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Abstract

We investigate the stability problem for a nonlinear autoregressive model
with Markov switching. First we give conditions for the existence and the
uniqueness of a stationary ergodic solution. The existence of moments of
such a solution is then examined and we establish a strong law of large
numbers for a wide class of unbounded functions, as well as a central limit

theorem under an irreductibility condition.
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1. Introduction

Let X := (X,,)n>0 be a positive recurrent Markov chain on a finite set £/ = {1,...,m}, with
transition probability matrix P and invariant probability measure (hereafter i.p.m.) p. We
consider a nonlinear AR process with Markov switching Y = (V,,) (abbreviated as NAR-MS)

defined for integers n > 1, by
(1) Yo = fx,(Yao1) + 0, Yn€R"
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Here the error process € := (£,),>0 is an i.i.d R%valued sequence of random variables (our
results can be extended to the case where the error variable ¢, at time n depend also on the
current value X,,) and (fx) is a family of nonlinear autoregressive functions. We assume that
g, X and the variable Y are independent.

The use of the Markov switching offers new possibilities for modeling time series “subject
to discret shifts in regime - episodes across which the dynamic behaviour of the series
is markedly differents”, as noted by Hamilton [9] who first introduced such a model to
analyse the US annual GNP (gross national product) series. These models have since then
attracted a considerable interest in the statistical community, especially for econometrical
series modeling ([10], [11], [12], [14]). However, very few is proved about their theoretical
properties including stationarity or stability/ergodicity, especially in the nonlinear case (i.e.
the fi’s are nonlinear). On the other hand, nonlinear autoregression functions has been widely
employed in applications (see e.g. [8], [18], [16]).

The main aim of this paper is the stability of the model Y. We give conditions which ensure

respectively

e the existence and the uniqueness of a strictly stationary ergodic solution for the model

Y — problem A;

e the existence of moment of order s > 1 of the stationary distribution v (i.e. the common

marginal distribution of the stationary solution) — problem B;

e limit theorems including strong law of large numbers (SLLN) and the central limit

theorem (CLT) — problem C.

Such limit theorems are a basic tool for an asymptotic estimation theory of the model Y (see
e.g. [17], [19] for nonlinear AR models), especially when they can be applied to unbounded
functions like ¢g(y) = ||y||*, with s > 1.

We shall consider two situations. First in Section 3, the autoregressive functions f; are
sublinear. By using the Lyapounov method, we establish conditions ensuring the stability of
the model and solve the Problems A-B-C. In the second situation (Section 4), the f;’s are

Lipschitz. When the regime chain X is stationary, the model (1) is then a particular case of
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iterative Lipschitz models considered by BOUGEROL [3]. This author has established accurate
conditions for the existence and the uniqueness of a strictly stationary ergodic solution (see
also [2], and [5], [4] for linear models with random coefficients). Therefore our solution to the
problem A will be based on the results of [3] and it improves a previous result reported in
[7]. We also provide solutions to the problems B and C in this case.

The paper is organised as follows. In Section 2, we introduce an extended Markov chain
associated to the model (1) and establish some preliminary results. Then we examine the
sublinear case and the Lipschitz case in Sections 3 and 4, respectively. Our main tool is a

modified Lyapounov criterion of stability for Markov chains which is recalled in Appendix A.

2. Preliminary results on the Markov chain 7, = (X,,,Y,)T

Let us denote A(¢) the integral of a function ¢ with respect to some positive measure A
and set (7¢)(z) := [ (x,dy)¢(z) if 7(z,dy) is a Markov transition probability kernel. The
m-dimensional vector with constant component 1 is denoted by 1 and the spectral radius of

a real matrix A by p(A).

The NAR-MS process Y is not a Markov process in general. However the extended process
Z = (Z,) with Z, := (X,,,Y,)T is a Markov chain as suggested by the following Lemma 1.
For general results on the stability theory of Markov chains, we refer to MEYN AND TWEEDIE
[15] and DUFLO [6] where we have extracted some of mostly used results in Appendix A for the

reader’s convenience. Throughout the paper, the transition kernel of Z is denoted I1(z, dz’).

Lemma 1 The extended process Z is a Markov chain on Z =E x R?. It is a Feller chain
if the m functions fr, 1 < k < m are continuous. It is a srong Feller chain if in addition the

random variable £, has a density with respect to the Lebesque measure on R

Proof. There is a measurable function h : £ X R =& F and a sequence of i.i.d., real and
centered random variables (u, , n > 1) which are independent from the error process (e,)

such that

Xn = h(Xn_l ,un) .
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(Zn)n>0 is then an iterative Markov model (see [6], Section 6.1.2)

Xn h(Xn—l 7un)
Y, Th(Xny un)(Yno1) + 65

The announced results can be proved in the same way as for NAR models (¢f. [6], §6.1). W

We first study the properties of Z and then derive the properties of the marginal process Y.
For the problem A, it is understood that the chain X is stationary, i.e. Xg ~ p. Therefore
such a stationary solution exists if and only if the chain Z has an i.p.m. o. In this case, the
i.p.m. p (of X) and the stationary distribution v are just the marginals of o:
@) dnte) = [ dotey). dly) =Y dofe).

rz€eE

Furthermore, this stationary solution is unique if and only if the i.p.m. ¢ of Z is unique. For
the problem B, by (2), v(||y||*) < oo if and only if o(||y||*) < co. Finally for the problem C,
we consider the following SLLN and CLT for the extended chain Z : for all initial distribution
oo of (Xo, Yp), it holds

® wse VpEF, L3 0(NY) o ole)
k=1
(4) Vo € F, %mehm—ow 2, N(0,a,).
k=1

Here -2+ stands for convergence in distribution, a, some positive number (asymptotic vari-
ance) and F some class of functions defined on Z which will be specified later. By using the
associated canonical space (2, AY) (see e.g. [6], p. 185), the convergence (3) will hold for
any arbitrary initial distribution og if and only if it holds P, ,)-a.s. for all (z,y) € 2, where
P(;,y) is the probability distribution defined on the canonical space with the initial condition

Xo = 2 and Yy = y (the underlying expectation is denoted by ]E(Ly))' Let us also define for
qg>0

(5) B(q) = {«p : Z — R measurable s.t. V(z,y) € Z,|p(z,y)| < const.(1 + ||y||q)} .

Also for two metric spaces F and G, the space of bounded continuous functions from F to G

is denoted Cy(F, G).



Stability of NAR processes with Markov switching 5

Furthermore, we will invoke the V-uniform ergodicity for a Markov chain as defined in
[15] (chapter 16). It is worth noting that any V-uniformly ergodic chain is in particular

geometrically ergodic.

3. The sublinear case

The NAR-MS model (1) is called sublinear if the m functions f are continuous and there

are positive constants (ag, bg) such that for k =1,...,m, y € R? and some norm || -|| on RY,
it holds
(6) eI < ag [[yl] 4 b -

For any measurable function ¢ : Z — R, let ¢ = ¢ — o(yp) and
(7 e =B [¢*(%0)] +2) s [9(Z0)#(%)] -
k=1

Theorem 1 (existence and uniqueness of a stationary ergodic solution) Consider

a sublinear NAR-MS model in the sense of (6). Assume
(i). E|le1|]® < oo for some § > 0.
(it). B:=> 1, pxlogar < 0.

iii). (a). the variable €1 has a density with respect to the Lebesque measure on R® and
(iti). (a) y P g

(b). this densily is everywhere positive on R%.
Then, there is a vy €]0, 8] such that
(1) The chain Z is V -uniformly ergodic with V (z,y) = ||y||"® + 1.
(2) The i.p.m. o of Z satisfies o(||y||"°) < oco.
(3) The SLLN (3) holds for all ¢ € F = B(7o)-

(4) For all ¢ € F = B(v/2), the constant 73 is well defined, non-negative and finile,
Furthermore, if 73 > 0, the CLT (4) holds for ¢ with asymptotic variance 'y?p.
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Proof. For a,b > 0, and any positive integer n, (¢ + b)% < an + bx. Then we have

L 1
Yallm = (fx,(Yo-1) +&nll=
1
< (ax, [[Yaaall + bx, + |len]])
1. 1 1
< (ax,)™ [[Yooul[» + (bx, + [lenl])™
i i 1 L 1
< (axpax, o) " [[Yazol[7 4 (ax,)™ (bx,_, +llen-1l])™ + (bx, +|leal])™
n—1
1,1 1 1 1
(8) < (ax, - ax,) 7 [Yoll» 4 (bx, + el ++ ) (ax, - -axiy,) ™ (bx: + lsil )7 -
=1

Since (X,,) is a positive recurrent chain on a finite set, it holds that for any initial condition

Xo=z€{l,...,m}

a.S.

3|

[log(ax,) + - - +log(ax,)] — Z,uk log ay, < 0.
k

This means that

1
as. (ax, - -ax,)» —ay'rabm < 1.

1
The variables (ax, ---ax, )™ being bounded by sup ag, it comes by the dominated convergence
k

theorem

1
Vo € {1,...,77”&}, lim E<<QX0"'@X"_1>E/)(0:37> :a‘fl...aﬁnm <1.

n—+oo

1
Furthermore, there is a p > — such that

)

1
ap = sup E((aXp---aXI)P/Xo:w) <1,
ze{l,...,m}

Taking expectation E, ,y of the inequality (8), with an arbitrary (z,y) € ' x R, yields

1 1
Bie) (I117) < apllyll? + 6,

=

where 8, := E (bx, + |lesl) . The last relation

z,y)

p—1 N .
+ 3 (ax, - ax,,)7 (bx, + [led)?
=1

1
implies that for the Lyapounov function V(z,y) = ||y||#» + 1 on 2, it holds

(9) P Viz,y) <o, V(z,y)+ 8, + 1 — .
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On the other hand, the condition (iii)-(b) ensures that the transition kernel II is ¢-irreducible,
¢ being the product measure (counting @ Lebesgue) on Z. AsIlis (strongly) Feller (Lemma 1),
it follows, by Proposition 6.2.8 of [15], that all compact susbsets of Z are petite. Hence, by
Theorem 16.1.2 of [15], the chain is V-uniformly ergodic. This etablishes the conclusion
(1). The conclusions (2) and (3) follow from the Lyapounov criterion recalled in Theorem 5
(Appendix A). Finally the conclusion (4) is a straightforward consequence of Theorem 17.5.3
of [15]. W

The condition (iii)-b in Theorem 1 is used to ensure the uniqueness of the i.p.m. o. It can
be weakened or replaced by any other condition that guarantees this uniqueness (through the

irreducibility for example). For instance, the following is a sustitute
(iii)-(b’) The densily of ¢, is non null on some half-space for R

However, the SLLN and CLT given in Theorem 1 have a limited interest because we do not
know any explicit lower bound for the exponent vy (which can be as small as the constant
§ is). It is thus important to extend this SLLN to functions of greater order s > 1. To this

end, let us define the m x m matrix

(611)5}911 (am)splm
(10) Qs = ((a;)° pij) = : : :

(al)spml e (am)spmm

where the p;;’s are the elements of the transition matrix P, and the a;’s are given in (6).

This matrix was introduced by FRANCQ AND RoussiGNoOL [7] in the particular case s = 1.

Theorem 2 (moments of order s > 1 and limit theorems) Lets > 1. For the sublinear
NAR-MS model considered in Theorem 1, we make the same assumptions (iii)-(a)-(b) and
replace those of (i) and (i) by the following

(i) Elle1|]® < o0.
(i) p(@s) < 1.

Then, all the conclusions of Theorem 1 hold with vy replaced by s.
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Besides, compared to Theorem 1, (i’) clearly implies (i) and (ii’) is stronger than (ii), since

by Lemma 2 of Appendix B

sz,uk log ar, <logp(Qs) <0.
k=1

Proof. As p(Qs) < 1and Q; is a nonnegative matrix, by Perron-Frobenius theorem, there

is some positive integer p for which

(11) Q)71 < 1.

Here we have written u < v for two real vectors u = (u;) and v = (v;) when u; < v; for all 1.
Let us prove the contraction inequality (9) for this exponent p and the Lyapounov function

V(z,y) = ||y||* + 1 defined on E x R% We have

110 = (Ifx,(Yo-1) + &)

(ax, Y1l + bx,, + [lepl])”

IN

p—1 ?
(12) < (axp"'axllle||+bXp+||€p||+zaxp“'axi+1 (sz-+||€z'||)> :

=1

Hence by taking expectation for arbitrary (z,y) € E x R%, we get
W1
(Be [1Yll) 7 <

p—1 5
(E(z,y) (axp'-'aX1||Yb||+bXp+||€p||+ZaXp"'aXi+1 (bx; + ||5i||)> )

=1

L
s

It follows from the Lg norm inequality that

(EepllVoll*)s < (Bey) (ax, --ax,[[Yoll)") < +

p—1 s
+ (Ew,y) (bxp +llepll + > ax, - -ax,,, (bx, + ||ez-||>) ) :

=1

This is nothing but

(B 1Y5l°)" < (E(ax, -ax,)’ /Xo=2)7 ||yl +

1

p—1 s
(13) + (E(z,y) (bXp + ||5p|| + ZaXp T AXyy (bX1 + ||€2||)) ) )

=1
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This inequality can be written as
(14) ‘v’(m, y) € Ex Rdv E(a?,y) ||Y;?||S < (ap”y” + ﬁp)s :

where we have used

1

a,:= sup (E(ax, --ax,)’/Xo=2)%,
ZE{I,"',m}
p—1 N\
Bp = (E(z,y) (bXp + [lepl + ZaXp raxg, (bx + ||€ZH)> ) '
=1

On the other hand, a straightforward calculus yields

E [(ax, -+ ax,)" | Xo=1]

= (po1(@1)®, .. Pom (an)*) (Q5)P ™11 = 2-th component of (Q)F 1.
By (11), this component is smaller than 1. Hence a;, < 1 and

1PV
(15) lim sup MViz,y)

<ap <1,  with V(z,y):=|lyl|* + 1.
ll-too V(2:9)

p

This last relation is equivalent to (9), since II?V is bounded on compact sets.
The end of the proof is the same as the one used to conclude the proof of Theorem 1 with

here the new Lyapounov function V(z,y) =||y||*+ 1. M

4. The Lipschitz case

The model (1) is called Lipschitz if there are positive constants ay such that for k =1,...m,

y,y € R and a norm || -|| on R%:

(16) 1 fe(y) = Fe@)I < arlly = ¥l -

To solve the problem A, we apply the results of [3].

Theorem 3 (Ezistence and uniqueness of a strictly stationary solution) We con-

sider the Lipschitz NAR-MS model (16) and assume

(i). Elogt ||e1]] < o< .
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(it). B:=> 1, prlogar < 0.

Then,

(1) The model (1) has an unique strictly stationary and ergodic solution with stationary

distribution v.

(2) For all (z,y) € 2

1
(17) P(z,y)'a-s-; Vo € Cb(Rd7 R)v - Z 99(}/;) — V(QD) :

Proof. Step 1. We start with a particular initial condition Xy ~ g, ¥ = y with some
fixed y € R% Then, the chain X is stationary and we can apply Theorem 3.1 of [3]. By

extending the model (1) from N to Z, the sequence

U — ¢n(u) = an (U) +en = qbXn,sn (u)

is a strictly stationary and ergodic sequence of random Lipschitz maps ([3]). Let L(g) be the
Lipschitz module of any Lipschitz map g and log*(z) = max(0,logz). Before checking the

two assumptions used in that Theorem 3.1, we restate them below for clearness reasons:
(C1) For some y € R% E[log™ ||¢1(y) — y||] is finite.

(C2) The random variable log™ L(¢;) is integrable, and for some integer p > 0, the real

number

a:=p ' ElogL(¢,0---0d¢)

is strictly negative.

To check (C1), first note that log™ (a4 b) < logt a +log™* b+ log2 for any @ > 0, b > 0. Since

1¢1(y) = yll < [IFx I+ el + Nyl

and E log™ ||e1|| < oo, (C1) is fulfilled with any y € R% For the first part of (C2), as
L(¢1) = L(fx,) < ax,, the variable log™ L(¢;) is clearly integrable. Furthermore,

(ppo---001)(y) = fx, (pr_l (- (fx, (y) +e1) +e2) +- "+€p—1) +éep.
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Therefore

L{¢po---0¢y) <ax,ax, - ax, .

Since (ax, ) is stationary, we have
1
LB log (ax, ax, , - ax,) = E logax = 5.

It follows from the assumption ((ii)) that there is some positive integer p for which a < 0.
The condition (C2) is then also fulfilled. Hence, the existence and the uniqueness of a strictly
stationary ergodic solution follows from that Theorem 3.1. Moreover, by applying Corollary

3.2 and 3.3 in [3], we have both

(a) Y, converges weakly to v ;

(b) almost surely, for all ¢ € Cy(R% R) h_)rréo " ng
Step 2. Let us go back to the general (non stationary) situation with an arbitrary initial

condition Xg =z, Yy = y for some (z,y) € Z. Let p € C’b(Rd, R) and we define the event

A«F{ im0 }

By the previous step, P, (Ay) = 1. Moreover,

Since X is positive recurrent, p(z) > 0 for all . Hence P, ,y(A,) =1 for all (z,y). Since ¢
is arbitrary, the proof of (ii) is completed. H.

It is worth comparing Theorem 3 to Theorem 1 for the sublinear case. First, the moment
condition E||e1||® < oo is weakened on E log™ ||1]| < oc. This condition on the logarithmic
moment of the error process is optimal since for an one-dimensional AR(1) process (i.e.
m=1,d=1, fi(y) = ay), it is known to be the weakest condition for existence of a strictly
stationary solution (hence an i.p.m. for the chain Z). Besides, the Lipschitz property enables
a direct method to establish this existence and guarantees its uniqueness. It is for these

reasons that we no longer assume that £, has an everywhere positive density (which ensured



12 J.-F. Yao, J.-G. Attali

the uniqueness of ¢ in the sublinear case), nor that £, has a density (which guaranteed that
the chain Z is strongly Feller).

On the other hand, Theorem 3 does not implies the stability of the extended chain Z. The
existence of moments for the stationary distribution v and a SLLN (3) applicable to the chain
Z are also lacking.

The Lipschitz property of the model yields also the weak convergence of the marginal

distributions of (Y,,).

Proposition 1 Under the same assumptions as in Theorem 3 and for all initial condition

(Xo ==, Yy =y), the distribution of Y,, converges weakly to v.

Proof. By Theorem 3, there is a strictly stationary and ergodic solution {Y;,t € Z},
with stationary distribution v. Let (z,y) € Z be fixed. The idea is to compare the two
processes {Yn(gg’y)7 n e N} and {?;“’y), n € N}, starting from (Xo, Yy) = (z,y) and (Xo,y)
with Xg ~ p, respectively. The associated regime chains are denoted {X?*} and {X}}. As
{X}} is stationary, Theorem 3.1 of [3] can be applied to {Tff’y)}.

Furthermore, since the regime chain X is positive recurrent, there is a (successful) coupling

([13]) {(XZ,X7)} of the two processes {XZ} et {X};} for which the coupling time
T=inf{n>1:X7=X" forallj>n},

is a.s. finite. Let us consider for n > 1, the following NAR-MS processes associated to this

coupling
YO = fe (YOU) ten = frge, (Y0) L with YT =y,
YEY = fyu (Yff_’l{)) +en = fxte, (Yfﬁ{)) . with Y§ =y
We obtain
(fXg,sn 0-++0 fxre — fxp., 000 fxf,sl) (), ifn<T
Y @) oy lew) —
(Fiton 07020 St emny ) (XE2 = YED) ifn>T

Since T is a.s. finite, it holds from Theorem 3.1 in [3] that for n > T

1
a.s. limsup —log ||[Y&¥) — Y(#9)|| < 5 < 0.
n
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This shows in particular that a.s., Ygf’y) — Ygf’y) — 0.

On the other hand, by Corollary 3.3 in [3], Y%p’y) converges weakly to v. Since Ygf’y) —
Ygf’y) — 0 a.s., Ygf’y) also converges weakly to v. The same is still true for Yn(z’y) , since the
probability distributions of (Ygf’y)) and (YTL(I’Z/)) are the same. W

Let us still denote by @5 the matrix (10) where the coefficients ay’s are now the Lipschitz

modules given in (16).

Comment. In [7], the existence of a strictly stationary solution is established under

(18) ,O(Q1) <1.

This condition is stronger than the condition ((ii)) used in Theorem 3. Indeed, by Lemma 2

(Appendix B), we have
> i log ax < log p(Q1) -
Let us examine this difference in more details. Let m = 2 and

1—-a «
P =

g 1-8

The condition p(Q)1) < 1 becomes

(19) (O~é—|-ﬁ— 1) (Zlag+(1—0~é)(11—|—(1—ﬁ)(12 < 1.

while the condition ((ii)) can be written as
(20) B loga; + alogay <0 .

Figure 1 depicts these conditions in three situations & = 8= %, a=0= % anda=0=1% Tt
is worth noting that under the condition (20), some of ax’s are allowed to be arbitrary large
while under the condition (19), all of a’s must be bounded. W

The next result examines the existence of moments and a SLLN for unbounded functions.

Theorem 4 ( Moments of order s > 1 and a SLLN) Let s > 1. We consider the
Lipschitz NAR-MS model (1) and assume

(i) E|lea]|* < oo.
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Conditions ), pxlogar < 0 and p(Q4) < 1

5
90 —
f1(x) ——
4 f2(x)
f3(x)
% 3
<@
QO
©
g 2r
1
\\
O — ———
0 1 ! 3 4 5
Variable al

Figure 1. Plots of g(x): 8 logai+alogas = 0and of f1(z), f2(z), f3(z) from

Condition (12): p(Q1) = 1 in three cases, respectively: (a). a= 4= %.
(b). &= 8= %. (¢). a= 8= %. Each of the acceptable domains
(for a1 and as) is included between the associated curve and the two

axes a; and as.

(i) p(Qs) < 1.
Then, in addition of the results given in Theorem 3, we have

(1) the unique stationary distribution v of the process Y has a finite moment of order s, i.e.

v(llyll?) < oo ;

(2) the SLLN (17) is still valid for any continuous function ¢ satisfying ¢(y) < const.(1 +
lIyll*), y € RY.

Proof. The conclusions of Theorem 3 clearly hold. In particular the stationary distribution

v is unique. This implies that any i.p.m. ¢* of the chain Z has the same marginal distributions

i and v.
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Part (1) :  we note that any Lipschitz map is sublinear and the contraction inequality (15)
is still valid. This ensures that (see, e.g. Proposition 2.1.6 of [6]), almost surely, the family of
probability measures {I1*((z,y),dz)),k > 1} is tight. Therefore there is some subsequence of
this family which converges weakly to a probability measure o’. Moreover, o’ is necessarily

an i.p.m of II and o'(||y||*) < co. Since v is the y-marginal of o', we have v(]|y||®) < co.

Part (2) : From Theorem 3, there is a strictly stationary ergodic solution (YTS#’V)) for the

NAR-MS model (1) (for this solution, X¢ ~ g and Yy ~ v). Furthermore, let (erﬂ’y)) be the
process which starts from an arbitrary fixed point Yy = y while keeping the stationary regime

Xo ~ p. We have for all y (see Theorem 3.1 in [3])
(21) almost surely, Yn(ﬂvy) _ YTEW') 0.

We will prove the result by induction on the order s. Let us first assume s = 1. Since

v(|lyl|]) < oo, by the ergodic theorem,

IR
=S OIEN = wllyll), s,
=1

By (21),
L (i m
S = — o, as.
=1

Hence for all y,
I~
(22) I = vyl as.
=1

Furthermore, it is already proved (see point (b) in the proof of Theorem 3), that for all y € R,
F(

u,y)-a-s., the sequence of empirical mesures of (Yn(#’y)) converges weakly to v. Therefore the

above SLLN (22) can be extended to any continuous function ¢ satisfying |¢| < const.(1+]|-||)
(see e.g. Proposition 2.1.6 of [6]). To conclude the case s = 1, the condition “for all y € R,
P

a.s.,” can be replaced by “for all (z,y) € E X R¢, Py yya.s.,” exactly as at the end of

wy)” z,y)”

the proof of Theorem 3.

Next, let us assume 1 < s < 2. We have for any y, y’

yll> =Y 11°] < slly = o'l (T4l + Y1)
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Therefore,

(23)

r'(,u,lz) s

_ }/2(#71/)“ (1 + ||Y;_(N7V)||s—1 T |

1),

1“‘7 ||S 1

Since s — 1 < 1, by the previous step, both %Z M/)||5 1 and 1 ) Dy

converge almost surely to 1/(||y||5_1). Hence by (21) and (23)

”’ ||Y ui) |I’l — 0, a.s.

This is the main point in the current case and the remainning conclusions can be established
exactly as in the previous case s = 1.

It is easily seen that the induction above can be applied to an arbitrary order s. H.

One should point out that under the conditions of Theorem 4, we are not able to establish
the ergodicity of the extended process Z. The reason is that we do not know whether the
Markov chain Z could have more than one invariant probability measure. If instead, the
noise € has a positive density as in Theorem 2, this uniqueness is ensured and Theorem 2
applies (since any Lipschitz function is sublinear). This difficulty is well illustrated by the
following example. Let Y := (Yn)nzo be the standard nonlinear AR process - without Markov

switching or equivalently, with m = 1 regime-, defined on R by
, 1., ,
(24) Y, = §Yn—1 +éen, Y, € Rv

where € := (€,)n>0 is an 1.i.d R-valued sequence of Bernouilli B ({0, 1}, %) We are clearly
under the conditions of Theorem 4. However, when starting in @, the chain concentrates in
Q and when starting in R\Q, it concentrates in R\Q. Being not irreducible, the chain is not
Harris recurrent.

Consequently, Theorems 3 and 4 are useful for a NAR-MS process generated by a poor noise

process (g,,), a discrete noise for example.
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A. A Lyapounov criterion for stability and positive recurrence

For various definitions used in this appendix, we refer to [15] and [6]. The presentation is
based on [6], Chap. 6.

Let Z = (Z,)n>0 be a Markov chain defined on a probability space (22, A, P), with values
in a Polish (metric, separable and complete) space (£, ) (£ is the Borel algebra). It is said
to be stable if there is a probability measure ¢ on F such that for all initial distribution vg

of Zy, it holds P-almost surely that the sequence of empirical distributions

1 n
(25) An(wv dZ) = ; Z(SZk(w) (dZ) )
k=1
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converges weakly to 0. Here §,,(dz) is the Dirac mass at w. In other words, the following

SLLN holds
1 n
(26) as. V[ €C(E,R), ;; J(Zk(w)) — a(f)

where Cy(E,R) denotes the space of bounded continuous functions from E to R. By using
the canonical space (EN, EN) associated to the Markov chain, it is stable if and only if the
above SLLN holds P,-a.s. for all z € F.

The chain Z is said to be positive recurrent if there is a probability measure ¢ on E such
that for all bounded measurable function f: F — R,

(27) a.s. %zﬂ: F(Z) —s o(f) .

k=1

This positive recurrence does not depend on the topology of F and it implies the stability.
Let m(z,dy) be the transition probability kernel of the chain. The chain is a Feller chain
if for any g € Cp(F,R), 7g € Co(E,R). It is a strong Feller chain if 7g € Cp(F,R) for any
bounded measurable function g. A function V : F — R is a Lyapounov function if it is
continuous, positive and tends to infinity as z tends to infinity. The following Lyapounov

criterion is used throughout the paper. The formulation given here is due to [6] and [1].

Theorem 5 (Lyapounov criterion of stability and recurrence) Let Z be a Markov

chain on E with transition probability kernel w. Assume that

(i). The chain is Feller.

(ii). There is a Lyapounov function V on E, an integer p > 1 and two constants a €

[0,1), 8> 0 for which
(28) ™V <aV 4 4.
(iii). ® has at most one i.p.m.
Then, Z is stable. Moreover the SLLN (26) also holds with Cy(E,R) replaced by
(29) C(V,n):={f : E— R continuous s.t. | f| < const. [1L + V'™ } |

with some constant n > 0.

If in addition
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(iv). The chain Z is strongly Feller,

then Z is positive recurrent and the SLLN (26) still holds with Cy(E,R) replaced by

(30) B(V):={f : E—= R measurable s.t. |f| < const. [1 +V]} .

B. An auxiliary lemma

Lemma 2 Let ay,...,a, be nonnegalive numbers, P some m X m transilion probability
matriz for which p = (1, ..., ) is an i.p.m. and
arpir 0 GmPim
(31) Q = (a; pij) =
a1 Pm1 0 Um Pmm
Then
m
(32) > "k logax < log p(@Q) -
k=1
Proof. We use the norm |u|; := > |ug| foru = (uy,...,u,) € R™ and the induced operator

norm |Al; for any m x m real matrix A. Let X = (X,, n > 0) be a stationary Markov
chain with transition probability matrix P (i.e. Xo ~ u) and w = (ayfiy, -, Gmfim)’. A

straightforward calculus ([7]) gives for p € N* ,
(33) E (ax, -~ ax,) =w! Q71 = |Q"wl| < |Q|1 |w]; .
Thus for p > 1,

1
limsup — E log (aXp . -aXl)
P P

1 1
< limsup —logE (aXp - '(IXO) < limsup — (log|QF|1 + log |w|1) =logp .
P p P p

On the other hand, (X,,) is stationary, so that

1 .
—E log (aXp ~-ax,) =Elogax . [ |
p



