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Abstract - Unsupervised clustering techniques represent a powerful technique for self-
organized segmentation of biomedical image time—series data describing groups of pizels ex-
hibiting similar properties of local signal dynamics. The theoretical background is presented
in the beginning, followed by several medical applications demonstrating the flexibility and
conceptual power of these techniques. These applications range from functional MRI data
analysis to dynamic contrast-enhanced perfusion MRI and breast MRI. The present paper
gives a review of potential applications of unsupervised clustering techniques in the important
and current field of functional and dynamic MRI.
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1 Introduction

In the last decades, several advanced noninvasive medical imaging techniques such as mag-
netic resonance imaging (MRI) and functional MRI (fMRI) have been introduced into clinical
practice. These new techniques are not only limited to the mere imaging of morphological
structures but also emphasize the biological function. As a consequence, the analysis and
visualization of medical image time—series data poses a new challenge to both basic research
and medical application. The model-based, supervised data analysis methods rely on knowl-
edge of experimental conditions and model assumptions whereas model-free techniques do
not. However, model-based analysis methods impose some limitations on data analysis under
complicated experimental conditions. Therefore, analysis methods that do not rely on any
assumed model are considered more powerful and relevant.

In this important context, we apply unsupervised clustering methods to biomedical image
time—series analysis and present applications of these techniques to (i) fMRI data analysis
for human brain mapping, (ii) dynamic contrast—-enhanced perfusion MRI for the diagnosis
of cerebrovascular disease and (iii) breast MRI for the segmentation of suspicious lesions of
breast cancer patients.

In the following we will give a review on unsupervised clustering algorithms to be applied to
fMRI and MRI exploratory data analysis, and introduce some basic notations common to all
three applications.
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Let n denote the number of subsequent scans in a fMRI or dynamic MRI study, and let M
be the number of pixels in each scan. The dynamics of each pixel p € {1,..., M}, i.e. the
sequence of signal values {x#(1),...,2*(n)} can be interpreted as a vector x* € R™ in the
n—dimensional feature space of possible signal time-series at each pixel (Pixel Time Course,
PTC).

Cluster analysis groups image pixels together based on the similarity of their intensity profile
in time. In the clustering process, the space of all PTCs is subsequently partitioned into
clusters based on the proximity of the input data. For this, we employ several vector quanti-
zation (VQ) approaches. method for unsupervised image time—series analysis. VQ clustering
identifies several groups of pixels with similar PTC, while these groups or clusters are rep-
resented by prototypical time—series called codebook vectors (CV) located at the center of
the corresponding clusters. The CVs represent prototypical PTCs sharing similar temporal
characteristics. Thus, each PTC can be assigned to a specific CV according to a minimal
distance criterion.

2 Unsupervised clustering techniques

As unsupervised clustering techniques, we will consider adaptive neural algorithms such as
topology—preserving and neighborhood—preserving mappings.

By X C RP we describe an input manifold (D is the dimension of the input space) and by G
we describe a graph or equivalently a network. This graph G consists of vertices i € {1,---, ¢},
which are equivalent to neurons. A reference vector w; € X belongs to the pointer set or
codebook C' = {wy, -+, w.} attached to the vertex i.

A mapping ¢7 for codebook C' from input manifold X onto the vertices of graph G is defined
as

or: X =G, x,€X —i"(xx) €G (1)

with xj being an input vector, k € {1,...,n} and vertex i*(x;) a winner unit determined by

the minimized Euclidian inter—vector distance selecting the pointer w« (4, ) closest to xi

*(2) = arg min d(zy, w;) (2)
i€G

Similarly, an inverse mapping qb}l from G onto X is defined as

o' G- X, i€eGow,eX (3)

For a more detailed discussion of topology preservation in the context of vector quantization
approaches, see [7]. The mapping ¢p from X to G is defined as neighborhood (adjacency)
preserving if any pair of adjacent pointers w;, w; on X is assigned to vertices ¢, j also adjacent
on G. Vice versa, mapping gb}l is said to be neighborhood preserving if any two vertices 4,
J adjacent on G are assigned to locations w;, w; that are adjacent on X. In this context, a
topology preserving mapping is defined as a mapping ¢r from X to G such that ¢r, together
with inverse mapping d);l from G to X are neighborhood (adjacency) preserving.

Cluster centers or codebook vectors (CV) w; are then determined by an iterative adaptive
update based on the following equation:

622



Application of Unsupervised Clustering Methods to Medical Imaging

wi(t+1) =w;(t) + e(t)ai - (x(t), C(t), k) (x(t) — w;(t)) (4)

where €(t) represents the learning parameter, a; ;+ a codebook (C(t)) dependent cooperativity
function, k a cooperativity parameter, and x a randomly chosen feature vector. For image
time—series, the feature vector represents the PTC.

Kohonen’s self-organizing map generates nodes on a two—dimensional lattice in which the
distribution of these nodes corresponds to the proximity of their associated node patterns
in the signal intensity space. This topology—preserving technique enables the forming of
superclusters by fusing nodes, and thus provides a way to visualize high—dimensional data
sets.

The learning rule for the Kohonen’s self-organizing map uses the simple cooperativity func-

tion a;;+ = exp <—%> and is given by
%) x(t) = wi(0) Q

wi(t+1) =w;(t) + e(t) exp (—02

where d;; is a distance between neurons ¢ and j determined by a neighborhood relation and

o2 is a range parameter. Note that exp (—%) takes the maximum value of one for ¢ = 7*,

namely for the best—match neuron, and decreases when the distance becomes large.
Another tool for the analysis of biomedical time—series is given by the minimal free energy
vector quantizer also known as fuzzy clustering technique based on deterministic annealing
[4]. The learning rule for the minimal free energy vector quantizer is given by

exp(—|[x(t) — wi(t)]|*/2p%)
> exp(—||x(t) — wi(t)[[*/2p)
where p is the ‘fuzzy range’ of the model, and defines a length scale in data space and is an-

nealed to repeatedly smaller values in the VQ approach. In parlance of statistical mechanics,
p represents the temperature 7' of a multiparticle system by T = 2p.

Wit +1) = wi(t) + e(t)

(x(t) = wi(?)) (6)

The employed cooperativity function

o exp(llx() = wilt)[}/20°) -
T iexp(—lx(t) = wi(8)[[2/2p%)

is the so—called softmax activation function, and accordingly the outputs lie in the interval
[0,1] and they sum up to one. In deterministic annealing some form of randomness is incorpo-
rated into the energy function itself, which is then deterministically optimized at a sequence
of decreasing temperatures [4]. The algorithm starts with one cluster representing the center
of the whole data set. Gradually, the large clusters split up into smaller ones representing
smaller regions in the feature space.

The ‘neural-gas’ algorithm [2] is an efficient approach which, applied to the task of vector
quantization, (1) converges quickly to low distortion errors, (2) reaches a distortion error 2
lower than that from Kohonen’s feature map, and (3) at the same time obeys a gradient
descent on an energy surface.

2This error measures the fidelity of data encoding, and is given by the squared Euclidean distance between
the data vectors and the corresponding approximating reference vectors.
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Instead of using the distance ||x — wj|| or of using the arrangement of the ||w;|| within an
external lattice, it utilizes a neighborhood-ranking of the reference vectors wj for the given
data vector x.

The learning rule for the neural gas network performs VQ using the cooperativity function
a;+ = exp(—k;(x,w;i/\)) and is given below

wi(t+1) = wi(t) + e(t) exp(—ki(x, wi) /A) (x(t) — wi(t)) (8)

where k; = 0,..., N — 1 represents the rank index describing the ‘neighborhood-ranking’ of
the reference vectors wj to the data vector x in a decreasing order, N is the number of units
in the network, and A determines the number of neural units significantly affected by every
iteration. The step size € € [0, 1] describes the overall extent of the modification.

It can be shown [2] that the average change of the reference vectors corresponds to an over-
damped motion of particles in a potential that is given by the negative data point density.
Superimposed on the gradient of this potential is a ‘force’, which points toward the regions
of the space where the particle density is low. This force is the result of a repulsive coupling
between the particles (reference vectors). In its form it resembles an entropic force and tends
to homogeneously distribute the particles (reference vectors) over the input space, like the
case of a diffusing gas. This suggests the name for the neural-gas algorithm. It is interesting
to also mention that the reference vectors wj change their locations slowly but permanently
and that vectors w; which are neighboring at an early stage of the adaptation procedure
might not be neighboring anymore at a more advanced stage.

3 Functional MRI

Functional magnetic resonance imaging with high temporal and spatial resolution represents
a powerful technique for visualizing rapid and fine activation patterns of the human brain.
As is known from both theoretical estimations and experimental results [3], an activated
signal variation appears very low on a clinical scanner. This motivates the application of
analysis methods to determine the response waveforms and associated activated regions.
Generally, these techniques can be divided into two groups: model-based and model-free
techniques. The first try to exploit the data structure as well as possible by requiring prior
knowledge about activation patterns, whereas the latter are exploratory in nature and do not
need additional assumptions. Under complicated experimental conditions, modeling is often
difficult to achieve. Therefore, analysis methods that do not rely on any assumed model of
functional response are considered more powerful and relevant.

FMRI data were recorded from six subjects (3 female, 3 male, age 20-37) performing a visual
task. In five subjects, five slices with 100 images (TR/TE=3000/60msec) were acquired with
five periods of rest and five photic simulation periods with rest. Simulation and rest periods
comprised 10 repetitions each, i.e. 30s. Resolution was 3 x 3 x 4 mm. The slices were
oriented parallel to the calcarine fissure. Photic stimulation was performed using an 8 Hz
alternating checkerboard stimulus with a central fixation point and a dark background with a
central fixation point during the control periods. The first scan was discarded for remaining
saturation effects. Motion artifacts were compensated by automatic image alignment.
Clustering the PTC identifies groups of pixels with similar signal dynamics. The clustering
results for the neural gas algorithm are shown exemplarily in Figure 1. Figure 1(a) illus-
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trates the so—called assignment maps where all the pixels belonging to a specific cluster are
highlighted. The assignment between a pixel and a specific cluster is given by the minimum
distance between the pixel and a CV from the established codebook. On the other hand,
each CV shown in Figures 1(b) can be viewed as the cluster—specific weighted average of all
pixel time courses.

The first two codebook vectors in Figure 1(b) are similar to the rectangular pulse-like stimulus
function. Their corresponding cluster assignment maps in Figure 1 (a) can be attributed to
activation of the visual cortex [5].

5

iy

3T 32 33 34

4
e AR [
&

M A ] oy =

il I
H

Figure 1: (a) Cluster assignment maps for cluster analysis based on the neural gas network of a visual
stimulation fMRI experiment obtained for 36 CVs. (b) Associated codebook vectors for the neural
gas network clustering as shown in (a). Assignment of the codebook vectors corresponds to the order
of the assignment maps shown in (a).

4 Dynamic contrast—enhanced MRI mammography

Breast cancer is the most common cancer among women. When applied to segmentation of
breast MR images, traditional pattern recognition techniques such as the MLP have shown
unsatisfactory detection results and limited application capabilities [1]. Furthermore, the
underlying supervised nonbiological learning strategy leads to the incapacity of capturing the
feature structure of the breast lesion in the neural architecture.

To overcome the above mentioned problem, we employ a minimal free energy vector quanti-
zation neural network that focusses strictly on the observed complete MRI signal time—series,
and enables a self-organized data—driven segmentation of dynamic contrast—enhanced breast
MRI time-series with respect to fine—grained differences of signal amplitude and dynamics
such as focal enhancement in patients with indeterminate breast lesions. This method is de-
veloped, tested and evaluated for functional and structural segmentation, visualization, and
classification of dynamic contrast—enhanced breast MRI data. Thus, we contribute towards
the construction and evaluation of a flexible and reusable software system for CAD in breast
MRI [6].

MRI was performed with a 1.5 T system (Magnetom Vision, Siemens, Erlangen, Germany)
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equipped with a dedicated surface coil to enable simultaneous imaging of both breasts. The
patients were placed in a prone position.

The dynamic study consisted of 6 measurements with an interval of 83 s. The first frame was
acquired before injection of paramagnetic contrast agent (gadopentatate dimeglumine, 0.1
mmol/kg body weight, Magnevist”™ | Schering, Berlin, Germany) immediately followed by
the 5 other measurements. The initial localization of suspicious breast lesions was performed
by computing difference images, i.e. subtracting the image data of the first from the fourth
acquisition. As a preprocessing step to clustering, each raw gray level time-series S(7),7 €
{1,---,6} was transformed into a PTC of relative signal reduction z(7) for each voxel, the
pre—contrast scan at 7 = 1 serving as reference.

Clustering results for a 6 scan dynamic contrast—enhanced breast MRI study in a patient
with breast cancer in the upper medial quadrant of the left breast are presented in Figure
2 for the neural gas network employing 9 clusters. They show cluster assignment maps and
corresponding codebook vectors of breast MRI data covering a supramammilar transversal
slice of the left breast containing a suspicious lesion that has been proven to be malignant by
subsequent histological examination.

The procedure is able to segment the lesion from the surrounding breast tissue as can be
seen clusters #6 from Figure 2(a). The rapid and strong contrast agent uptake followed by
subsequent plateau and wash—out phases in the round central region of the lesion as indicated
by the corresponding CV of cluster #6 in Figure 2(b).

Furthermore, clustering results enable a subclassification within this lesion with regard to
regions characterized by different MRI signal time—courses: The central cluster #6 is sur-
rounded by the peripheral circular clusters #7, 8, and 9 which primarily can be separated
from both the central region and the surrounding tissue by its amplitude of its contrast agent
uptake ranging between CV #6 and all the other CVs. Analysis of the resulting data can be
further aided by the use of hyperbolic SOMs for the VQ and coloring steps [8].
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Figure 2: (a) Cluster assignment maps for cluster analysis based on the minimal free energy vector
quantization of the dynamic breast MRI study (data set #16). (b) Codebook vectors for minimal
free energy vector quantization of the dynamic breast MRI study according to (a). sa; represents the
initial and sv, the postinitial time-signal intensity.

626



Application of Unsupervised Clustering Methods to Medical Imaging

5 Dynamic contrast—enhanced cerebral perfusion MRI

Stroke and cerebrovascular diseases are the third leading cause of mortality in industrial
countries after cardiovascular disease and malignancies. Therefore, the analysis of cerebral
circulation, has become an issue of enormous clinical importance. The main objective of
dynamic contrast—-enhanced MRI is to separate abnormal from normal contrast enhancement
reflecting disturbed hemodynamics.

Dynamic susceptibility contrast-enhanced perfusion weighted MRI was performed on a 1.5 T
system (Magnetom Vision, Siemens, Erlangen, Germany) using a standard circularly polar-
ized head coil for radio frequency transmission and detection.

Clustering results for a 38 scan dynamic contrast-enhanced MRI perfusion study in a patient
with a subacute stroke affecting the right basal ganglia are presented in Figure 3. After
discarding the first two scans, a relative signal reduction time—series z(7),7 € {1,...,n},n =
36 can be computed for each voxel. Clustering these PTCs identifies groups of pixels with
similar signal dynamics. Figure 3(a) shows the cluster assignment maps overlaid onto an
EPI scan of the perfusion sequence. In these maps, all the pixels are highlighted that belong
to a specific cluster. The decision on assigning a pixel p characterized by the PTC x* =
(x#(1)), 7 € {1,...,n} to a specific cluster j is based on a minimal distance criterion in
the n-dimensional time—series feature space, i.e. u is assigned to cluster j, if the distance
|x* — w;|| is minimal, where w; denotes the CV belonging to cluster j. Each CV can be
interpreted as the weighted centroid of all the PTCs belonging to this cluster.

Figure 3(b) shows the prototypical cluster-specific concentration-time curves (CTCs) belong-
ing to the pixel clusters of Figure 3(a).
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Figure 3: (a) Cluster assignment maps for neural gas network of a dynamic perfusion MRI study in a
patient with stroke in the right basal ganglia. (b) Cluster-specific concentration-time curves for neural
gas network of a dynamic perfusion MRI study in a patient with stroke in the right basal ganglia.
Cluster numbers correspond to (a). MTT values are indicated as multiples of the scan interval (1.5s),
rCBYV values are normalized with respect to the maximal value (cluster #9).
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6 Conclusion

In the present paper, we have shown that unsupervised clustering algorithms represent a
successful strategy for the analysis of biomedical imaging time—series: they identify activated
brain regions in fMRI studies and provide an accurate segmentation in dynamic MRI regard-
ing either identification of regions of perfusion deficit in patients with stroke or identification
and subclassification of pathological breast tissue lesions.

The goal of this review paper was to demonstrate the robustness and reliability of extract-
ing task-related activation maps and time—courses from fMRI and dynamic MRI data sets
based on unsupervised clustering techniques. The applicability of the unsupervised clustering
algorithms is illustrated on experimental data.

In future works, clinical studies will have to reveal the broad applicability of the novel concepts
of model-free data analysis to these common imaging problems.
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