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Abstract

This study deals with time dynamics of Markov …elds de…ned on a …nite set of sites with

state space E, focussing on Markov Chain Markov Field (MCMF) evolution. Such a model is

characterized by two families of potentials: the instantaneous interaction potentials, and the time

delay potentials. Four models are speci…ed: auto-exponential dynamics (E = R+), auto-normal

dynamics (E = R), auto-Poissonian dynamics (E = N) and auto-logistic dynamics (E qualitative

and …nite). Su¢cient conditions ensuring ergodicity and strong law of large numbers are given

by using a Lyapunov criterion of stability, and the conditional pseudo-likelihood statistics are

summarized. We discuss the identi…cation procedure of the two Markovian graphs and look for

validation tests using martingale central limit theorems. An application to meteorological data

illustrates such a modelling.
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1 Introduction

The purpose of this paper is to study time dynamics of Markov …elds de…ned on a measurable

state space E and a …nite set of sites S. We present a semi causal parametric model called

MCMF, Markov Chain of Markov Field, de…ned as follows: X = (X(t); t 2 N¤) is a Markov
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chain on ES and X(t) = (Xi(t); i 2 S) is a Markov …eld on ES conditionally to the past: We

study the properties of this model characterized by two families of potentials: instantaneous

interaction potentials and time-delay potentials.

Space time modelling has been considered in the literature by Preston (1974; [28]) for birth

and death processes, Durrett (1995; [14]) for particles systems, Künsch (1984; [25]) and Koslov

and Vasilyev (1980; [24]) for the study of reversible and synchronous dynamics, Pfeifer and

Deutsch (1980; [26], [27]) for ARMA models in space. Among statistical studies and their ap-

plications, some important contributions are those of Pfeifer and Deutsch (1980; [26], [27]),

Besag (1974, 1977; [8], [9]), Keiding (1975; [23]) for birth and death process, Bennett and Hain-

ing (1985; [7]) for geographical data, Chadoeuf et al. (1992; [11]) for plant epidemiology. The

asymptotic properties of these methods are obtained in a standard way (see Amemiya (1985;

[1]), Dacunha-Castelle and Du‡o (1986; [12]), Guyon (1995; [18]), Bayomog et al. (1994; [6]).

The aim of this paper is to specify the structure of conditional Gibbs models according to

the kind of state space considered as well as to study ergodicity, identi…cation, estimation and

validation of such models. For simplicity, we consider only time homogeneous dynamics (but

spatial stationarity is not assumed) and the one step Markovian property. Our results can be

generalized to a larger dependency with respect to the past as well as to time inhomogeneous

chains.

After the description of the probability transition P (x; y) of the model in Section 2, we study

in Section 3 some properties about time reversibility, invariant probability measure, and marginal

distributions and we show that the MCMF dynamics is equivalent to a time homogeneous

space£time non causal Markov …eld representation.

Four examples are depicted in Section 4: the auto-normal dynamics (E = R), the auto-

exponential dynamics (E = R+), the auto-Poissonian dynamics (E = N); and …nally, the auto-

discrete dynamics (E qualitative and …nite). For each speci…cation, we give su¢cient conditions

ensuring the ergodicity of the chain with the help of a Lyapunov criterion. Further, we specify

the results for weak-reversible models, i.e. models such that the reverse (in time) transition

Q(x; y) belongs to the same auto-model family as P (x; y).

In Section 5, we summarize the main results on Conditional Pseudo-Likelihood (CPL) estima-
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tion: consistency and asymptotic (in time) normality of the estimator, tests of nested hypotheses

based on the CPL-ratio.

Section 6 is devoted to the identi…cation problem i.e. to the determination of the dependency

graphs G = fG; G¡g related to the MCMF dynamics. Graph G is undirected and determines

the instantaneous dependency, while graph G¡ is directed and associated to the time-delay

dependency. In the Gaussian case, the characterization of G is given through the partial-

autocorrelations; for non-Gaussian models, we suggest a stepwise procedure based on the CPL.

In Section 7, we propose two validation tests based on CLT for martingales. We conclude

this paper in Section 8 with the study of a real set of meteorological data to which we …t an

auto-logistic MCMF model. The data consist of daily pluviometric measures on a network of 16

stations in the Mekong Delta (Vietnam) during a three-month period (Tang 1991; [31]). The

auto-logistic model allows for information to be gathered on spatial and temporal dependencies,

and the forecasting is relatively accurate for some sites. This study has to be considered as a …rst

illustrative attempt; there is no doubt that it will have to be re…ned in a precise investigation

and then compared to other space time models, like hidden Markov chains or threshold models.

It will, of course, be interesting to take into account the dual feature of such data (it is not

raining or the precipitation level is observed in R+¤) and integrate it in a Gibbs model. Such

a generalization and comparisons to other models are subjected to another study actually in

progress.

2 Notations and description of the MCMF model

Let S = f1; 2; :::; ng be a …nite set of sites. We call X an MCMF model if X is a Markov Chain

of Markov Fields (conditionally to the past). The latter are de…ned on a measurable state space

(E;E) equipped with a positive ¾-…nite measure º (º is usually the counting measure if E is

discrete, and the Lebesgue one if E µ Rp). The product space is (­;O) = (ES;E­S) with the

product measure ºS = º­S. We shall consider the case ­ = ES but all the following still holds

for ­ = ¦i2SEi, with measures ºi on measurable spaces (Ei;Ei), i 2 S:

We use the following notations. Let A be a subset of S; we denote xA = (xi; i 2 A) and

xA = (xj; j 2 S n A). Let G be a symmetric graph on S without loop: hi; ji denotes that i and
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j are neighbours (in particular, i 6= j). The neighbourhood of A is @A = fj 2 S : j =2 A s.t.

9 i 2 A with hi; jig. We shall write xi = xfig and @i = @fig. With these notations, our MCMF

model X is the following:

²X = (X(t); t 2 N¤) is a homogeneous Markov chain on ­;

² ² X(t) = (Xi(t); i 2 S) is, conditionally to X(t ¡ 1), a Markov …eld on S; with Xi(t) 2 E:

We suppose that the transition probability measure of X has a density P (x; y) w.r.t ºS.

If E is discrete, P (x; y) = P (X(t) = yjX(t ¡ 1) = x). We look at models for which P (x; y) is

de…ned by an (x) ¡ a:s: admissible conditional energy U(yjx), i.e. such that

P (x; y) = Z¡1(x) expU(yjx) and Z(x) =

Z

­
expU(yjx)ºS(dy) < 1 (1)

(Z(x) =
P
­ expU(yjx) < 1 if E is discrete). Let X(t ¡ 1) = x. From the Moebius inversion

formula (Besag 1974, [8]; Prum 1986, [29]; Guyon 1995, [18]), there exists a minimal family

Cx of non empty subsets of S, and conditional potentials ©¤W (:jx) for each W 2 Cx such that

U(yjx) =
P
W2Cx ©¤W (yjx):

Throughout the paper, we suppose that Cx = C does not depend on x. If we denote 0 a

reference state in ­ (0 is 0 when E = N; R or R+), then, almost surely in x, we can choose (in

a unique way) potentials according to the “identi…ability conditions”: ©¤W (yjx) = 0 if for some

i 2 W; yi = 0: Besides, for each W in C, there exists a family CW of non-empty parts of S such

that the potential ©¤W can be written as:

©¤W (yjx) = ©W (y)+
X

W 02CW
©W 0;W (x; y)

This means that the energy U is linked to two families of potentials: instantaneous interaction

potentials f©W ; W 2 Cg and “conditional” interaction potentials f©W 0;W ; W 2 C; W 0 2 CW g:

The semi-causal representation is associated to G = fG;G¡g where G and G¡ are de…ned

respectively by the instantaneous and time-delay dependencies:

hi; jiG , h(t; i); (t; j)iG , 9W 2 C s.t. fi; jg µ W and ©W 6= 0

hj; iiG¡ , h(t ¡ 1; j); (t; i)iG , 9W 2 C; W 0 2 CW s.t. ©W 0;W 6= 0, i 2 W; j 2 W 0

Note that G¡ is a directed graph while G is not. Let us de…ne C¡ = [
W2C

CW ; then U(yjx) =
P
W2C ©W (y) +

P
W2C;W 02C¡ ©W 0;W (x; y) with the understanding that ©W 0;W ´ 0 if W 0 =2 CW .
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Thus we …nally write:

P (x; y) = Z¡1(x) expf
X

W

©W (y) +
X

W1;W2

©W1;W2(x; y)g (2)

where we have put:
P
W for

P
W2C and

P
W1;W2

for
P
W12C¡;W22C, with ©W (y) = 0 (resp.

©W1;W2(x; y) = 0) if for some i 2 W (resp. i 2 W2), yi = 0.

There are three components in the neighbourhood of a site i:

²@i = fj 2 S n fig; hi; jiGg: the t-instantaneous neighbourhood of i

²@i¡ = fj 2 S; hj; iiG¡g: the (t ¡ 1)-antecedent neighbourhood of i

²@i+ = fj 2 S; hi; jiG¡g: the (t + 1)-successor neighbourhood of i

The semi-causal representation is related to @i and @i¡, while the non causal representation

that we will present in the next section depends on @i, @i¡ and @i+.

Therefore, for each t ¸ 1 and A ½ S (A 6= ;), the conditional distribution of XA(t) given

the past and XA(t) = yA depends on X@A¡(t ¡ 1) = x@A¡ and X@A(t) = y@A only, where

@A¡ = fi 2 S : 9j 2 A s.t. hj; iiG¡g: The corresponding conditional energy is:

UA(yAjyA; x) =
X

W :W\A 6=?

©W (y) +
X

W2:W2\A 6=?

f
X

W1

©W1;W2(x; y)g

3 Some properties of an MCMF

3.1 Time reversibility, invariant and marginal distributions

In this section we only consider potentials ©W1;W2 such that ©W1;W2(x; y) = 0 if for an i 2
W1; xi = 0 or for a j 2 W2; yj = 0. When there is no ambiguity, 0 denotes also the layout with

0 in any site of S.

The transition P is synchronous if we can write P (x; y) =
Q
s2S ps(x; ys): the values at all

sites s are independently and synchronously relaxed with distributions ps(x; :) in s.

Proposition 1 (i) The chain is time-reversible if and only if for all W1;W2; x; y : ©W1;W2(x; y) =

©W2;W1(y; x). In this case, P has an unique invariant probability measure given by:

¼(y) = ¼(0)
P (0; y)

P (y; 0)
= ¼(0)Z¡1(0)Z(y) exp

X

W

©W (y)
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(ii) This invariant measure ¼ is usually not a Markov …eld. If the transition P is syn-

chronous and reversible, then ¼ has a Markov property.

Proof:

(i) This can be derived from Künsch (1984), and Guyon (1995, Theorem 2.2.3.).

(ii) We give in Appendix 1 two examples of non Markovian ¼.

If P is synchronous, only singletons occur for W in ©W and for W2 in ©W1;W2 . As the chain is

reversible, ©W1;W2 ´ 0 if either jW1j > 1 or jW2j > 1. This means that P (xi(t)jxi(t); x(t¡ 1)) =

P (xi(t)jx@i¡(t ¡ 1)), so that,

P (x; y) = Z¡1(x) expf
X

s2S
©s(ys) +

X

hs0;siG¡
©fs0g;fsg(xs0 ; ys)g =

Y

s2S
ps(x; ys)

with ps(x; ys) = Z¡1(x) expf©s(ys) +
P
s0 ©fs0g;fsg(xs0 ; ys)g. Then we have:

¼(y) = ¼(0)Z¡1(0)Z(y)
Y

s2S
©s(ys)

Besides, if U(zs; y) = ©s(zs) +
P
s02@s¡ ©fs0g;fsg(ys0 ; zs), Z(y) =

P
z exp

P
s2S U(zs; y) =

Q
s2S

P
zs

expU(zs; y) = exp
P
s2S ª@s(y@s) with ª@s(y@s) = lnfP

zs
expU(zs; y)g.¤

Example 1 A synchronous and reversible transition.

Let E = f0; 1g; S is the one dimensional torus; the transition P (x; y) = Z¡1(x) expf®
P
i2S yi(xi¡1

+xi+1)g is reversible with invariant law ¼(y) = Z¡1(0) exp
P
i2S

©i¡1;i+1(y), where ©i¡1;i+1(y) =

lnf1 + exp®(yi¡1 + yi+1)g. The conditional distribution at site l depends on yl¡2 and yl+2.

Marginal distributions

For A µ S, A 6= S, the marginal distributions (yAjx), conditionally to x, are generally not

local in x; and not explicit and not local in y; except in speci…c cases as the Gaussian case. This

is illustrated in Appendix 2.

3.2 Non causal Markov Field representation

Let X be an MCMF with the semi-causal representation (2). We are going to show that there is

a unique equivalent time homogeneous space£time non-causal Markov …eld representation given
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by the bilateral transitions: for X(t ¡ 1) = x and X(t + 1) = z;

P (yjx; z) = Z¡1(x; z) expf
X

W1;W2

f©W1;W2(x; y) + ©W1;W2(y; z)g +
X

W

©W (y)g (3)

where the normalizing constant Z(x; z) is …nite a:s in (x; z). The time translation invari-

ant potentials on S = S £ Z are e©W£f0g(y; 0) = ©W (y) and e©W1£f0g;W2£f1g((x; 0); (y; 1)) =

©W1;W2(x; y). The non-causal representation depends on all the three neighbourhoods @i; @i¡

and @i+:

Proposition 2 The representation (2) of MCMF dynamics with the neighbourhood system

f@i; @i¡; i 2 Sg is equivalent to the S Space£Time Markov-Field representation (3) with the

neighbourhood system f@i; @i¡; @i+; i 2 Sg.

Proof:

(i) It is easy to see that the chain is also a two-nearest neighbours Markov …eld in time. Let ¿

be the density of X(0); the likelihood of (x(0); x(1); :::x(T )) is ¿(x(0))
Q
t=1;T P (x(t ¡ 1); x(t)).

For 1 � t � T ¡ 1, the conditional density is:

P (x(t)jx(t ¡ 1); x(t + 1)) =
P (x(t ¡ 1); x(t))P (x(t); x(t + 1))R

­ P (x(t ¡ 1); a(t))P (a(t); x(t + 1)) ºS(da)
:

Let us denote x = x(t ¡ 1); y = x(t); z = x(t + 1). As (X(t + 1) j X(t ¡ 1) = x) admits an a:s:

…nite density, Z(x; z) = P (X(t + 1) = z j X(t ¡ 1) = x) =
R
­ P (x; a)P (a; z) ºS(da), is …nite.

We obtain from (2):

P (yjx; z) =
exp

nP
W1;W2

f©W1;W2(x; y) + ©W1;W2(y; z)g +
P
W f©W (y) + ©W (z)g

o

R
­ exp

nP
W1;W2

f©W1;W2(x; a) + ©W1;W2(a; z)g +
P
W f©W (a) + ©W (z)g

o
ºS(da)

This is nothing other than (3).

(ii) Conversely, let X be the space£time Markov …eld on S (3) with the neighbourhood system

f@i; @i¡; @i+g. The …eld being time-homogeneous, a direct computation shows that its semi-

causal representation is (2). ¤

We can derive easily from (2) or (3) the semi-causal or non-causal conditional distributions

at any point (i; t). Note that we have for each i; j : i 2 @j¡ () j 2 @i+:
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Figure 1 shows an example of both representations. For the causal representation, we have

@i = fj; kg ; @i¡ = fi; jg (note that i 2 @l¡); while for the non-causal representation, @i =

fj; kg ; @i¡ = fi; jg ; @i+ = fi; j; lg and now i 2 @l¡ and l 2 @i+:

(include here Figure 1)

The semi-causal conditional distribution at (i; t) is:

P (yijy@i; x@i¡) = Z¡1
i (y@i; x@i¡) expf

X

W1;W2 3 i
©W1;W2(x; y) +

X

W 3 i
©W (y)g (4)

The non-causal conditional distribution P (yijy@i; x@i¡ ; z@i+) at (i; t) has conditional energy:

X

W1;W2 3i
f©W1;W2(x; y) + ©W1;W2(y; z)g +

X

W 3i
©W (y)

A time inhomogeneous Markov …eld on S = S £ T is not reducible to a semi-causal repre-

sentation because @i¡ and @i+ are strongly related: the Markov …eld (3) is very speci…c. For

the example considered in Figure 1, the non causal representation without the dotted arrow

(i; t ¡ 1) ! (l; t) cannot be reducible to a causal representation. In all he following, we consider

the time homogeneous framework.

Reversed dynamics

We give in Appendix 3 an example where the time reversed process of an MCMF is no more

an MCMF.

4 Ergodicity of automodels

Here we examine several examples of auto-models (see Besag 1974; Guyon 1995), and we give

conditions ensuring their ergodicity. We will use the Lyapunov Stability Criterion (see e.g. Du‡o

1997; [13], 6.2.2). For n ¸ 0; let Fn = ¾ (X(s); s � n) be the ¾¡algebra generated by the X(s);

s � n: The Lyapunov Stability Criterion is the following. Let us assume that a Markov chain

de…ned on a closed subset of Rd is strongly Feller, and that there exists a Lyapounov function

V such that, for n > 0; and for some 0 � ® < 1 and ¯ < 1

E[V (Xn)jFn¡1] � ®V (Xn¡1) + ¯
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Then if there is at most one invariant probability measure, the chain is positive recurrent.

Besides, the following law of large numbers applies: 1
n+1

P
k=0;n '(Xk)

a:s:! ¹(') for any

¹¡integrable function '. A di¢culty is to check whether ' is ¹¡integrable. Another useful

result is available: we get the same law of large numbers for any function ' which is ¹-a.s.

continuous and s.t. j'j � aV + b for some constants a, b.

4.1 The autoexponential dynamics

Let us consider S = f1; 2; ¢ ¢ ¢ ; ng, and E = R+. We suppose that for each i; conditionally to
¡
Xi(t) = yi; X(t ¡ 1) = x

¢
(later, we shall note this condition (yi; x)), the distribution of Xi(t)

is exponential with parameter ¸i(yi; x) (in fact ¸i(y@i; x@i¡)). From Arnold and Strauss (1988;

[3]) we can write:

¡U(yjx) =
X

i2S
®i(x)yi +

X

W :jW j¸2
¸W (x)yW

with yW =
Q
i2W yi, ®i(x) > 0 for any x and ¸W (x) ¸ 0. Then, the parameters are equal

to ¸i(y
i; x) = ®i(x) +

P
W3i ¸W (x)yW nfig. The ergodicity of the chain requires the following

assumption:

E1 (i) 8i 2 S, 8W , x ! ®i(x) and x ! ¸W (x) are continuous.

(ii) 9a 2 (0; 1); s.t. 8x 2 (R+)S; 8i 2 S : ®i(x) ¸ a:

Proposition 3 Under assumption E1, the autoexponential dynamics is positive recurrent. The

strong law of large numbers holds for any integrable function and particularly for functions x 7!
f(x) such that jf(x)j � ®Vr(x)+¯ (for some …nite constants ® and ¯) with Vr(x) =

P
i2S xri ; r

being any positive integer.

Proof: The proof uses the Lyapounov stability criterion.

² The lower bound condition E1 (ii) says that expU(yjx) � exp¡a
P
i2S yi, which is

Lebesgue integrable. Then, the chain is strongly Feller.

² As P is strictly positive, the chain is irreducible and there exists no more than one invariant

distribution (see Du‡o (1997), Proposition 6.1.9).

² On the other hand, for any positive integer r, we have for all x; y 2 E; i 2 S;

E
£
fXi(t)grjx; yi

¤
=

¡(r + 1)

¸i(yi; x)r
� ¡(r + 1)

ar
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It follows:

E [Vr(X(t))jX(t ¡ 1) = x] � ¡(r + 1)

ar
jSj < 1 (5)

where jSj is the cardinal of S. ¤

Example 2 A case of “weak-reversibility”

We assume that, conditionally to
¡
Xi(t ¡ 1) = xi; X(t) = y

¢
; the reversed transition Q(y; x)

is also exponential with parameter ¹i(x
i; y). Then, from Arnold and Strauss (1988), the joint

density for (X(t ¡ 1) = x;X(t) = y) must be:

f(x; y) = C expU(x; y), with U(x; y) = ¡
X

W=W1£W2½S2;W 6=;
¸W xW1yW2

with ¸W > 0 if jW j = jW1j + jW2j = 1 and ¸W ¸ 0 if jW j ¸ 2. So E1 is satis…ed.

Example 3 Besag’s conditional auto-models

We consider the case of conditional auto-models, i.e. for W µ S, ¸W = 0 if jW j > 2. Therefore:

¡U(yjx) =
X

i2S
®i(x)yi +

X

hi;ji
¯ij(x)yiyj:

E1-(ii) is satis…ed if ®i(x) ¸ a and ¯ij(x) ¸ 0 for all x; i; j. For example, if

¡U(yjx) =
X

i2S
±iyi +

X

hi;jiG
¯ijyiyj +

X

hj;iiG¡

®jixjyi (6)

with ±i > 0; ¯ij and ®ij ¸ 0, the distribution of Xi(t) conditionally to (yi; x) is exponential

with parameter ¸i(yi; x) = ±i +
P
j2@i ¯ijyj +

P
l2@i¡ ®lixl. The condition E1 is ful…lled .

4.2 The autonormal dynamics

Let E = R: We assume that the conditional distribution of Xi(t) given Xi(t) = yi and X(t¡1) =

x is Gaussian with mean ¹i(y
i; x) and variance ¾2i (y

i; x): The principle of compatibility requires

(see Arnold and Press (1989; [2]), Arnold, Castillo and Sarabia (1991; [4])) that the conditional

energy is of the following feature:

¡U(yjx) =
X

i2S
®i(x)yi + ¯i(x)y2i +

X

W s:t: jW j¸2
°W (x)ylWW
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where ylWW =
Q
i2W ylii ; li = 1; 2; and the functions ®; ¯; ° ensuring that all the conditional

variances are positive and U(:jx) is admissible.

Let us consider now Besag’s automodels. Then ¡U(yjx) = ¡P
i2Sf®i(x)yi + ¯i(x)y2i g +

P
hi;jiG f°ij(x)yiyj + ±ij(x)y2i yj + ºij(x)yiy2j + Âij(x)y2i y

2
jg. A typical example is:

P (x; y) = Z¡1(x) exp¡f
X

i2S
yi(±i +

P
l2@i¡

®lixl + °iyi) +
P
hi;ji

¯ijyiyjg (7)

with °i > 0; ¯ij = ¯ji such that the matrix Q = (Qij) de…ned by Qii = 2°i and Qij = ¯ij

is de…nite positive. The conditional distribution of Xi(t) given (yi; x) is Gaussian with mean

(±i +
P
l2@i¡ ®lixl +

P
j2@i ¯ijyj)=2°i and variance (2°i)

¡1.

Ergodicity: We consider the model (7). Let us note ¢ = (¢il); ¢il = ¡®li; i; l 2 S, and

± = (±i); a direct identi…cation of the distribution of (Y j x)
:
= (X(t) j X(t ¡ 1) = x) gives

(Y j x) » NS(m + Ax;¡); with m = ¡Q¡1±; A = Q¡1¢; and ¡ = Q¡1:

This can be written as an AR(1) process X(t) = m + AX(t ¡ 1) + "(t) with a Gaussian

white noise "having covariance matrix ¡. De…ne ¿=(I ¡ A)¡1m when (I ¡ A) is regular. Then

the zero-mean variable X¤(t) = X(t) ¡ ¿ veri…es X¤(t) = AX¤(t ¡ 1) + "(t). Let ½(A) be the

spectral radius of A (i.e. the greatest modulus of its eigen values).

Proposition 4 If ½(A) < 1; then (I ¡ A) is regular and the chain is ergodic with a Gaussian

stationary measure ¹:

Proof: The result is classic, given for example in Du‡o (1997), Theorem 2.3.18. As " is

Gaussian, the stationary distribution for X¤ is the one of
P
k¸0 Ak"(k), i.e. NS(0;§), § being

the unique solution of ¡ = § ¡ A§( tA), that is § =
P
k¸0Ak¡( tA)k. For X(t), we add the

mean ¿ . As " has …nite moments of all orders, we get the strong law of large numbers for any

continuous integrable function. ¤

11



4.3 The Auto-Poissonian dynamics

Now E = N (º is the counting measure) and we consider the dynamics associated with the

following conditional energy:

U(yjx) =
X

i2S
®i(x)yi ¡ ln(yi!) +

P
i 6=j

¯ij(x)yiyj

where ¯ij(x) � 0 for all i; j in order to make U admissible. Conditionally to (yi; x);Xi(t) has

a Poisson distribution with parameter ¸i(yi; x) = expf®i(x) +
P
j:j 6=i

¯ij(x)yjg. The ergodicity of

the chain is obtained through the following hypothesis:

P1: 9 M < 1 such that 8i 2 S, supx ®i(x) � M

Proposition 5 Under P1, the auto-Poissonian chain is positive recurrent. Besides, the strong

law of large numbers holds for any ¹-integrable function and for any functions f such that

jf(x)j � ®Gu(x) + ¯ (for some …nite constants ® and ¯) where Gu(x) =
Q
i2S euixi , for any

…xed u 2 (R+)S.

Proof: The proof follows the same lines as the one given for the auto-exponential dynamics.

P1 implies that ¸i(yi; x) � eM . Then the transition is strongly Feller. As this transition is

strictly positive, the invariant measure is unique.

For the conditional moment generating function, we have, for all s > 0;

ªXi(s) = E
£
esXi(t)jyi; x¤

= e¸i(y
i;x)(es¡1) � exp(eM (es¡1)). Let us set u = (ui; i 2 S) 2 (R+)S,

Ku = max i2S exp(eM(eui ¡ 1)) and Gu(x) =
Q
i2S euixi . Then, conditionally to X(t ¡ 1) = x,

E [Gu(X(t))jx] = E

2
4 Y

i2Snfjg
euiXi(t) E

h
eujXj (t)jyj; x

i
jx

3
5 � KuE

2
4 Y

i2Snfjg
euiXi(t)jx

3
5

Taking successive conditional expectations, one obtains:

E

"Y

i2S
euiXi(t) jX(t ¡ 1)

#
� K jSj

u < 1: ¤

For example, P1 is satis…ed for

®i(x) = ±i +
P
l2@i¡

®lixl and ¯ij(x) = ¯ij = ¯ji (8)

with ®li � 0 for any i; l; and ¯ij < 0 if hi; ji and 0 else.

12



4.4 The auto-discrete dynamics

Let E be a …nite qualitative set. The conditional energy of the auto-model is:

U(yjx) =
X

i2S
®i(yi; x) +

P
hi;ji

¯ij(yi; yj; x):

As ®i(:) and ¯ij(:) are …nite conditional potentials, the ergodicity is ensured without any re-

strictions on the parameters. For instance, the autologistic dynamics is de…ned for E = f0; 1g,

and U(yjx) =
P
i2S ®i(x)yi+

P
hi;ji ¯ijyiyj; Xi(t) has a conditional Bernouilli distribution with

parameter

pi(y
i; x) =

exp ±i(yi; x)

1 + exp ±i(yi; x)
with ±i(y

i; x) = ®i(x) +
X

j2@i
¯ijyj: (9)

For E =f0; 1; ::;mg, the autobinomial dynamics is given by U(yjx)=
P
i2S ®i(x)yi+

P
hi;ji ¯ijyiyj.

Conditionally to (yi; x), Xi(t) has a Binomial distribution B(m; µi(yi; x)) with parameter

µi(yi; x) = (1 + expf®i(x) +
P
j2@i ¯ijyjg)¡1:

5 Conditional Pseudo-Likelihood Statistics

5.1 Parametric estimation

We suppose that the transition probabilities of the MCMF depend on an unknown parameter

µ, µ lying in the interior of £; a compact subset of Rd. When ergodicity holds, we can obtain

the asymptotic properties of the estimators derived from the classic estimation methods (max-

imum likelihood, pseudo maximum likelihood, maximum of another “nice” objective function)

in a standard way. An analytical and numerical di¢culty inherent to the maximum likelihood

procedure is the complexity of the normalizing constant Zµ(x) in the likelihood; one can use

stochastic gradient algorithms to solve the problem (see Younes (1988), [33]); another numeri-

cal option is to compute the log likelihood and its gradient by simulations via a Monte Carlo

algorithm (see [16] Chapter 3 and [17]). A third alternative (see Besag (1974)) is to consider

the Conditional Pseudo-Likelihood (CPL); in the presence of strong spatial autocorrelation this

method performs poorly, and we then have to use the previous procedures. In the absence

of strong dependency, it has good asymptotic properties, the same rate of convergence as the

13



maximum likelihood estimator with a limited loss in e¢ciency (see Besag 1977 [10], Guyon 1995

[18], Guyon and Künsch 1992 [20]). The asymptotic behaviour follows in a standard way (see

Amemiya (1985) and Dacunha-Castelle and Du‡o (1986) for general theory; Besag (1984,[10]),

Guyon and Hardouin (1992; [19]), Guyon (1995) for Markov …eld estimation; Bayomog (1994;

[5]), and Bayomog et al. (1996) for …eld dynamics estimation). We brie‡y recall the main results.

We assume that the chain is homogeneous and that for all i 2 S; x; y 2 E; µ 2 £; the

conditional distribution of Xi(t) given Xi(t) = yi and X(t¡1) = x is absolutely continuous with

respect to º, with positive conditional density fi(yi; y
i; x; µ) (which is in fact fi(yi; y@i; x@i¡ ; µ)).

Let µ0 be the true value of the parameter, and P0 be the associated transition. The process

is observed at times t = 0; ¢ ¢ ¢ ; T . Let us denote µ̂T = arg min
µ2£

UT (µ) the conditional pseudo-

conditional likelihood estimator (CPLE) of µ; a value minimizing the opposite of the Log-CPL:

UT (µ) = ¡ 1

T

TP
t=1

P
i2S

ln fi(xi(t); x
i(t); x(t ¡ 1); µ)

The following conditions C and N ensure the consistency and the asymptotic normality of µ̂T

respectively.

Conditions for consistency (C):

C1: For µ = µ0, the chain X is ergodic with a unique stationary measure ¹0.

C2: (i) For all i 2 S; x; y 2 E; µ 7! fi(yi; yi; x; µ) is continuous..

(ii) There exists a measurable ¹0 ­ P0-integrable function h on E £ E such that for all

i 2 S; µ 2 £; x; y 2 E; j ln fi(yi; yi; x; µ) ¡ ln fi(yi; yi; x; µ0)j � h(y; x):

C3: Identi…ability: if µ 6= µ0 then
P
i2S ¹0(fx s:t: fi(:; :; x; µ0) 6= fi(:; :; x; µ) g) > 0.

Let f
(1)
i (µ) and f

(2)
i (µ) stand for the gradient and the Hessian matrix of fi(yi; yi; x; µ) with

respect to µ. We de…ne the following conditional (pseudo) information matrices: for x; y 2
E; i; j 2 S; i 6= j; µ 2 V0; a neighbourhood of µ0, V0 ½ £:

Iij(y
fi;jg; x; µ) = Eµ0[

f
(1)
i (µ)f

(1)
j (µ)0

fi(µ)fj(µ)
jXfi;jg(t) = yfi;jg;X(t ¡ 1) = x];

Iij(x; µ) = Eµ0
£
Iij(Xfi;jg(t);X(t ¡ 1); µ) j X(t ¡ 1) = x

¤
:

If Zi = @
@µ ln fi(Xi(t);Xi(t);X(t ¡ 1); µ)jµ=µ0; then Iij(yfi;jg; x; µ) is the covariance matrix of

(Zi; Zj) given Xfi;jg = yfi;jg and X(t ¡ 1) = x:

Conditions for asymptotic normality (N):

14



N1: For some V0 ½ ±
£; a neighbourhood of µ0, µ 7! fi(yi; yi; x; µ) is two times continuously

di¤erentiable on V0 and there exists a measurable, ¹0 ­ P0-square integrable function H on

E £ E such that for all µ 2 V0 ; x; y 2 E; 1 � u; v � d :

j 1

fi

@

@µu
fi(yi; y

i; x; µ)j and j 1

fi

@2

@µu@µv
fi(yi; y

i; x; µ)j � H(y; x)

N2: I0 =
P
i2S

E¹0 [Iii(X(t ¡ 1); µ0)] and J0 =
P
i;j2S

E¹0 [Iij(X(t ¡ 1); µ0)] are positive de…nite.

Proposition 6 (Bayomog et al. (1996), Guyon and Hardouin (1992), Guyon (1995))

(i) Under assumptions C, µ̂T
P0¡!

T!1
µ0

(ii) Under assumptions C and N,
p

T (µ̂T ¡ µ0)
D¡!

T!1
Nd(0; I0

¡1J0I0¡1)

Identi…ability of the model and regularity of I0: We give here su¢cient conditions ensuring

both (C3) and the regularity of the matrix I0: We suppose that each conditional density belongs

to an exponential family

fi(yi; y
i; x; µ) = Ki(yi) expftµgi(yi; y

i; x) ¡ ªi(µ; yi; x)g; (10)

and set the hypotheses:

(H) : there exists (i(k); x(k); y(k); k = 1; d) s.t. g = (g1; g2; ¢ ¢ ¢ ; gd) is of rank d;

where we denote gk = gi(k)(yi(k)(k); yi(k)(k); x(k)). We strengthen (H) in (H’):

(H’1) : for each i 2 S, gi(yi; y
i; x) = hi(yi)Gi(y

i; x) with hi(:) 2 R

(H’2) : 9a > 0 s.t. for each i; x; yi, V arfhi(Yi) j yi; x)g ¸ a > 0

(H’3) : 9f(i(k); x(k); yi(k)(k)); k = 1; dg s.t. G = (G1; G2; ¢ ¢ ¢ ;Gd) is of rank d

where Gk = Gk(y
i(k)(k); x(k)). Obviously, (H’) implies (H).

Proposition 7 We suppose that the conditional densities ffi(:; yi; x; µ); i 2 Sg belong to the

exponential family (10).

(i) Under (H), the model related to this family of conditional densities is identi…able.

(ii) I0 is regular under (H’).
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The proof is given in Appendix 4. A su¢cient condition ensuring that J0 is positive de…nite can

also be obtained using a strong coding set; this idea is developed in Jensen and Künsch (1994;

[22]). It is sketched in the same Appendix 4. Many models ful…l (H) or (H’), for instance log-

linear models or automodels. We give explicit conditions (C) and (N) for the autoexponential

dynamics in section 5.3.

5.2 Testing submodels

It is now possible to test the submodel (Hq) : µ = '(®); ® 2 Rq; q < d, ' : Rq ! Rd such

that:

² ' is twice continuously di¤erentiable in a bounded open set ¤ of Rq; with '(¤) ½ £; and

there exists ®0 2 ¤ such that '(®0) = µ0.

² ² R = @'
@® j®=®0 is of rank q.

Let ¹µT = arg min ®2¤UT ('(®)) be the CPLE of µ under (Hq); and I0 = I(®0) the associated

information matrix I. If A is a positive de…nite matrix, with spectral decomposition A = PDP 0,

P orthogonal, we take A
1
2 = PD

1
2P 0 as a square root of A.

Proposition 8 CPL ratio test (Bayomog (1994), Bayomog et al. (1996), Guyon(1995))

If UT (µ) and UT ('(®)) satisfy assumptions C and N, then, under (Hq), we have as T ! 1:

¢T = 2T
³
UT (¹µT ) ¡ UT (µ̂T )

´ D¡!
dP
i=1

¸iÂ
2
1;i

where the Â21;i’s are independent Â21 variables and the ¸i; i = 1; d ¡ q; are the (d ¡ q) strictly

positive eigenvalues of ¡0 = J0
1=2

£
I¡10 ¡ R¹I¡10 R0¤J

1=2
0 :

Let C be a coding subset of S, i.e., for all i; j 2 C, i 6= j; i and j are not (instantaneous)

neighbour sites. We can de…ne coding estimators as previously, but in the de…nition of the

coding contrast UC
T (µ); the summation in i is then restricted to C. For those estimators, we

have IC0 = JC0 ; so the asymptotic variance for
p

T
³
bµCT ¡ µ0

´
is (IC0 )¡1, and the former statistic

has a Â2d¡q asymptotic distribution.

16



5.3 An example: The autoexponential model

Here we look at these various conditions for the model given in section 4.1. The assumption E1

ensures the ergodicity. For a positive integer r and Vr(x) =
P
i2S xri ; we de…ne the following

property for a function f :

There exist two …nite constants ® and ¯ such that

f (x) � ®Vr(x) + ¯ (11)

We add the following hypotheses to obtain the consistency and the asymptotic normality of the

CPL estimator.

E2 For all i 2 S; W 2 C, µ 2 £ and x 2 E; ®i(x; µ) and ¸W (x) satisfy (11):

E3 If µ 6= µ0; then there exists A µ (R+)S ; ¸(A) > 0; such that for one i 2 S and all

x 2 A; ¸
¡©

y 2 E j¸i(yi; x; µ) 6= ¸i(yi; x; µ0)
ª¢

> 0

E4 The functions µ ! ®i(x; µ); µ ! ¸W (x; µ) are twice continuously di¤erentiable for all

x; i; j; and for all 1� u; v � d; and the absolute values of their …rst and second order derivatives

satisfy (11).

E5 I0 and J0 are positive de…nite.

E6 (H’) is satis…ed and J0 is positive de…nite.

Proposition 9 Let bµT be the CPLE of µ for the autoexponential model. Then:

(i) under assumptions E1, E2, and E3, bµT is consistent. If we add E4 and E5, bµT is

asymptotically normal.

(ii) under assumptions E1, E2, E4 and E6, bµT is asymptotically normal.

Proof: E1 implies C1 and C2-(i). E3 implies C3. Then we just have to show that E2 im-

plies C2-(ii). The conditional density of Xi(t) is given here by ln fi(yi; y
i; x; µ) = ln¸i(y

i; x; µ)¡
yi¸i(yi; x; µ): Then

¯̄
ln fi(yi; yi; x; µ)¡lnfi(yi; yi; x; µ0)

¯̄
�

¯̄
¯ln ¸i(y

i;x;µ)
¸i(yi;x;µ0)

¯̄
+̄yi

¯̄
¸i(yi; x; µ)¡¸i(yi; x; µ0)

¯̄
:

As
¯̄
¯ln x

y

¯̄
¯ � jx ¡ yj (x¡1+y¡1) for all x; y > 0, we obtain

¯̄
lnfi(yi; yi; x; µ) ¡ ln fi(yi; yi; x; µ0)

¯̄
�

(2a + yi)
¯̄
¸i(y

i; x; µ) ¡ ¸i(y
i; x; µ0)

¯̄
: Finally, there exist two integers r and r0 and four constants

a1; a2; a3; a4 such that we can take h(y; x) =
P
i2S 2(2a+yi)a1Vr(x)+a2+(a3Vr0(x)+a4)

P
j 6=i yj:
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On the other hand, E4 implies that the modulus of the …rst and second derivatives of

¸i(yi; x; µ) with respect to µ are bounded by a square integrable function of x and y; and this

ensures N1. Finally, E5 is N2. In another hand, E6 ensures E3 and E5 (see Proposition

7). ¤

Example 4 The conditional-exponential dynamics.

For the particular model (6), all conditions E are ful…lled without any assumption on the

parameters. Besides, E6 is satis…ed with d = n + 1
2

P
i2S j@ij +

P
i2S j@i¡j; ¸i(y

i; x; µ) =

tµgi(yi; x), tµ = t
³
(±i)i2S ; (¯ij)hi;jiG ; (®ji)hj;iiG¡

´
2 Rd:

6 Model identi…cation

We suppose that we want to …t a semi-causal MCMF dynamics model; …rst, we have to de-

termine the graphs G and G¡; then, we will estimate the parameters, and lastly validate the

model. There are two possible strategies for the identi…cation procedure, the choice depending

on the complexity of the problem and on the number of sites. The …rst one is global : we could

try to determine globally the graphs by CPL maximization, joined with a convenient “AIC”

penalization criterion.

On the other hand, a less expensive procedure is to work locally site by site, providing

estimations for @i and @i¡ for each site i 2 S. For this, we maximize the likelihood of Xi(t); t =

1; T; conditionally to X i(t) = yi (jSj ¡ 1 sites) and X(t ¡ 1) = x (jSj sites) (the conditional

distribution of Xi(t) depends on (2jSj ¡ 1) sites) using a backward procedure; we choose a

small signi…cation level for the adequate statistics in order to keep only the most signi…cant

variables. This can be associated with a forward procedure if we want to take into account a

particular information on the geometry of S. Further, we have to harmonize the instantaneous

neighbourhood relation to get a symmetric graph G: if j 2 b@i, we decide i 2 c@j. Thus we

generally get an over…tted model, and the next step is to reduce it by progressive elimination

using a descending stepwise procedure. Finally, if we have got two or more models, we choose

the one which minimizes the AIC (or BIC) criterion.
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In a Gaussian context, the computation is particularly easy and fast, because it is linear

and explicit. Using the partial correlation ½P , we have the characterizations (see Garber (1981;

[15]); Guyon (1995), §1.4.): ½P (Xj ; Xi jXLi) = 0 () j =2 Li = @i [ @i¡. This equation allows

us to determine Li by a fast linear stepwise procedure of the regression of Xi(t) on the (2jSj¡1)

other variables.

For other log linear models, the conditional log likelihood is concave so we can get the

CPLE using a gradient algorithm. We then consider the general procedure given previously. An

alternative is to follow the Gaussian approach, even if the model is not Gaussian. This can be

done when the dimension of the parameter becomes large enough to make the results suspicious

and slow progressing. This procedure is used in section 8.

7 Model validation

7.1 Some Central Limit Theorems

In the case E µ R, validation tests are based on the estimated conditional residuals. Let us

denote µ0 and bµT the true value of the parameter and its CPLE respectively. Let us set:

"it = Xi(t) ¡ ¹it and b"it = Xi(t) ¡ b¹it (12)

where ¹it(µ) = E[Xi(t)jX i(t); X(t ¡ 1); µ], ¹it = ¹it(µ0). b¹it = ¹it(bµT ) is explicit in y@i; x@i¡ ;

and bµT .

For an autodiscrete dynamics on a K-states space E, we will have an expression equivalent

to (12), but with the (K ¡ 1)-dimensional encoded variable Zi(t) related to Xi(t) (see section

7.2.4).

From (12), we propose a validation statistic; we derive its limit distribution using a Central

Limit Theorem for martingales (Du‡o (1997), Hall and Heyde (1980; [21])).

We build up two tests, based on the estimated residuals b"it and on the squared residuals b"2it.
The latter allows for the detection of possible variance deviation. Anyway, those tests are more

useful to reject a model than to select the best one.

7.1.1 CLT for the residuals "it
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We denote A ? B if the variables A and B are independent. Let C be a coding subset of S (for

G), eit = "it
¾("it)

and eet =
P
i2C eit:

(i) eit is zero mean and of variance 1;

(ii) "it ? Xj(t) if i 6= j and "it ? Xj(t ¡ 1) for all j 2 S.

Besides, for all i and j which are not neighbour sites, Xi(t) and Xj(t) are independent,

conditionally to the past and the neighbourhood values on @i, @j. Then eit ? ejs if t 6= s, for

all i; j 2 S, and conditionally to X(t ¡ 1) and XC(t); eit ? ejt for all i; j 2 C, i 6= j;

(iii) as E [eitjFt¡1] = E
£
E

£
eit j yi; x

¤
Ft¡1

¤
= 0, (eit)t¸0 is a square integrable martingale

di¤erence sequence w.r.t. the …ltration (Ft = ¾(X(s); s � t); t ¸ 0). Then eet =
P
i2C eit is also

a square integrable martingale di¤erence sequence.

We can thus apply a martingale’s CLT (Du‡o (1996), Corollary 2.1.10). For a square inte-

grable martingale (Mt), let (hMit) be its increasing process de…ned by:

hMit = hMit¡1 + E[jjMt ¡ Mt¡1jj2jFt¡1] for t ¸ 1; and hMi0 = 0:

The …rst condition to check is:

hMiT
T

P¡!
T!1

¡; for some positive ¡: (13)

We set Ms =
sP
t=1

eet; we then have:

hMit ¡ hMit¡1 =
X

i2C
E

£
e2itjFt¡1

¤
=

X

i2C
E

£
E

£
e2itjyi; x

¤
jFt¡1

¤
= jCj

The second condition is the Lindeberg condition. It is implied by the following one:

9 ® > 2 such that E [jeetj® jFt¡1] is bounded (14)

Therefore, (13) is ful…lled with ¡ = jCj;whatever the model, while (14) has to be checked in each

particular case.

Proposition 10 (Du‡o (1997), Hall and Heyde (1980))

Let "it be de…ned by (12), C a coding subset such that eet ful…lls (14). Then,

1p
jCjT

TX

t=1

eet D¡!
T!1

N (0; 1)
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7.1.2 CLT for the squared residuals

Let us de…ne

wit =
e2it ¡ 1

¾(e2it)
(15)

The wit ’s have the same properties of independency as the eit’s. Hence (wit) is a martingale

di¤erence sequence in t, and so is ewt =
P
i2C wit; for C a coding subset of S. Let NT =

P
t=1;T ewt.

As hNit ¡ hNit¡1 =
P
i2C E

£
w2itjFt¡1

¤
= jCj, the …rst condition (13) for the CLT is ful…lled.

The second condition will be ensured under:

9 ® > 2 such that E [jewtj® jFt¡1] is bounded (16)

Proposition 11 Let C be a coding subset of S , wit be de…ned by (15) s.t. ewt ful…lls (16).

Then, 1p
jCjT

P
i2C

TP
t=1

wit
D¡!

T!1
N (0; 1)

As we do not know µ0, we apply the previous results to the residuals calculated with bµT .

When CPLE is convergent, standard manipulations show that Propositions 10 and 11 still remain

valid for the estimated residuals.

7.2 Applications

We give the explicit results for the auto-models studied in section 4. The proofs of the conditions

(14) or (16) are given in Appendix 5.

7.2.1 The autoexponential dynamics

We suppose that we are in the framework of (6), assuming E1, E2, E3. Then bµT is convergent

and we have:

1p
jCjT

X

i2C

TX

t=1

beit D¡!
T!1

N (0; 1) and
1

2
p

2jCjT
X

i2C

TX

t=1

(be2it ¡ 1)
D¡!

T!1
N (0; 1)

7.2.2 The autopoissonian dynamics

We consider the framework of (8) and we suppose that the CPLE bµT is consistent. Then for

¸i = ¸i(X
i(t);X(t ¡ 1)), °2 =

P
i2C E[¸i] and ¾2 =

P
i2C E[¸i (¸i + 1)

¡
¸i
2 + 5¸i + 1

¢
], we
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have:

1p
T

X

i2C

TX

t=1

b"it D¡!
T!1

N (0; °2) and
1p
T

X

i2C

TX

t=1

¡
b"2it ¡ ¸i(y

i; x)
¢ D¡!
T!1

N (0; ¾2)

7.2.3 The autologistic dynamics

For E=f0; 1g ;we consider the framework of (9) and we assume:

B1 : For µ 6= µ0, 9 x; y 2 E s.t., for an i 2 S, pi(y
i; x; µ) 6= pi(y

i; x; µ0):

Under assumption B1, we have:

1p
jCjT

X

i2C

TX

t=1

beit D¡!
T!1

N (0; 1) and
1p
jCjT

X

i2C

TX

t=1

beit:sign(beit) D¡!
T!1

N (0; 1)

7.2.4 The autodiscrete dynamics

More generally, if E is qualitative, E = fa0; a1; ¢ ¢ ¢ ; aK¡1g; we consider the encoded (K ¡ 1)-

dimensional variable Zit 2 f0; 1gK¡1 linked to the Xi(t) by:

Zitl = 1 if Xi(t) = al; Zitl = 0 elsewise; 1 � l � K ¡ 1:

We suppose that the conditional energy is given by U(ztjzt¡1) =
P
i2S

P
l=1;K¡1 zitl(±i;l +

P
k=1;K¡1 ®i;lkzi(t¡1)k) +

P
hi;ji

P
l=1;K¡1

P
k=1;K¡1 ¯ij;klzitlzjtk: We have:

1p
(K ¡ 1)jCjT

X

i2C

TX

t=1

³
t"itC

¡1
it "it ¡ (K ¡ 1)

´ D¡!
T!1

N (0; 1)

where Cit = (Cit)kl ; 1 � k; l � K ¡ 1; with (Cit)kk = pik(z
i
t; zt¡1)(1 ¡ pik(z

i
t; zt¡1)); (Cit)kl =

(Cit)lk = ¡pik(z
i
t; zt¡1)pil(z

i
t; zt¡1) if l 6= k, and

pil(z
i
t; zt¡1) =

expyitl
1 +

P
l=1;K¡1 exp zitl yitl

(17)

where yitl = ±i;l +
P
k=1;K¡1 ®i;lkzi(t¡1)k +

P
j2@i

P
k=1;K¡1 ¯ij;klzjtk:

7.2.5 The autonormal dynamics

In the framework of (7), we suppose that the ergodicity condition is ful…lled. We have:

1p
jCjT

X

i2C

TX

t=1

eit
D¡!

T!1
N (0; 1) and

X

i2C

TX

t=1

2°i"
2
it

D¡!
T!1

Â2jCjT
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and so,
1

2
p

jCjT
X

i2C

TX

t=1

¡
2°i"

2
it ¡ 1

¢ D¡!
T!1

N (0; 1)

A third result holds, which uses the joint distribution on S of all the residuals. The "it’s co-

variances are Cov("it; "jt) = 1
2°i

if i = j, = ¡ ¯ij
2°i°j

if j 2 @i, and 0 else. Let C" be the n £ n

covariance matrix of "t = ("it; i 2 S). Then
P
t=1;T

t"tC
¡1
" "t » Â2nT and thus

1p
nT

TX

t=1

t"t C
¡1
" "t

D¡!
T!1

N (0; 1)

Let bµT be a consistent estimator of µ0 and bC" is the estimate of C" obtained by replacing the

parameters by their estimates. Then, the three statistics T1; T2; T3 de…ned below are asymp-

totically Gaussian N (0; 1) and can be used for validation tests of the model:

T1 = 1p
jCjT

P
i2C

TP
t=1

beit ; T2 = 1

2
p
jCjT

P
i2C

TP
t=1

¡
2b°ib"2it ¡ 1

¢
; T3 = 1p

nT

TP
t=1

tb"t bC¡1
" b"t

8 MCMF modelling of meteorological data

We have tried an MCMF modelling on a real set of meteorological data. The data comes from

the study of Tang (1991) and consists of daily pluviometric measures on a network of 16 sites in

the Mekong Delta (Vietnam). We have retained a period of 123 consecutive days from July to

October 1983. Geographically, the 16 meteorological stations, situated at latitude 9.17 to 10.8

and longitude 104.48 to 106.67, are not regularly located (see table 1).

The data have been previously studied by Tang (1991); he proposed di¤erent models for

each site, each being free of the other sites; this seems to be insu¢cient and hardly satisfactory.

We study an MCMF autologistic model; we consider the binary {0,1} data where 1 stands

for rain and 0 for no rain. The results lead to an average of exact prediction of about 77%,

what is rather satisfactory noting that the random part is large in this kind of meteorological

phenomenon. We compare this model with a site-by-site Markov Chain, for which the prediction

results are bad.

Of course, we do not pretend that our models are de…nitive and we know they need to be

re…ned for e¤ective forecasting. An interesting study would be to …t other competitive models
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of more or less the same dimension, as an Hidden Markov Chain (see e.g. .Zucchini and Guttorp

1991 [34], MacDonald and Zucchini 1997, [35]), the hidden states standing for the underlying

climatic stage, or threshold models, the dynamics at the time t depending on the position of

the state at the time t ¡ 1 with respect to thresholds (see [32] and references herein). Also,

these models should take into account the dual character of such a data, i.e. the binary feature

f0g [ R+¤ of the space state. This is work in progress.

The …rst task is to identify the two dependency graphs. Considering the large number

of parameters involved in the CPL procedure, we use the Gaussian linear procedure with the

original data (see section 6); we …t a regression model on each site, with respect to the 15

other variables at the same time and all the 16 variables at the previous time. We then select

the neighbours as the variables giving the best multiple correlation coe¢cient R2 in a stepwise

procedure, taking into account the symmetry of the instantaneous graph together with a principle

of parsimony. We give in table 2 the neighbourhoods and the R2 obtained from all the 31

variables (denoted R2
31) and the R2 calculated on the selected neighbours (denoted R2

@i;@i¡).

The instantaneous graph has 25 links and the time-delay graph 17 links. We see that for each

site, the instantaneous neighbourhood may contain few sites, while there are at most 3 sites

making up the time delay neighbourhood. We note that if we draw the directed graph G¡ on a

geographical map; there is a main direction of the arrows, which is roughly S-N.

(include here table 1 and table 2)

Going back to the binary data, we estimate the autologistic model (9): for each site i;

Xi(t) has a Bernouilli distribution of parameter pi(t); conditionally to X@i(t) and X@i¡(t); with

pi(t) = (1+exp¡¸i(t))¡1 and ¸i(t) = ±i+
P
j2@i ¯ijXj(t)+

P
i2@i¡ ®liXl(t¡1): The dimension

of the model is 16+25+17=58. We …rst estimate the parameters site-by-site, maximizing the log

conditional pseudo-likelihoods; then, we calculate the validation statistics based on the square

residuals (see section 7.2): Vi = 1p
T

PT
t=1 êit:sign(êit) for each site i: Secondly, we proceed to

the global estimation on the basis of the global pseudo-likelihood; we take as initial values the

…rst site-by-site estimates for the parameters ±i and ®li; and the means of the two previous

estimations ¯ij and ¯ji (theoretically equal) for the instantaneous interaction parameters. We
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do not give here the results for the 58 parameters for sake of place, but we summarize the results:

concerning the statistics Vi, each local model is accepted. The …nal (global) estimation provides

results close to the individual ones. The validation statistic V = 1p
CT

P
i2C

PT
t=1 êit sign(êit)

computed for the coding set C = f3; 4; 5; 7; 8; 10; 11; 14g (of maximal size 8) is equal to ¡0:1186

and we do not reject the model.

Another way to validate the model is to compare the true data with what is predicted. So

we compute the predicted values (maximizing the local conditional probabilities), …rst site by

site (with the local estimates) and then globally (with the global estimates). Table 3 gives the

percentages of similarity which spread out from 68.03% (site 10) to 84.43% (site 2), with a mean

of 77.36% (for the global parameter’s estimate).

(include here table 3)

We compare our model with a site by site Markov chain. Of course, this alternative is very

poor; as expected, the predictions are bad, spreading out between 35.25% and 59.02% with a

mean equal to 51.84% (see Table 3). In conclusion, the autologistic model leads to a relatively

correct forecasting; it could be better if we increase the number of links or the dependence in

time, at the expense of the rising parametric dimension.

9 Appendices

9.1 Appendix 1: the invariant law ¼ of an MCMF is generally not Markovian

We illustrate this with two examples.

(1) The one dimensional marginal of a two dimensional Gaussian Markov …eld is not any-

more a Markov process. Let us consider a centered Gaussian Markov isotropic …eld with respect

to the four-nearest neighbours over Z2 (see Besag, 1974 [10], Ripley, 1981 [30] and Guyon,1995

[18] §1.3.4.)

Xst = ®(Xs¡1;t + Xs+1;t + Xs;t¡1 + Xs;t+1) + est; j®j <
1

4

with E[Xstes0t0 ] = 0 if (s; t) 6= (s0; t0): The spectral density of X is f(¸; ¹) = ¾2e(1 ¡ 2®(cos¸ +
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cos¹))¡1. The one index …eld (Xs;0; s 2 Z) has spectral density

F (¸) = 2

Z ¼

0

f(¸; ¹)d¹ = 2¼¾2e[(1 ¡ 2® cos¸)2 ¡ 4®2]¡
1
2

which cannot be written 1
Q(ei¸)

or 1
jP (ei¸)j2 as for a Markovian or an AR process. The distribution

¼ of (Xs;0; s 2 Z) is not Markovian.

(2) Conditional Ising model : ­ = f0; 1gS ; S = f1; 2; ¢ ¢ ¢ ; ng is the one dimensional torus

with the agreement n + 1 ´ 1, and P (x; y) = Z¡1(x) expf®
P
i2S xiyi + ¯

P
i2S yiyi+1g. This

chain is reversible and the invariant distribution can be written ¼(y) = CZ(y) expf°
P
i2S yi +

¯
P
i2S yiyi+1g where Z(y) is the normalizing constant of P (: j y). It is easy to see that log ¼(y)

has a non zero potential ©S on the whole set S.

9.2 Appendix 2: Two examples where marginals in y are not local in x

(1) Binary state space. Let us consider a binary chain on the one dimensional torus S =

f1; 2; ¢ ¢ ¢ ; ng (with n + 1 ´ 1) with the transition

P (x; y) = Z¡1(x) expf®
nX

i=1

xiyi + ¯
nX

i=1

yiyi+1 + °
nX

i=1

yig

Then Pi(yijx) =
P
yi P (x; yi; y

i) =
eyi(®xi+°)

P
yj;j 6=i e

¯yi(yj¡1+yj+1)+Ai
P

yj ;j 6=i e
Ai+e(®xi+°)

P
yj;j 6=i e

¯(yj¡1+yj+1)+Ai ; with Ai =

¯
P
j 6=i;i¡1 yjyj+1 +

P
j 6=i(®xj + °)yj. This distribution depends on x on all sites.

(2) A Gaussian example.

We take P (x; y) = Z¡1(x) expU(yjx) with U(yjx) = (y ¡ m(x))0Q(y ¡ m(x)), where Q is

symmetric, de…nite positive, and E[Y jx] = m(x). For ¡U(y j x) =
nP
i=1

(°iy
2
i +±iyi)+

nP
i=1

®ixiyi+

nP
i;j=1;<i;j>

¯ijyiyj , m(x) = Q¡1
2 (±+®x) where ± = (±i)i2S , ®x = (®ixi)i2S, and V ar[Y jx] = 1

2Q
¡1:

V (Y j x)¡1 = 2Q is local in xbut it is easy to …nd parameters for which each component ml(x)

of m(x) depends on all xi; i 2 S.

9.3 Appendix 3: An example of a reverse MCMF non MCMF

We consider S = f1; 2; ¢ ¢ ¢ ; ng, X = X(0); Y = X(1) and we suppose that Z = (X; Y ) is a

2n-dimensional centered Gaussian variable with covariance § =

0
@ ¢ B

tB ¢

1
A. Then, (Y j x) »
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Nn(Ax; Q), where A = tB¢¡1 and Q = ¢ ¡ tB¢¡1B. We …x ¢ and look at B as a parameter

(s.t. § is de…nite positive).

If we want conditional independence for f(Xi(1) j X(0) = x); i = 1; ng, we force Q to be

diagonal; this involves n(n¡1)
2 conditions on B, for n2 degrees of freedom.

On the other hand, (X j y) » Nn(Ty;R) where T = B¢¡1 and R = ¢ ¡B¢¡1 tB. The can

chose B such that for some i, Rij 6= 0 for any j. In such a case, (Xi(0) j xi; y) depends on xi on

whole Snfig and the reverse chain is not an MCMF.

For example, this happens for n = 2 if we take ¢ =

0
@ 1 1

2

1
2 1

1
A, B =

0
@

1
4

3
4

¡1
2 0

1
A.

9.4 Appendix 4: Parametric identi…ability; regularity of I0 and J0

First we take º¤S = ­i2SKiº as the reference measure, where Ki is de…ned in (10).

Identi…ability. We suppose that the conditional densities are equal for µ and µ0: Then, for each

i 2 S; x and yi we have

t(µ ¡ µ0)gi(yi; yi; x) = ª(µ; yi; x) ¡ ª(µ0; yi; x)

But the right member is 0 as gi(0; yi; x) = 0. Identi…ability follows because the d £ d matrix g

is regular.

Regularity of I0. First we note that for the stationary distribution

I0 = EX(t¡1);Xi(t)[
X

i2S
V arXi(t)fgi(Xi(t);X

i(t);X(t ¡ 1))g]:

Then, under (H’), we have

X

i2S
V ar[gi(Yi; y

i; x) j yi; x)] ¸ a
X

i2S
Gi(x; yi) tGi(x; yi):

As the density of (X(t ¡ 1); X(t)) is strictly positive anywhere under C1 (see Du‡o (1997),

proposition 6.1.9), I0 is regular.

Regularity of J0. Let us recall that J0 = V arµfg(X; Y )g where (X;Y ) = (Y (0); Y (1));

g(x; y) =
P
i2S gi(x; y), gi(x; y) = [log fi(yi; yi; x; µ)]

(1)
µ . We follow an idea given by Jensen and

Künsch (1994). We suppose that there exists a “strong coding subset” C µ S in the following

sense:
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(i) there exists a partition fSj ; j 2 Cg of S s.t. j 2 Sj :

(ii) For j 2 C, let us de…ne Gj =
P
i2Sj gi and let F be the ¾-…eld generated by X = Y (0)

and fYi(1); i =2 Cg. Then, conditionally to F , the variables fGj; j 2 Cg are independent.

A su¢cient condition for (ii) is that for each j; l 2 C, j 6= l, l =2 Sj [ @Sj . For example,

for the 2-dimensional torus T = f1; 2; ¢ ¢ ¢ ; 3Kg2 and the 4-nearest neighbours vicinity, C =

f3(m;n);m; n = 1;Kg is a strong coding subset and Sm;n = f(i; k) : ji ¡ mj + jk ¡ nj � 2g.

As g =
P
j2C Gj, and J0 = V ar g(X; Y ) ¸ EF(V arfg(X;Y ) j Fg); we have, as a consequence

of (ii):

J0 ¸
X

j2C
EF(V arfGj(X;Y ) j Fg) = G0

Then a su¢cient condition ensuring that J0 is p.d. is that G0 is p.d.. Such a veri…cation

has to be done. For example, if S is the 1-dimensional torus with n = 3K sites, with energy

U(yjx) = ®
P
i2S yivi; vi = xi + (yi¡1 + yi+1), yi 2 f0; 1g, we can take C = f3j; j = 1;Kg and

Sj = f3j ¡ 1; 3j; 3j + 1g. As the model is homogeneous in the space, and as (g2 + g3 + g4 j F)

is never constant, G0 ¸ EF (V ar(g2 + g3 + g4) j F) > 0.

9.5 Appendix 5: Validation tests for MCMF models

9.5.1 The autoexponential dynamics (6)

eit = ¸i(y
i; x)Xi(t) ¡ 1, and wit = 2¡

3
2 (e2it ¡ 1). Next, for any ® > 2, as (a + b)® � 2®(a® + b®),

we have

E
£
jeitj®jyi; x

¤
� 2®¸i(y

i; x)®
½

¡(® + 1)

¸i(yi; x)®
+ ¸i(y

i; x)¡®
¾

� 2®(¡(® + 1) + 1)

and (14) is ful…lled.

Besides, E
£
jwitj®jyi; x

¤
� 2¡

®
2

©
22®(¡(2® + 1) + 1) + 1

ª
and we get (16).

9.5.2 The autopoissonian dynamics (8)

The conditional distribution of Xi(t) is Poisson with mean ¸i(yi; x) = expf±i +
P
l2@i¡

®lixl +
P
j2@i

¯ijyjg. We look at conditions (13) and (14) for the "it. First we have hMit ¡ hMit¡1 =
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P
i2C ¸i(X

i(t);X(t ¡ 1)) � eM jCj: Next, for any integer ®; and some constants

Ck;®; E
£
"®itjyi; x

¤
� 2®(

X

k=1;®

Ck;®¸i(y
i; x)k + ¸i(y

i; x)®) � 2®(
X

k=1;®

Ck;®e
Mk + eM®):

Next, we consider the squared residuals vit = "2it¡¸i(yi; x) and evt =
P
i2C vit: As previously, we

can bound E
£
j"2it ¡ ¸i(y

i; x)j®jyi; x
¤

for any ® > 2; which implies (14). And we have (16) with

hNit ¡ hNit¡1 = E
£
jevtj2jFt¡1

¤
� jCj(e4M + 6e3M + 6e2M + eM ): We get the announced result.

9.5.3 The autologistic dynamics (9)

eit = Xi(t)¡pi(yi;x)p
pi(yi;x)(1¡pi(yi;x))

, and wit = eit:sign(eit). We can easily check that E
£
jeitj® j yi; x

¤
as

E
£
jwitj® j yi; x

¤
are bounded for any ® > 2: For example, if the conditional energy is U(yjx) =

P
i2S yi(±i + ®ixi) +

P
hi;ji ¯ijyiyj; then pi(yi; x) = (1 + exp¡[±i + ®ixi +

P
j2@i

¯ijyj])
¡1 and B1

is satis…ed.

9.5.4 The autodiscrete dynamics

For each l, Zitl has a conditional Bernouilli distribution of parameter pil(y
i; x) given by (17). So,

"it = Zit ¡ E
£
Zit jyi; x; µ0

¤
has conditional variance Cit. Conditionally to the past and XC(t);

"it ? "jt0 for all i; j 2 S if t 6= t0; and "it ? "jt if i; j are elements of a coding subset C of S; thus

f"itgt is a martingale’s increment. Besides, E
£
t"it C

¡1
it "it j yi; x

¤
= K ¡ 1.

Finally, the state space E being …nite and "it belonging to f0; 1gK¡1, all the moments of "it

are bounded and the condition on the increasing process is ful…lled.

9.5.5 The autonormal dynamics

We consider (7). The conditional distribution of Xit(t) is Gaussian N (¹it;
1
2°i

) with ¹it = 1
2°i

(±i+
P
l2@i¡

®lixl+
P
j2@i

¯ijyj). We immediately deduce: eit = Xi(t)¡¹itp
2°i

» N (0; 1); and e2it = 2°i"
2
it » Â21:
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Figure 1:
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Site number Name Latitude Longitude

1 Tan Chau 10.80 105.25

2 My Tho 10.35 106.37

3 Chau Doc 10.70 105.01

4 Can Tho 10.03 105.78

5 Soc Tran 09.60 105.97

6 Vinh Long 10.25 105.97

7 Sa Dec 10.30 105.75

8 Go Cong 10.35 106.67

9 Ca Mau 09.17 105.17

10 Long Xuyen 10.40 105.42

11 Rach Gia 10.00 105.08

12 Ha Tien 10.38 104.48

13 Cao Lanh 10.47 105.63

14 Moc Hoa 10.75 105.92

15 Vi Thanh 09.77 105.45

16 Tan An 10.53 106.40

Table 1: 16 meteorological stations in the Mekong Delta.
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Site i @i @i¡ R2
31 R2

@i;@i¡

1 f2; 3; 8; 14g 0:611 0.496

2 {1,5,6,7,8,15,16} {14} 0.648 0.574

3 {1,12} {1} 0.741 0.638

4 {6} {7,10} 0.319 0.169

5 {2,9} {4} 0.297 0.139

6 {2,4,7,10,14} {7} 0.589 0.484

7 {2,6,13,15,16} {6} 0.633 0.531

8 {1,2,15} 0.592 0.370

9 {5,11} {4,9,12} 0.589 0.481

10 {6,12,13} {4,5} 0.463 0.348

11 {9,15} {11} 0.596 0.451

12 {3,10} {11} 0.648 0.528

13 {7,10} {4} 0.463 0.321

14 {1,6,16} {4} 0.441 0.264

15 {2,7,8,11} {10} 0.568 0.476

16 {2,7,14} 0.527 0.279

Table 2: neighbourhoods and R2 statistics.

R231 : regression on all variables

R2@i;@i¡ : regression on the neighbourhoods variables
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Site 1 2 3 4 5 6 7 8

autologistic model

from global estimates

74.59 84.43 72.95 84.43 82.79 81.97 82.79 71.31

Markov Chain 45.90 35.25 49.18 52.46 53.28 47.54 59.02 56.56

Site 9 10 11 12 13 14 15 16

autologistic model

from global estimates

77.05 68.03 78.69 72.13 81.15 78.69 72.13 74.59

Markov Chain 57.38 54.92 51.64 57.38 50.00 51.64 50.00 57.38

Table 3: percentages of similarity between the real data and the predicted values for the

autologistic model and the site by site Markov chain.
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