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Abstract

For an autoregressive process with Markov switching, we give a condition ensur-
ing the existence of a square-integrable stationary solution. Unlike conditions based
on top Lyapounov exponents, our condition is directly expressed in terms of the pa-
rameters of the model. Specific examples are also provided to give more details on

this condition.
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1 Introduction

Let X := (X,,)nez be a stationary positive recurrent Markov chain on a finite set £ =
{1,...,m}, with transition probability matrix P and invariant probability measure (here-
after i.p.m.) u. We consider a d-dimensional multivariate AR process with Markov

switching Y = (Y,,) (abbreviated as ARMS) defined, for » € Z, by
Y, =Ax, Yo1+e,, Y,€R. (1)

Here the noise process € := (¢,),>0 is a R%valued stationary sequence of random vari-
ables and (A;),k=1,...,m a family of d x d autoregressive matrices.
Therefore, the process can switch between m different AR processes (regimes), the

switching being controlled by a Markov chain. The use of the Markov switching offers
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new possibilities for modeling time series “subject to discrete shifts in regime - episodes
across which the dynamic behaviour of the series is markedly different”, as noted by
(Hamilton, 1989) who first introduced such a model to analyse the US annual GNP
(gross national product) series. These models have since then attracted a considerable
interest in the statistical community, especially for econometric series modeling, see
(Hamilton, 1990), (Hamilton, 1996), (Holst et al., 1994), (McCulloch and Tsay, 1994) and
(Francq and Roussignol, 1996).

Criterion for the existence of a stationary solution for the equation (1) is already
known. Let us fix a vector norm ||z|| on R? and let || A|| be the underlying operator norm
for a d x d real matrix A. Assume that E log™ ||so|| < co. Then following (Brandt, 1986),
the equation (1) has a stationary and ergodic solution if the following top Lyapounov

exponent v of the sequence of random matrices (Ay, ) is negative, i.e.
o1
7:;I§§§Elog||AXPAXp_1---AX1||<O. (2)

This condition is also necessary if in addition, the noise ¢ is an i.i.d. sequence (Bougerol
and Picard, 1992).

This deep criterion has however two drawbacks. First, it does not rely directly on the
model parameters, namely the transition matrix P, the noise process ¢ and the autore-
gressive matrices (A). It is usually impossible to know if a given model has a negative
Lyapounov exponent without simulations. This fact heavily limits the interests of the
criterion in statistical applications. The criterion has another serious handicap in ap-
plications, for we often need to know more about the stationary solution. For instance,
the solution need to have some moments to make an estimation theory possible and the
condition (2) do not guarantee such moments. Therefore, we have to search for condi-

tions ensuring moments for the stationary solution. But usually under such a moment



condition, the Lyapounov exponent v will be automatically negative.
In this note, we give a condition ensuring the existence of a square-integrable sta-
tionary and ergodic solution for the equation (1). The main result is stated in Section 2,

followed by several applications to specific examples. The proof is given in Section 3.

2 Main theorem

The spectral radius of a real matrix A = (a;;) is denoted by p(A) and its transpose by
AT, If B is another matrix, we denote by A @ B their Kronecker tensor product, that is
the matrix (a;; B) in the bloc form. Let P = (p;;) be the transition probability matrix of
the Markov chain X, with p;; = P(X.y1 = j| X; = 7). The following matrix will play a
central role throughout the paper:
i (Af @ A7) pr1 (A, @ Ay
M = : Dii <A;,r ® A]T> : . (3)
pim (Af @ AT) e Prm (A © Ar)

Our main result is the following

Theorem 1 Assume that the noise process € = (c,)n>0 IS Stationary and ergodic
such that for any n € Z, ¢, is independent of the past {X,, , m < n} of the Markov chain
X. Assume also E||e1]|? < oo. Then, the equation (1) has an unique square-integrable,

stationary and ergodic solution if
p(M) <1. (4)

The proof is given in Section 3. It is worth noting that since we are seeking for a
square-integrable solution, the assumption E||s;||? < oo is necessary. Note that the
condition (4) has been conjectured in (Holst et al., 1994). We now consider some specific

examples to detail this result.



Example 1 - Case without switching:

This is just for illustration purpose. If there is no switching, i.e. m = 1,we have M = A,

: the condition (4) is the classical stability condition for a multivariate AR process.

Example 2 - The univariate case :

Let us consider an univariate ARMS model (i.e. d = 1), the matrix M becomes

2 2
P11@y Pm1ay,

p]‘ia? ’
2 2
Pim @y e Prm Gy

where we have written a;, = A;. Assume that in each regime %, the underlying AR pro-
cess is stable, that is |ax| < 1. Since all p;; € [0, 1], we have p(M) < 1 and the resulting
ARMS model is also stationary and square integrable. However, this simultaneous sta-
bility of all the m regimes is not necessary. To be specific, let us fix more by taking m = 2
(switching between 2 univariate AR processes) and denote the transition probability

matrix by

for some p € (0,1). Then
(1-p)af paj

pai (1—p)a3

By straightforward computations, we know that p(M) < 1 is equivalent to the following

two conditions :

(2p = 1) afai + (1 -p)(af+aj) < 1, -
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Figure 1: Plots of the boundary curves p(M) = 1 in the case of switching between two
univariate AR processes. The switching probability p is respectively % (function =+ f(x),
solid line), 2 (function +¢(z), broken line) and % (function +A(z), dotted line) . The

square-integrability regions are the domains enclosed within these boundary curves.

Figure 1 depicts these conditions in three situations p = 2, p = 2 and p = 1, respectively.
All the three square-integrability regions include the unit square (—1,+1)? that corre-
sponds to the simultaneous stability of both regimes. However, one of the AR regimes
can be heavily explosive,(e.g. |a1| > 1), provided that the other one is sufficiently stable
(e.g. |az| < 1). The difference between these two regimes can be as big as the switching
activity is high, i.e. with p close to 1 (see the case p = %). The resulting ARMS model

remains well-defined and square integrable.



Example 3 - Generalization to switching AR(p) processes

Consider a Markov switching between m different univariate AR(p) models. That is in

each regime k& = 1, ... m, there is an associated AR(p) model
Y,=a,()Y,1+ -+ ax(p)Ynp+en, neZ.
And the considered switching model is
Y,=0ax,(1)Y, 1+ - -+ax,p)Yn—p+en, neEZ.

By setting Z,, = (Y,,... ,Yn_pH)T, this model can be rewritten in the form of (1) with

the companion matrix

ax, (1) ax,(2) - ax,(p)
1 0 0 0
Ax, =
0 0 0
0 0 1 0

Theorem 1 applies as well.

3 Proof of Theorem 1

In this section, C'; will be a generic notation for positive constants. To prove the main

theorem, we need to consider the following product of random matrices, defined for & > 0,

I, r=Ax,Ax, , --Ax

n—k+1

The main idea of the proof is to establish that under the condition (4), the square
norm E||IT, ;||? of the above product vanishes exponentially fast (Proposition 1). Two
important consequences then follow. First, the top Lyapounov exponent v of the se-

quence (Ay,) is negative. Hence the equation (1) has an unique stationary and ergodic
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solution. Moreover, this solution can be expressed as

Y, = Z (AXnAXn—l .. 'AXn—k+1) En—k = ZH%’CSTL—’C , (6)
k=1 k=1

where the series converges almost surely.
As a second important consequence of the exponential decay of E||II, ||, we will
prove that the above series also converges in the space L? of square-integrable variables.

Hence this solution (Y},) is also square-integrable.

Proposition 1 (Exponential decay of E||II, ;||?) Under the condition (4), there

is a positive constant r € [0, 1) such that for each n,
E|l,.|*< CirF ) E>0. (7)

Proof. Since for fixed &, the sequence (II,, ;) is stationary with respect to n, it will be

enough to prove that
E||l:])? = E||Ax, Ax,_, - Ax, || < Cir* k>0, (8)
To this end, let us consider the following recursive equation
Zps1 = Ax, Zy k>0,

with an arbitrary starting (non random) point Z, € R% Let us set for each regime
i€ {l,...,m}, the d x d matrix
F(i) = E [Z:Z] Tix, =]
where 15 denotes the indicator function of a set B. We have by definition,
Fry1(i) = zm: E [Ax, ZeZy Ax, Lix,, =i xo=i} ]

J=1



Therefore,
Fryi(i) = ZW: AjFp(j)ASP(5,7) . 9)
j=1
Let us consider the (non-random) vector
Frp = (F.(1), Fr(2), ..., Fr(m)) ,

of (high) dimension md?. Then the recursive equation (9) defines a map from F; to
Fii+1. This map, say 7, is linear and non random. Note that E|[Ax, Ax,_, - Ax,||?
vanishes exponentially fast if and only if ||F|| does for any initial vector Z,. This is
again equivalent to that the spectral radius of the map 7T is smaller than 1.

To evaluate this spectral radius, we now write down the associated matrix of the map
T in a (canonical) basis. This basis is constructed as follows. First we take the canonical
basis of the space of d x d matrices B; built with the following d? elementary matrices
(I';;), 1 < 4,5 < d where all elements of the matrix I';; are null except that its (¢, j)-th

element is 1. In other words,

00 0
0 0 0
L= , asingle non null value 1 at position (¢, )
0 1 0
00 0 O
Let us define for £ = 1,..., m, the md?-dimensional vector

E&']‘: (0,0,...,0,F2‘]‘,0,...,O) ,

where 0 is the d x d null matrix and I';; being at position ¢. The collection of these md?

vectors

B = {Ellla cee E11d7 E1217 ceey E12d7 cee Eldd7 E2117 cee EQdda ceey E’mdd}



forms a basis of the space of F-vectors. It then can be checked that the associated matrix
of the linear map T in the basis B is exactly the matrix M defined in (3). Therefore, the

condition we are looking for is p(M) < 1. |

End of the proof of Theorem 1:

Now we prove that the top Lyapounov exponent ~ is negative. Since for fixed %, the

sequence (11, 1), is stationary in n, we have by (7)

Elog||Ax,Ax,_, - Ax,| = Elog||Il,;|| = E log|[Tlo,l|

1
= 5 Elog ||, < 5 log E|[To||?

N | —

IN

1
Cg+§plogr .
Hence,
o1 1
'yzzlqgflg Elog||Ax,Ax,_, - Ax, || < Elogr <0.

By Theorem 1 of (Brandt, 1986), see also Theorem 2.5 of (Bougerol and Picard, 1992),
the series in (6) converges a.s. for each n which gives the unique stationary and ergodic
solution for the ARMS model (1).

Next, we prove that this series also converges absolutely in the space of square-

integrable random variables, i.e. we have for each =,

N

< 0. (10)

Z [ E||Hn,k€n—k||2]

k=1

As ¢,,_j is independent of 11,, ;, this is an easy consequence of (7), since we have

B[ Maken—ill® < B ([Muklllen-rl?)

= ElWukll* Ellen-rl®

IN

k
CBT 3
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where ¢,,_j is independent of 11,, ;. This ends the proof of Theorem 1.
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