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Treatment of qualitative variables by Kohonen algorithm.

Simultaneous classification of modalities and individuals

Smalil Ibbou *

Abstract

Qualitative variables occupy a significant place in data analysis and their processing is not com-
pletely obvious. Several questions arise when we try to deal with them: which coding of the variables
to adopt, which distance to use for the variables and for the individuals? But one of the principal
encountered difficulties relates to the classification of the individuals when the size of the data is
very large. We propose here two methods, KACM [ and KACM II, based on the Kohonen algorithm
which provide classification and map similar to Multiple Correspondence Analysis projection. The

second method KACM IIis very fast from the point of view of the computing time.

1 Introduction

There are many aspects of categorical data problems. In this paper we consider the following situation
with N “individuals” ' that answer to @ questions. Each question has a finite number of “modalities”
(“choices”, “options”) and is answered by only one modality. In the classical multiple correspondence
analysis, the purpose is to see the relations between the modalities and to project them in a factorial
subspace. We can also do the same projection for the individuals and even a simultaneous projection
including the modalities of the variables?. The third operation that we can consider, in this context, is the
segmentation of the individual space into homogeneous classes by means of a hierarchical classification
algorithm or a k-means algorithm. In this study, we propose to realize this three operations (double

projection and classification) with only one Kohonen based algorithm.

In the case of quantitative variables [1], the Kohonen algorithm makes a vectorial quantization of the
input space described by the observations of d continuous variables. Using this self-organizing method,

we obtain a classification and an organized map similar to a Principal Component Analysis projection.

*SAMOS Lab., Université Paris 1 Panthéon-Sorbonne, 90 rue de tolbiac 75634 Paris. ismail@univ-parisl1.fr.
!The word “individual” is a generic term that represent any statistical object like household, companies, clients...

2 Although this double projection is not always justified and accepted in the literature.



When we deal with qualitative variables, we seek to highlight the typology of the modalities and we try
to emphasize the relations existing between the modalities of the variables. For example, if there is a
considerable proportion of individuals that chose the modality ”a” of the question ”1” and the modality
”b” of the question ”2”, then we will say that the modalities (1,a) and (2,b) are close, and that they
attract each other. We would like to get them very close in the representation. Conversely if there is
an important proportion of individuals who choose (1,a) and reject (2,b), then these modalities repulse

each other, and we would like to observe distant representations. The goal is to represent this kind of

observations in a global manner which takes into account all the modalities of all the variables.

It is clear that the Kohonen algorithm [5] which organizes the units by respecting the proximities in the
input space can be appropriate for this type of treatment. The first method dealing with qualitative
data by means of the Kohonen algorithm, goes back to 1993 and is due to [2]. Baptized ” Kouplet”,
this method is convenient when the number of variables (or questions) @, is equal to two. In 1995,
we proposed [3], another Kohonen-like method, called ” KACM”, which makes it possible to classify
the modalities of @) qualitative variables, where @ is equal or greater than two. We present here an
improvement of this method that allows to represent on the same Kohonen map the individuals and the
modalities which characterize them, when we have stored the answers of each individual. The result is
the analogue of a simultaneous projection of the individuals and the variables provided by a classical

Multiple Correspondence Analysis.

2 The classical Multiple Correspondence Analysis

Let us assume that we have the answers of N individuals to ) qualitative variables, with ) > 2. Each
question ¢, 1 < ¢ < @, has m, modalities and we denote by M = Z§:1 my the total number of modalities.
The data table can be the complete disjunctive table or the Burt table and defined as follows.

Let us denote by K(nxas) the matrix with N rows and M columns which corresponds to the complete

disjunctive table:

) 1 if the individual 7 chooses the modality j
K = (k’”) with ]fl'j =
0 otherwise

We have Vi, 1 <t < N, ki = Zji\/l k;; = Q. The marginal on the rows is constant equal to the number

of questions. Let W be the diagonal matrix made up by the elements of the column margin.
W = Diag{k.l, ce ,k.i, c. ,kM}

where k; = Zj\f:l k;;. The table K is not always available. Sometimes the data can be summarized into

a Burt table Barxar) defined by



Bysxym = (bij) = K'K

In this case, we loose a part of the information about the individuals answers but we keep the information
regarding the relations between the modalities of the qualitative variables. It is a generalized contingency
table made up with @ x @ blocks, and each block B, for 1 < ¢,7 < @ represents the contingency
table which crosses the question ¢ and the question r. We briefly point out (see as an example [6]) that
the Multiple Correspondence Analysis (MCA) is equivalent to a weighted Principal Component Analysis
(PCA) performed on the row-profiles or column-profiles, obtained with a particular metric known as the

Chi-square metric.

Indeed, for a MCA performed on the complete disjunctive table, we consider the matrix of the row-profiles
(which is equal to the matrix %K), on which we carry out a PCA, by using the metric defined by the
matrix NQW ~! and the weight of the row-profiles defined by the matrix %IN (I is the identity matrix).
In the case of the MCA on the Burt matrix, we use the matrix of the row-profiles equal to éW‘lB, the
metric defined by the matrix QNW ! and the weight matrix defined by QLNW We have finally to do a

factorization of the two inertia matrices :

VEi/kj

1
Ik = al{tI(W‘lz(Kc)th, with  K®=(k{;) and kf; =

I = éBW‘lBW‘l = (B°)'B® with B°=(b§;) and b§; = \/b_bij\/ﬂ
We introduce tow corrected input matrices (K. and B.) that includes the use of convenient metric
and weight matrix. In our case, it is much easier to use uniform weighting and Euclidean distance,
because in this way we can use the standard Kohonen algorithm. Moreover, although the theoretical
demonstrations are done for an unspecified input distribution and any distance, the adaptive parameters,
generally empirical, are tested and controlled in the case of the uniform distribution and the usual
Euclidean distance. For this reason, and to be able to use a standard SOM (Self Organizing Map), that

we come down to this case, by using a corrected Burt matrix or a corrected complete disjunctive table

as explained above.

A second remark to be made at this stage concerns the relations existing between the rows of K¢ and
the rows of B°. Indeed in the set of modalities, two modalities or more will be close if there is a large
proportion of individuals that choose them simultaneously. In the same time, these individuals are
grouped in the same region. We state (without a rigorous proof) that a subset of modalities is closer to a
subset of individuals that have chosen these modalities than to a group of individuals that have not. In

the figure 1, we have symbolized these two distances by d and D. Group M; of modalities is chosen by



group of individuals [;, group My of modalities is chosen by group of individuals Is. We maintain that

d< D.

Furthermore the axis that maximize the two inertias are equal. Indeed, if a is eigenvector of Zx corre-
sponding to the eigenvalue )\ then a is an eigenvector of Zp corresponding to the eigenvalue A2, In fact

we have Ip =TTk .

Figure 1: Schematization of two groups of modalities M7 and M» and two
corresponding groups of individual /7, Is. a and b indicate the two first

principal axis.

Actually there remains a difficulty which is not completely solved in the literature, concerning the si-
multaneous projection of individuals and modalities in the classical multiple correspondence analysis. In
fact, the Burt table is a symmetric matrix M x M where the rows and the columns represent the modal-
ities. On the other hand the complete disjunctive table is a matrix N x M where the rows represent the
individuals and the columns represent the modalities. In both cases, the column vectors represent the
same modalities, except that in one case, they are vectors of R™ and in the other one they are vectors of
RN, 1t is known that the classical MCA constructs “generic modalities” (principal components) which
are linear combinations of the original modalities, i.e. of column vectors . But if the dimensions are

distinct, the superposition of the new systems of axes (principal components) is not completely justified.



In our method KACM, this conflict of dimensions is not present, since only the distances of the rows of
these two matrices, which all are vectors of RM | are taken into account.
We distinguish two variants KACM [ and KACM II ; the first is using the corrected matrix K¢ for the

training of the network and the second the corrected matrix B°.

3 The Self-Organizing Map algorithms

The Kohonen algorithm is an unsupervised neural algorithm that has the property to reproduce the
topology of the input space on a network made up by U units arranged following a “grid” or a “line”.
Each unit w, 1 < u < U, is characterized by a “code-vector” or a “weight-vector” y, with the same
dimension as the input space. We define also a neighborhood function V,(;y depending of a radius r(t)
which is a time-decreasing function. For instance, the two figures below show the neighborhood function

for three radii.

1.1

49 Neighbors 25 Neighbors 9 Neighbors
CLT I [ [ ] EEEE | EEEEN EEEEN  EEEEEN
7 Neighbors 5 Neighbors 3 Neighbors

We present now the two original algorithms KACM I and KACM II to deal with the categorical data by

providing a Kohonen map with individuals and variables.

3.1 The KACM I algorithm : Training by Complete and Disjunctive Table

Let us suppose that the network is chosen, i.e. the number of units U and its architecture (line or grid)
are chosen. The code vectors of the units are vectors of RM and initialized at random. With the rows of

this matrix K¢, we proceed to the training of the network:
o At each iteration we choose, uniformly among all the rows of the matrix K¢, one row &

ke = ( ki1 kin )



e We look for the winner unit uy among all the units in the lattice, which is the unit realizing the

minimum of the usual distance.
_ : u c
up = argmin ||y}’ — k7|

e We update the code vectors of the unit uy and its neighbors by the standard formula.

Yiyr = Yt +e(t) (k] —yt')

These steps are repeated about 4 or 5 times over the total number of the inputs. We begin with a
large radius r(t) and we decrease it to zero. The adaptive parameter €(t) verifies the Robbins Monroe

conditions: y_, €(t) = oo and >, €(t)? < oco.

After training, each individual is classified in the network by assignation to his winning unit. We then
obtain a Kohonen map where only the individuals are classified. To represent the modalities on the same
Kohonen lattice, we proceed as follows: with the rows of the matrix B¢, we classify the modalities in
the map by assigning each one of them to the closest unit. For example the modality p, 1 < p < M,

corresponding to the row vector by will be allocated to the unit u,
P — : u bC
4y = arg min [y — b

where y7 is the final value of the weight-vector y* after the training step.

Although the training was not made with the rows corresponding to the modalities, the network obtained
can be used to classify the modalities, although it is not a good vectorial quantifier for the modalities. In
this method is that groups of individuals which resemble each other for having chosen the same modalities

will attract these same modalities.

3.2 The KACM II algorithm : Training by the table of Burt

The second method consists in using only the rows of the matrix B® to train the lattice. This one
being involved, we classify then the modalities represented by the rows of the matrix B¢. To classify the

individuals on the same map we use the rows of the matrix K°.

The KACM II algorithm

e For each iteration

We choose uniformly among all the rows of the matrix B¢, one row b;:

by bins )
NORVIEN VoAb



e We look for the winner unit ug among the whole of the units of the network which is the unit that

carries out the minimum of the usual distance :
: U C
ug = arg min —b
gmin||y;’ — b]|

e We update the code vectors of the unit uy and its neighbors by

Yryr = yp +e(t)(bf —yt')

After training, we classify the modalities (represented by the rows of B¢) in the network by assigning each
of them to the nearest unit u of the network. To represent the individuals on the same Kohonen map
we proceed as KACM I but using the rows of the matrix K¢. For example the individual j, 1 < j < N,

corresponding to the row vector kj will be affected to the unit u,

up = argmin g — kS|

where 3 is the final value of the weight-vector y* after the training step.

Generally the number of modalities is not very large; the training of the network is consequently very fast.
This method is very interesting and very computing time saving. In fact, if we consider the case of very
large data files (as in insurance companies or marketing data), it happens that in this type of data base,
the disjunctive complete table has hundred variables but hundreds of thousands (or more) individuals. It
can take several hours to classify the individuals into groups by a hierarchical classification. Using this
method (KACM II), it is sufficient to compute the Burt matrix and to train a Kohonen network with its
rows. After this, it is easy to classify the individuals in the lattice by seeking the winner units related to

the rows of the matrix K¢. Now let us illustrate this method with an example.

4 Example

This example is taken from [6]. The data consist in a characterization of 27 races of dogs by the 7 following
variables:  Velocity(Small, Average, big), Size (Small, Average, big), Weight (Small, Average,
big), Affection (Affectionate, Non-affectionate), Intelligence (Small, Average, big), Aggressiveness

(Aggressive, Non-aggressive), Function (Assistance, Hunting, Company).



Beauceron Fox-Hound Mastiff Saint-Bernard
Alsatian Newfoundland
Doberman German-Dog Bull-Mastiff
Greyhound
Basset Pointer Setter Gascogne
Spaniel-F
Chihuahua Poodle Collie Labrador Spaniel-B
Pekinese
Bull-Dog Fox-Terrier Cocker Boxer Dalmatien
Dachshund

Table 1: Kohonen map on

individuals; the learning

1s done with the rows

of the corrected matrix K¢

Bull-Mastiff
German-

Dog  Mastiff
Saint-Bernard

Newfoundland

Company Affect Ave Intell Ave Size
Cocker Dalmatien
Labrador
Boxer
Fox-Terrier Non-Agress Ave Veloc Spaniel-B
Collie
Sma Weight Poodle Spaniel-F
Bull-Dog
dachshund
Sma Size Chihuahua Hunling Setter Ave Weight
Pekinese
Basset Fox-Hound Pointer Big Intell
Gascogne Beauceron
Greyhound Alsatian
Doberman
Sma Intell Big Veloc
Sma Veloc Big Size
Aggressive Big Weight Assistance Non-Affect

Table 2: Kohonen map on individuals and modalities; the learning is done with the rows of the corrected

matrix K¢




Sma Size Bull-Dog Basset Sma Intell Big Weight
Sma Weight Mastiff
Chihuahua Saint-
Pekinese Bernard
dachshund Newfoundland
Poodle Fox- Sma Veloc German-Dog Bull-Mast
Terri
Company Assistance
Affect Cocker Ave Intell Aggressive
Ave Size Ave Velocity Big Intell Non-Affect
Boxer Dal- | Spaniel-B Beauceron
matien Alsatian
Labrador
Pointer Doberman
Non-Agress Hunling Ave Weight Big- Velocity Big-Size
Collie Spaniel-F Fox-Hound
GrBlGasco
Greyhound
Setter

Table 3: Learning done with the rows of the matrix B¢

In these three maps, we have got the good clusters. Indeed we have for example small size, company and

Poodle, Dachshund in the same region of the map, hunting with Setter and Greyhound etc.

5 Conclusion

The results of this algorithm are very satisfactory and promising: on the examples for which we have
applied the algorithms KACM I and KACM II, we quickly obtained a very good representation of the
relations between the variables. These algorithms have the advantage of comparing the profiles by using

only the distance between these profiles.

It is a method of natural classification which does not use a linear approximation which can make the
interpretation of the results sometimes difficult. The maps which we obtain are less precise than classical
projections of the MCA, but they summarize very well the various relations (attractions, repulsions)

between modalities.

Even if the simultaneous representation of the various modalities of the variables and the individuals does
not have a rigorous justification, it gives nevertheless good results. The methods KACM I and KACM 11
have the advantage of producing on the one hand a Kohonen map comparable with a traditional MCA
projection and on the other hand a classification of the individuals compared to the modalities. More-
over the method KACM II is particularly cheap in computing time, which is a considerable advantage

compared to other classical classification methods such as a hierarchical classification.
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