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Abstract - We present an extension to the Parametrized Self-Organizing Map that allows
the construction of continuous manifolds from noisy, incomplete and not necessarily grid-
organized training data. All three problems are tackled by minimizing the overall smoothness
of a PSOM manifold. For this, we introduce a matriz which defines a metric in the space of
PSOM weights, depending only on the underlying grid layout. We demonstrate the method
with several examples, including the kinematics of a PA10 robot arm.
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1 Introduction

The Parametrized Self-Organizing Map (PSOM) has been introduced in [5] as a continuous
generalization of the standard Self-Organizing Map (SOM) [3]. It inherits the SOM’s ability
to create topology preserving mappings between an embedding (data) space and the nodes
of a Cartesian grid in a lower dimensional space, but extends the SOM by explicitly defining
a continuous manifold in the embedding space through a smooth mapping.

While the PSOM was designed to operate on the weights of a readily trained SOM, such pre-
processing is not always needed. Often the training data (weights) can already be generated
by sampling along the degrees of freedom of a system, for example in learning the forward and
inverse kinematics of a robot arm [1, 2] or of single fingers [4] and in object recognition and
pose estimation [6]. By including topology information, the PSOM permits the construction
of highly accurate mappings from very few training examples [7].

However, in its original form the PSOM suffers from two restrictions. First, the algorithm
features no explicit consideration of noise that might be present in the data (e.g. in physical
measurements). Second, the original PSOM requires a complete set of grid-organized data to
construct its mapping. This means that (i) training data lying in between the grid nodes can
not be incorporated and (ii) even a single missing weight (e.g. a sample position not realizable
because of physical constraints) makes the PSOM construction algorithm inapplicable.

This paper addresses these two issues by an elegant integration of rather standard smoothing
techniques into the PSOM framework. Specifically, we present an approach to regularize
PSOM-mappings in order to deal with noisy data in a principled manner and we provide a
modification of the original algorithm, allowing to construct PSOMs from data that are not

363



WSOM 2005, Paris

organized in a grid topology (including as a special case grid-based data with missing ele-
ments). We will use the notation PSOM™ when we wish to explicitly indicate the application
of the new regularization approach.

Our method is based on measuring the overall smoothness of the PSOM mapping. For this,
we integrate the square sum of all second derivatives of the PSOM mapping, the result of
which can be expressed by a quadratic form. As a consequence, the problem of finding optimal
(here: maximally smooth) PSOM™ mappings can be solved by applying linear algebra.

The paper is organized as follows: In the next section, we briefly recall the original PSOM
algorithm and introduce some necessary notation. Then, we derive a metric in the space of
PSOM weights, allowing to calculate the overall smoothness of a PSOM manifold as a function
of its weights. After that, we show how to tackle the problems of noisy data, missing weights
and non grid-organized data and illustrate our method by toy examples. Finally, we show
the performance of our method in a (simulated) robot kinematic learning task.

2 The PSOM algorithm

A conventional SOM consists of an array of formal neurons arranged on the nodes of a m-
dimensional grid. Each neuron (characterized by a multi-index g) has a d-dimensional weight
wg attached. The entirety of the weights, along with their respective neuron topology within
the grid, form a discrete approximation of a possibly nonlinear manifold embedded in R,
The PSOM is built on the same kind of neuron array, but interpolates the neuron’s weights by
a smooth vector-valued function w(s), thus defining a manifold parameterized by a continuous
m-~dimensional quantity, the coordinate s within the manifold sampled by the grid.

1s

Figure 1: From SOM to PSOM. The left plot shows a 4x3 SOM with 3D weights, the right plot depicts
the corresponding PSOM.

In this paper, we only work on Cartesian (but not necessarily regular) grids, which means
that the set of grid coordinates A = {ag} is given by the Cartesian product of 1D coordinate
sets along the different dimensions:!

A=A"xA%x...xA™ | A ={d} dy,... d"} (1)
The PSOM mapping can then be expressed by multi-dimensional Lagrange interpolation:
" st —al!
wis) = 3 webe(s) = Sowg [ (") o () =[] ot 2)
g g p=1 j# ! J
Here, s = (s',...,s™) and the [!'(s") are standard one-dimensional Lagrange polynomials.

Throughout the paper, we denote the grid dimension by an upper Greek index.
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While the standard SOM responds to an input x € R? by the nearest weight wg+ (“discrete
best match”), the PSOM responds by w(s*) with s* given as the solution of the continuous
minimization problem

s = arg msin d(w(s),x), (3)

where d(x,x’) may e.g. be chosen as the standard Euclidean distance ||x — x'[|. By including
only components of x and w(s) from a certain index set I in the best match search, that is,
using a distance function like

d(x,x') = (i —a})*, (4)
iel

7

the PSOM can be used as a “continuous associative memory” or as a “multi-map” tool, for
example to unite the forward and inverse kinematics of a robot in one mapping [1, 4].

3 Derivation of smoothness metric

In this section, we derive a measure of the overall smoothness of the PSOM mapping. Hereto,
we integrate the square sum of all second derivatives. The range of integration matches the
allowed range for s — normally this is the hyper-rectangle spanned by the grid.

The different components of the mapping resp. weights are treated independently. Therefore,
in the following, we can view the weights as one-dimensional.

Bwh - | Z(asuas,, @) ans )
-> (ngasf;ybg@)zdms )

S SN S e [ P
- ngwh Z gh — z};wg“’hMgh (8)
g,

Here, we used the definition

1= [ (0506 (Gagtnts)) s )

Since the basis functions bg(s) are just products of one-dimensional polynomials, their deriva-
tives are quite simple and products of one-dimensional polynomials as well. Denoting first
and second derivatives by ' and ”, we get

T o™ (sm) pL=v

0 aFp
= 10
dsigsr e T 106w ' (s) p#tv (10
aFu,v
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To keep the notation compact, we omitted the double index of g, that is, [g is to be read as an
abbreviation of Igo. Further simplification of (9) requires a case distinction and to separate
the terms depending on their dimension indices. For the first case (1 = v) one gets

e = / TT (s (s TT (s (s)ams (1)

aFp BF#p
= H/za Y& (sY)ds™ /zu ()" (s)dsH, (12)
aFtp
Agh Bg

while the second case (u # v) yields

Ity = /Hza (s (s7) TT 4P (s (s7)d™s (13)

aFp B
aF#v BF#v
= H/za VS (5Y)ds® /z# (s")II (s ds“/l”( Y (s¥)ds" . (14)
aFp
arv Agh Con Con

So, all we need to calculate are the symmetric matrices A, B and C for each grid dimension.
A convenient way to calculate the integrals is to first build a coefficient representation of the
polynomials lf]‘(so‘), which makes differentiation and integration very simple. The remaining
work consists of collecting the proper summands for the matrix elements Mgy, = v I g;:
Of course, since the matrix M depends only on the placement of the nodes and not on the
reference vectors, it has to be calculated only once for a given grid layout. Note that by
construction M defines a symmetric positive semidefinite metric in the weight space.

4 Applying the smoothness metric

We can now use the metric M to tackle the problems stated in the Introduction, that is, we
show how to make use of our smoothness measure E({w}) to construct PSOM™' mappings
from noisy or non-grid-based data. We illustrate our approach on 1D toy data first.
Throughout the section, we drop the multi-index notation in favor of a binary representation
of the indices. For a grid with N nodes, M thus becomes a N x N matrix, while the weights
are represented by a single IV x 1 vector w for each dimension of the data space.

4.1 Noisy data

Suppose that the training data w = (wy) is complete (each node has a reference vector), but
noisy. For the case of Gaussian noise, this can be stated as

wg=wg+u  u~N(0,0). (15)

Given an estimate of o, what are the optimal (“true”) weights W = (wy) 7 The stronger the
noise, the smoother the PSOM™ mapping should be, so a good strategy would be to set

W = argmin (AE(W) + [|[w — W||2) = argmin ()\WTMW +||lw — W||2) (16)
w w
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& w=(OM+I)"lw. (17)

Here, \ acts as a regularization parameter that allows to balance the smoothness constraint
(E(W)) and the data constraint (||w — W||?). It is roughly proportional to the noise variance
o2. Figure 2 shows the results on toy data for the case of a one-dimensional PSOM™* with 8
nodes spaced at a; =i, (i = 1...8). The right plot shows the mean square distance between
de-noised and original weights as a function of the smoothing parameter.
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Figure 2: PSOM™ from noisy data

4.2 Missing weights

Now suppose the training data to be free of noise, but instead incomplete. Given a set of
indices to which the weights are known, and a complementary unknown set, what is now the
optimal choice for the unknown weights ?

The less you know about a function, the simpler your estimate of it should be, so we choose the
missing weights in a way that mazimizes smoothness. Denoting sub-matrices (sub-vectors) of
M and w by indices v (unknown) and k (known), the smoothness measure can be expressed
as
E(w) = Wngka + W%Mkuwu + WZMuka + WZMWWU. (18)

Its minimum with respect to w,, is given by

oF
02 2E) o 2Mws (19)
owy,
Wy = _<Muu)_1 Mukwk (20)

Figure 3a illustrates this method on a 1D PSOM™ with 8 nodes.

4.3 Per-weight smoothing

If the scalar smoothing parameter A in (17) is replaced by a diagonal matrix of per-weight
smoothing parameters, the two problems described in the last sections merge into one. All
exactly known weights would be assigned A = 0, whereas missing weights would be interpreted
as known, but infinitely noisy and therefore be endowed with a high value of A.

Ww=(AM+I)"'w A =diag(\i, Na,...) (21)
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Figure 3: PSOM™ mappings from incomplete or partially noisy grid-organized data

Figure 3b shows an example using the same toy data as before. The weights 3 and 6 are
treated as unknown or noisy and assigned a non-zero A. All other weights are fixed (A = 0).
Note the “morphing” between the curves for the totally known and totally unknown case.

4.4 Non grid-organized training data

Suppose a set of training data given as N input-output pairs? (s;,y;) where the s; do not
match the nodes of a grid. To construct a PSOM™ mapping from such data, we propose the
following: First, specify a grid that spans a hyper-rectangle just large enough to embed the
input data s;. If you have no idea how complex the mapping is, use as many nodes as is
computationally feasible. The spacing of the nodes along the different axes is arbitrary.
Then, construct the smoothest mapping passing through the training data, that is

minimize FE(w) subject to y; éw(sl-) = ngbg(si) i=1...N. (22)
g

By defining a matrix B with components b;; = by(s;), the constraints can be written as
y = Bw. The optimization problem (22) only features linear equality constraints and thus
can be solved by null-space methods. If the constraints are infeasible (e.g there are not
enough nodes), one can use the pseudo-inverse of B to get an approximate solution.

In case the output data is noisy, it makes no sense to use the hard constraints of (22). Instead
we proceed similar to section 4.1 and minimize a weighted sum of the smoothness measure
and the distance between observed and reconstructed data:

W = argmin [AE(w) + [y — Bw]?] (23)
= argmin 2w Mw + (y — Bw)” (y — Bw)] (24)
= (AWM +B'B)"'Bly (25)

Figure 4 shows the resulting mappings of a 1D PSOM™ with 8 nodes placed at a; =i =1...8.
The task was to interpolate 6 training data samples either (i) exactly or (ii) approximately
by specification of a smoothing factor.

2 Again, we treat the different (output) data dimensions separately.
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Figure 4: PSOM™ from non-grid-organized data

positional error in mm: mean (std dev)
Npiss | optimized | local average | global average
40 0.64 (0.45) | 7.53 (15.38) 15.65 (30.53)
100 | 1.03 (1.18) | 25.86 (40.21) | 56.29 (85.41)
400 | 2.12 (2.21) | 62.90 (60.67) | 140.32 (136.02)
0 0.54 (0.27)

Table 1: PA10 wrist kinematics from missing data Figure 5: Mitsubishi PA10

5 Experiments

In this section, we demonstrate our PSOM extensions on a more complex dataset. We hereto
chose a part of the forward kinematics of the Mitsubishi PA10, a 7 axis general purpose robot
arm (see figure 5). Specifically, we simulated learning the 3D wrist position as a function of
the first four joint angles. The PSOM™ used is based on a 8x8x8x8 Chebyshev-spaced [8]
grid, which means that the nodes are not placed regularly, but (proportionally) at the zeros
of the 8th order Chebyshev polynomial. Each grid axis represents one joint and spans its
respective range, so the manifold parameter s directly corresponds to the four joint angles.
As the basis for all experiments, we analytically calculated the “true” weights (wrist positions)
for all nodes (joint angle sets). Furthermore, we generated 1000 random postures (s) on which
we compared the analytic forward kinematics to the result of the PSOM™ mapping.

In our first experiment, we randomly selected Ny;ss = 40 (100, 400) nodes and treated their
weights as missing. In addition to calculating optimal weights for these nodes (cf. section
4.2), we alternatively simply averaged (i) the neighboring weights and (ii) all weights to fill
the gaps. Table 1 shows the resulting mean positional error on the set of 1000 test postures
— our procedure is more than a magnitude more accurate than the two “naive” approaches.
As a second experiment, we added Gaussian noise of standard deviation ¢ = lcm to all
(analytically computed) weights. Then, we de-noised the PSOM™ mapping with different
values for A\ (cf. section 4.1). Figure 6 shows the mean error on the test set, as well as the
mean deviation between the original noisy and the de-noised weights.

In our third experiment, we randomly generated 2000 (3000, 4000) joint postures and their
corresponding analytic forward kinematics and constructed a PSOM™T mapping only from
this (non-grid organized) training data, using the method of section 4.4. Table 2 depicts the
mean error on the test set. Note that for 4000 training samples, the resulting mean error is
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about the same as for the “100 missing weights” case (cf. Table 1).

error / deviation (mm)

20

i
&

=

Size of positional error in mm
training set mean (std dev)
or 2000 3.1 (5.7)
3000 1.6 (3.2)
5t 4000 1.2 (2.7)

0 . . . . . . . . .
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 ) 0.01

T T T T
[| =% mean positional error i

- - mean deviation of weights

Table 2: PA10 wrist kinematics,
non-grid-organized training data

Figure 6: PA10 wrist kinematics from noisy data

6

Conclusion

We presented an approach to regularize PSOM mappings based on minimizing their overall
smoothness. Our method allows to construct PSOMs from noisy and not necessarily grid-
organized training data. As an application, we demonstrated the approach for learning the
PA10 kinematics.
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