matrix having the de gree of each vertex i as diagonal element ni (ni stands here for 
nii). y is the vector whose i-th component is yi. Note that:  ni = Σi' mii' . U designates the square 
matrix such that uij = 1 for all i and j. 

2.1   Local variance  v*(y) of a variable  y 

y  being a random variable taking values on each vertex i of G, the local variance is: 

Note that if G is a complete graph  (all pairs (i,i') are joined by an edge), v*(y)  is nothing but 
v(y), the classical empirical variance. When the observations are distributed randomly on the 
graph, both v*(y) and v(y) are estimates of the variance of y. 

The contiguity ratio, analogue to the contiguity ratio of Geary [4], is written:   

c*(y) = v*(y)  / v(y), or :   c*(y)   =   y'(I - N-1M)’ ( I - N-1M) y  /  y' (I – (1/n)U) y 
 

2.2  Local covariance matrix 
 

The contiguity ratio can be generalized :  
 - to different distances between vertices in the graph,  
 - to multivariate observations (both generalizations are dealt with in [7]). 
This section is devoted to the second generalization: the analysis of sets of multivariate 
observations having an a priori graph structure. Such situation occurs frequently in 
geography, ecology, geology. The multivariate analogue of the local variance is now the local 
covariance matrix. With the previous notation, its entry cell   cov*(yj,yj’)   is given by: 
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If X designates the (n,p) data matrix of the values of the p  variables for each of the n vertices 
of the graph G described by its incidence matrix M, the local covariance matrix V*  is :  

V*  =  (1/n) X'( I - N-1M)’ ( I - N-1M) X 
The diagonalization of the corresponding local correlation matrix  (Local Principal 
Component Analysis) produces a description of the local correlations, which can be compared 
to the results of a classical PCA  performed with the global correlation matrix [1]. If the graph 
is made of k  disjoined complete subgraphs, V* coincide with the classical "within covariance 
matrix" used in linear discriminant analysis. If the graph is complete (associated matrix = U), 
then V* is the classical covariance matrix V. 

 
2.3  Contiguity Analysis  
 

Let u be a vector defining a linear combination u(i) of the p variables for vertex  i: 
                              u(i) = Σj uj yij  =  u'yi 
The local variance of the artificial variable u(i) is then, in matrix notations : 

* 2 *

1 1

*( ) (1/ ) ( ) ,     with:    (1/ )
ik ni n

i i i i ik k
i k

v y n y m m n m y
==

= =

= − =∑ ∑



WSOM 2005, Paris 

                              v*(u)  =  u' V* u  
The contiguity coefficient of this linear combination can be written : 
                             c*(u)   =  u' V* u  / u' V u                          
where V is the classical covariance matrix of vector y. 
The search for u that minimizes c*( u) produces functions having the properties of "minimal 
contiguity": these functions are, in a sense, the linear combinations of variables the more 
continuously distributed on the graph.  
Instead of assigning an observation to a specific class, (as it is done in classical linear 
discriminant analysis) these functions allows one to assign it in a specific area of the graph. 
Therefore, this technique (designated as Contiguity Analysis) can be use to discriminate 
between overlapping classes.  

 
3  SOM and external associated graph 
 

The Self Organizing Maps (SOM) proposed by Kohonen [6] aim at clustering a set of 
multivaria te observations. The obtained clusters are often displayed as the vertices of a 
rectangular (chessboard like) or octagonal graph. The distances between vertices on the graph 
are supposed to reflect, as much as possible, the distances between clusters in the initial space. 
The algorithm is similar to the McQueen algorithm [10] in its on line version, and to the k-
means algorithm in its batch version. 

 
3.1 Graph associated with a SOM  

Figure 1 represent a stylised symmetric matrix (70, 70) M1 associated to a SOM assigning 
n = 70 elements to k = 8 clusters. Rows and columns represent the same set of n elements 
(elements belonging to a same class of the partition form a subset of consecutive rows and 
columns). All the cells of the black sub-matrices contains the value 1. All the cells outside 
these black sub-matrices contains the value 0 . These 8 clusters have been obtained through 
a SOM algorithm from a square 3 x 3 grid (with an empty cluster). 

 
Figure 1 . Stylised incidence matrix M1  of the graph associa ted with a (3 x 3) SOM 

(all the cells in the white [resp. black] areas contain the value 0 [resp. 1]  )  

In figure 1, two elements i and j are linked (mij = 1) in the graph if they belong to a same 
cluster, or if they belong to contiguous clusters. Owing to the small size of the SOM grid, the 
diagonal adjacency is not taken into account. (e.g.: In the SOM of figure 3 below, elements 
belonging to cluster 7 are considered as contiguous to those of clusters 4 and 8, but not to the 
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elements of cluster 5). Simila rly to matrices M1, a matrix M2 can be defined, that extends the 
definition of the edges of the graph to diagonal links, and, likewise, matrices M3 …. Mk . 
 
 
4. Linear projectors onto the “best SOM plane” 
 

The binary incidence matrices M1, and M2 can easily be obtained as a by-product of the SOM 
algorithm. If a Contiguity Analysis using the graphs G1 or G2 (associated matrices M1, or M2) 
is then performed, the  principal planes strive to reconstitute the positions of the clusters in the 
SOM map. In the initial p-dimensional space, the SOM map can be represented by the graph 
whose vertices are the centroids of the clusters. Those vertices are joined by an edge if the 
corresponding clusters are contiguous in the grid used in the algorithm. This graph in a high 
dimensional space will be partially or totally unfolded by the contiguity analysis. The 
following example will show the different phases of the procedure. 
 
5. The sequence of operations : an example   
 
The selected data set deals with survey data. The questionnaire [12]  consists of 210 words that 
respondents must rate (on a 7-items scale) according to the pleasure or displeasure they 
experience at the mention of each of these words.  
 

 
 

Figure 2. A (3 x 3) SOM showing the 70 words, rated in the 3360 responses  
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The pattern obtained in  the space spanned by the six first principal axes of a Principal 
Component Analysis of the (3360 x 70) data table appears to be stable over time, and similar in 
several European countries. We run the example on a subset of 70 words and 10 principal 
coordinates derived from a preliminary PCA performed on a subset of 300 respondents.  

Figure 3 simultaneously represents the projections of the 70 variables (words) together with the 
nine centroids of the nine clusters produced by a classical SOM algorithm (square 3 x 3 grid) 
onto the plane spanned by the two first principal components. 

Figure 4 represents the plane spanned by the two first axes of the contiguity analysis using the 
matrix M1. We can check that the graph describing the SOM map (the vertices of which C1 , C2 , 
…C9 are the centroids of the elements of the corresponding cells of figure 3), is, in this 
particular case, a satisfactory representation of the initial map. The pattern of the nine 
centroids is similar to the original grid exemplified by figure 2.  

 

 
 

Figure 3. Principal plane of a PCA. The points C1, C2, …C9 represent the centroids of the 9 clusters 
derived from the SOM map. 

 
The background of figure 5 is identical to that of figure 4. It contains in addition the convex 
hulls of the nine clusters C1, C2, …, C9.. Each of those convex hulls correspond exactly (if we 
except  some double or hidden points) to a cell of Figure 2. We note that these convex hulls are 
relatively well separated.  
In fact, figure 5 contains much more information than Figure 2, since we have now an idea of 
the shapes and sizes of the clusters, of the degree to which they overlap. We are now aware of 
their relative distances, and, another piece of information missing in Figure 2, we can observe 
the configurations of elements within each cluster. 
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Figure 4. Principal plane of the contiguity analysis using matrix M1. The points C1, C2, …C9 represent 
the centroids of the 9 clusters derived from the SOM map. 

 

 

 
 

Figure 5. Principal plane of the contiguity analysis using matrix M1, with both the centroids of the 9 
clusters and their convex hulls. 
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6. The assessment of SOM maps through partial bootstrap 
 
We are provided at this stage with a tool allowing us to explore a continuous space. We can 
take advantage of having a projection onto a plane to project the bootstrap replicates of the 
original data set. We could do it onto a higher dimensional space, although the outputs are 
much more complicated in that case. This projection of replicates can be done in the 
framework of a partial bootstrap procedure. In the context of principal axes techniques (such as 
singular values decompos ition, principal component analysis, correspondence analysis, and 
also contiguity analysis), Bootstrap resampling techniques [3] are used to produce confidence 
areas on two-dimensional displays. The bootstrap replication scheme allows one to draw 
confidence ellipses for both active elements (i.e.: elements participating in building principal 
axes) and supplementary elements (projected a posteriori). 
 

 
 

 
Figure 6. Bootstrap ellipses of confidence of the 5 words: CARNAL, MOON, FIRE, REASON  in the same 

principal contiguity plane as in figure 4 and 5. 
 

In the example of the previous section, the clustered variables (words) are the rows and 
columns of a correlation matrix. The perturbation of such matrix under a bootstrap re-sampling 
procedure leads to new coordinates for the replicated rows. Without re-computing the whole 
contiguity analysis for each replicated sample (conservative procedure of total bootstrap), one 
can project the replicated rows as supplementary elements on a common reference space, 
exemplified above by figures 4 and 5. Always on that same space, figure 6 shows a sample of 
the  replicates of five points (small stars visible around the words CARNAL, MOON, FIRE, 
REASON) and the confidence ellipses supposed to contain approximately 90% of these 
replicated points. Such procedure of partial bootstrap gives satisfactory estimates of the 
relative uncertainty about the location of points. Although the background of figures 5 and 6 
are the same, it is preferable, to keep the results legible, to draw the confidence ellipses on a 
distinct scattering diagram. It can be seen for instance that the location of carnal is rather 
fuzzy. That word could belong to other neighbouring clusters as well. 
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7. Conclusions  
 
We have intended to immerse the Self Organizing Map into an analytical framework (the linear 
algebra of contiguity analysis) and into an inferential setting as well (re-sampling techniques of 
bootstrap). That does not put into question the undeniable qualities of clarity of the SOM maps. 
But it may perhaps help to assess the obtained representations: like most explorator y tools, 
they may help to uncover rapidly and at low cost some features and patterns. However, they 
should be complemented by other statistical procedures if deeper interpretation is needed.  
 
[The computations and figures have been carried out by using the software DTM that can be freely 
downloaded, together with the data set serving as an example, from www.lebart.org. ] 
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