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Abstract. One of the attractive feature of Self-Organizing Maps (SOM) is the
so-called “topological preservation property”: observations that are close to
each other in the input space (at least locally) remain close to each other in the
SOM. In this work, we propose the use of a bootstrap scheme to construct a
statistical significance test of the observed proximity among individuals in the
SOM. While computer intensive at this stage, this work represents a first step
in the exploration of the sampling distribution of proximities in the framework
of the SOM agorithm.

1. Introduction

The SOM algorithm has been introduced by Kohonen in 1981 and has been the focus
of lot of attention of the scientific community since then. Numerous applications have
been proposed (see Kohonen [1995] for a representative list of them) and the
theoretical properties have been carefully studied (see Cottrell, Fort & Pages [1998]
for a review of the established results up to now). We will consider here that the
SOM agorithm is familiar to the reader.

One of the most attractive feature of SOM, in particular for applications in the field
of data analysis, is the so-called “topological preservation property”: after
organization through the training agorithm, observations that are close to each other
in the input space (at least locally) belong to units that are neighbor (or to the same
unit). A question that does not have received up-to-now a lot of attention is the
statistical significance of the observed neighborhood in the SOM obtained after
learning. Having observed that two individuals from the analyzed sample belong to
neighbor units, which is the probability that they are really neighbor in the
population? In other words, which is the sampling distribution of the observed
proximity and isit possible to propose a statistical test to assess their significance?



To answer this question, we will first recall the central ideas of the bootstrap, as
introduced by Efron [1979] and insist on the specific difficulties that we have to solve
when applying the bootstrap in the field of neural-networks. We will clearly define
the concept of proximity, propose a bootstrap procedure adapted to the SOM
algorithm and introduce a Binomia test to assess the statistical significance of
observed neighborhoods. Before concluding, we present the application of our
propositions to three simulated data sets and to areal data base.

2. Bootstrap Procedures and their Applicationsto Neural-Networks

The main idea of the bootstrap was introduced by Efron in 1979, is to use the so-
caled "plug-in principle’. Let be F a probability distribution, depending on an
unknown parameter q. Let be x=x;, Xp,..., Xn, the observed sample of data and

g =T (x) an estimate of g. The bootstrap consists in using artificial samples (called
bootstrapped samples) with the same empirical distribution as the initial data set, in

order to guess the distribution of qA or of any statistic. If x* is a bootstrapped sample,
T(x*) will be a bootstrap replicate of q .

Thereis (at least) two ways to implement the plug-in principle .*:

- thefirst one, which is called parametric sampling bootstrap, supposes that
the asymptotic distribution of the parameter estimate is known, which limits
its field of application. Using the observed sample of data, the parameter of
this distribution is estimated (for example, by maximizing a log-likelihood
function). Then, the sampling distribution of any statistic derived from the
model? is evaluated by a re-sampling scheme based on the estimated
asymptotic distribution of the parameter estimate. This method allows to
derive the sampling distribution of complex statistics, for which it would be
impossible to use the analytical approach (see Efron, Tibshirani, [1993] for
severa examples).

- The second one, which is called non-parametric sampling bootstrap, is
directly built on the empirica distribution of the observed sample of data.
Using it as the (best) approximation of the population distribution, the
following sampling scheme is used to evaluate the sampling distribution of
any statistic calculated on the data set (it can be in particular the parameter
estimate): draw at random a great number of samples from the original data
set with replacement (each bootstrap sample is composed by the same
number of observations as the origina data set), for each bootstrap data set,
evaluate the statistic of interest and use the obtained estimations to build its
sampling distribution.

! Efron B., Tibshirani R, 1993, p. 35.
2 Theterm model is used in its largest meaning.



Numerous propositions have been done in the literature to improve the origina
propositions of Efron in severa directions : improving the Monte-Carlo sampling
(see for example LePage and Billard [1992], Noreen [1989]), adapting the approach
to the estimation of expectation, variance, confidence interval (see for example Efron
and Tibshirani [1986]), adapting the approach to the regression framework (see for
example Freedman [1981,1984]).

Zapranis and Refenes [1999] present an interesting analysis of the application of the
bootstrap in the neural network fields. They apply it to the problem of model
adequacy for multi-layer perceptrons (MLP). Asthey mention it, the main problem of
applying the bootstrap approach to MLP is due to the fact that the minimized loss
function is not quadratic. It can therefore exist numerous local minima in which the
optimization algorithm (or so-called training algorithm) may remain blocked. To
solve this problem, the authors introduce the concept of local bootstrap and
perturbed local bootstrap. In local bootstrap, the MLP weight vectors obtained on
the observed sample are used as an initialization for the learning on each
bootstrapped data set. In perturbed local bootstrap, the same approach is used, but
the MLP weight vectors are locally perturbed in order to avoid that the optimization
algorithm remains blocked on this same solution. The authors show that these
approaches alow avoiding the part of the variability due to convergence problem in
the estimation of sampling distribution of the estimated parameters for the MLP.

3. A Bootstrap Scheme adapted to the SOM Algorithm

In rea applications, the SOM agorithm is used on afinite data set, that can be seen
as a sample from some unknown distribution. One of the important questions that
raises about the resulting map is "Is it reliable?'. We propose to use the bootstrap
approach to evauate the reliability of the map on both the point of view of
guantification (evaluated by the sum of squares intra-classes, cf. eq. 1) and the
neighborhood significance (evaluated by the stability of the observed proximity on
the map).

The quality of the quantification is evaluated by the sum of &l the distances between
the observations and their winning code vector (the weight vector of the closest unit,
the representative vector of the class they belong to). This sum is called distortion in
the quantification theory, and sum of squares intra-classes by the statisticians. It can
be expressed by :

U
SSntra=g g d*(x;,G) eql

i=1 ;1¢

where U is the number of classes (or units), C; is the i-th class, G; is the code vector
of class C;, and d isthe classical Euclidean distance in the data space.



Let us recall that the decreasing function associated with the SOM algorithm for a
constant size of neighborhood and finite data set is the sum of squares intra-classes
extended to the neighbor classes. But actualy, in the last part of the iterations no
neighbor is considered, and at the end, the SOM algorithm is equivalent to Simple
Competitive Learning and minimizes exactly the SSntra value.

The bootstrapped samples will help us to study the stability of the distortion by
estimating it and its standard deviation, whatever the learning (which depends on the
initialization, order of data presentation, decrease of the neighborhood size, of the
adaptation parameter, etc.)

As to the stability of the neighborhood relation, it is ssimply evaluated by the number
of cases where, during the bootstrap process, two observations are neighbor or not
neighbor. The stahility of neighborhood has therefore to be evaluated for couple of
observations and, as classically, we have to define the radius of neighborhood at
which the proximity is taken into account (see equation 2). For any par of datax; and
%,

B
a NEIGH? (r)
STAB ;(r) == B eq.2
where NEI GHbi,j(r) is an indicator function that returns 1 if the observations x; and x;
are neighbor at the radius r for the bootstrap sample b and B is the total number of
bootstrapped samples. A perfect stability would lead STAB;; to be aways O (never
neighbor) or 1 (always neighbor).

The application of the bootstrap procedure to the SOM agorithm raises two specific
problems :

- asfor MLP, the minimized function has a lot of local minima. Part of the
variability of the estimated stetistics (SSntra, STAB;;) can be due to this
convergence problem. As in Zapranis and Refenes [1999] (cf. supra), we
will therefore analyze the impact of the "convergence difficulty” on the
stability of the estimations (see section 4 of the paper).

- toevauate NEIGHbi,J-(r), it is needful to say that x; and x; must be part of the
bootstrap sample b, which is by no way guaranteed. To solve this problem,
we use the same approach as in Efron and Tibshirani [1993] : the STAB;(r)
is evauated only on the part of the bootstrap samples that contains the
observations x; and X;.

The proposed bootstrap procedure is resumed at figure 1. The terminology that we
will use to present our resultsis the following :

- if no ressampling is done (in order to analyze the variability of the results
only due to convergence problems), we will talk of Monte-Carlo (MC)
simulation;

- if reesampling is done, we will talk of Bootstrap (B) simulation;



- if, for each bootstrap iteration, the SOM Map isinitialized at random (in the
input data space), we will talk of Common Monte Carlo (CM C) or Common
Bootstrap (CB) (depending of the activation of re-sampling or not);

- if, for each bootstrap iteration, the SOM Map is initialized with the weight
vectors obtained after the convergence of the initial learning, we will talk of
Local Monte Carlo (LMC) or Loca Bootstrap (L B);

- if we do the same computations as in the previous point, but if we add a
small random perturbation to the weight vectors, we will talk of Loca
Perturbed Monte Carlo (LPMC) or Loca Perturbed Bootstrap (L PB).
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Figure 1: Bootstrap procedure of the SOM algorithm



We can study the significance of the statistics STAB;(r), by comparing it to the value
it would have if the observations would fall in the same class (or in two classes
distant of less than r) in an completely random way.

Let be U the total number of classes, and v the size of the considered neighborhood.
The size v of the neighborhood can be computed from the radiusr, by v = (2r + 1) for
a one-dimensional SOM map (a string), and v = (2r + 1) for a two-dimensional
SOM map (a grid). For afixed par of observations x; and x;, if the repartition would
be at random, the probability they are neighbor would be v/U. If we define a
Bernoulli random variable with probability of success v/U, (where success means:" X;
and x are neighbor"), the number Y of successes on B trials is distributed as a
Binomial distribution, with parameters B and v/U. So it is possible to build a test of
the hypothesis Ho "% and x; are only randomly neighbor" against the hypothesis
H,"the fact that x; and x; are neighbor or are not is meaningful".

If B is large enough (i.e. greater than 50), the binomia random variable can be
approximated by a Gaussian variable, and for example, for a test level of 5%, we

V V V 0
conclude to H, if Y is less than B—- 1.96 B—g‘i- —9 or greater than
U Ue Ug

This alows to give a level of significance to the presence/absence of the
neighborhood relations.

4. Applications

4.1. Data set and SOM Map

The results that we present and analyze here have been obtained on three simulated
data set®, each of one representing a specific situation. We will call them Gaussian 1,
Gaussian_2 and Gaussian 3. In each case, they are two-dimensional data sets,
obtained by random drawing in uncorrelated Gaussian distribution. They are
represented respectively at fig. 2, fig. 3 et fig.4. The first data set shows a situation
where there is only one cluster of observations. The second contains three clusters
with equal variance and some overlap. The third one is also composed of three
clusters but with different variances and no overlap. Each data set is composed of 500
individuals and, for data sets Gaussian_2 and Gaussian 3, observations 1 to 166, 167
to 333 and 334 to 500 are in the same cluster.

3 Complementary results have been obtained on several real data set but the simulated ones
allow usto put into light more clearly the interesting results.
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Figure 3: Gaussian_2 data set
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Figure 2 : Gaussian_1 data set
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Figure4: Gaussian_3 data set

Always for the sake of conciseness, the results presented here are limited to a one-
dimensional SOM Map (or string), composed of either 3 or 6 units. As classicaly,
the neighborhood and the learning rate are decreasing during the learning.

4.2 Variability of SSIntra due to convergence of the algorithm

The first point about which we present some results is the variability of SSntra due
to convergence of the SOM algorithm. The point is here to see if the existence of
local minima can introduce variability in the estimation of SSntra. Table 1
summarizes the coefficients of variation (CV*) of the distribution of SSintra obtained
by CMC (no re-sampling and random initialization at each iteration), Table 2, those
obtained by LMC (no re-sampling, fixed initialization at each iteration) and Table 3,
those obtained by LPMC (no re-sampling, small random perturbation of the fixed
initialization). Each result presented here has been established with 5000
independent samples’. The results for STAB;; are not presented here for the sake of
conciseness. The comparison shows quite clearly that the stability of the SSIntra
estimation does not rely on the mode of initiaization of the bootstrap procedure. By
switching from CMC to LMC or PLMC, that is to say, by fixing the initialization of

* The coefficient of variation CV is equal to 100 s/m where s is the standard deviation, mis
the mean value.

5 Such a large number of samples is in practice really not necessary (100 is enough), but we
wish to be sure of the numerical stability of the results.



the weight vectors, the obtained coefficients of variation are ailmost the same. This
result is very different from those obtained by Zapranis and Refenes [1999] when
applying bootstrap to MLP and emphasize the great robustness of the SOM
algorithm. The most interesting result that appears in tables 1 to 3 is the important
impact of the number of units on the CV in Gaussian_3 cases. As it can be seen in
figures 2 and 3, Gaussian_3 is the only case with well separated asymmetric clusters.
It is clear that the "natural” number of units should be 3 and that, in some sense, a
SOM Map with 6 units is over parameterized. The stability of SSntra seems at first
sight to be an indicator of this wrong choice of number of units. Thisisthe point that
we will explore in the next section of the paper.

3 units 6 units
Gaussian_1 0.052 0.045
Gaussian_2 0.051 0.046
Gaussian_3 0.076 0.101

Table 1 : Coefficients of variation of SSIntra for Common Monte-Carlo (CMC)

3 units 6 units
Gaussian_1 0.053 0.044
Gaussian_2 0.049 0.045
Gaussian_3 0.064 0.103

Table 2 : Coefficients of variation of SSIntra for Local Monte-Carlo (LMC)

3 units 6 units
Gaussian_1 0.052 0.045
Gaussian_2 0.051 0.046
Gaussian_3 0.067 0.101
Table 3 : Coefficients of variation of SSIntra for Local Perturbed Monte-Carlo
(LPMC)

4.3 Assessing theright number of unitsin a SOM Map

Tables 4 shows the CVs of SSIntra obtained on the three simulated data set presented
at section 4.1 aswell as on areal data set called POP, presented at the annex 1 of the
paper®. The results have been obtained using 100 bootstrap samples. They confirm
those highlighted in the previous section. For Gaussian 1, where there is only one

® These real data (extracted from official public statistics for 1984) were used in Blayo, F. &
Demartines, P.(1991) : Data analysis: How to compare Kohonen neura networks to other
techniques ? In Proceedings of IWANN'91, Ed. A.Prieto, Lecture Notes in Computer Science,
Springer-Verlag, 469-476.




natural cluster, the CV of SSntra exhibits oscillations around 0.45. For Gaussian_3,
as expected, the addition of a fourth unit generates a high increase of the CV. As
shown in table 4 and figure 5, for the POP data set, the increase of the CV of SSntra
is situated near the addition of the seventh or eighth unit. The result can seem to be
surprising for the Gaussian_2 data set, where there is no increase of the CV of
SSintra, when adding a fourth unit. The explanation lies in the strictly symmetrical
form of the three clusters and in their overlapping positions (the instability of the
location of the fourth unit does not change the level of SSintra obtained from one
bootstrap sample to another bootstrap sample).

Number of units | Gaussian 1 | Gaussian 2 | Gaussian 3 | POP
1 0.052 0.043 0.055 0.046
2 0.045 0.060 0.089 0,079
3 0.059 0.054 0.065 0.073
4 0.055 0.049 0.144 0.068
5 0.044 0.066 0.152 0.085
6 0.051 0.047 0.120 0.088
9 0.054 0.047 0.109 0.147
12 0.037 0.049 0.092 0.180
15 0.040 0.040 0.080 0.187
Table 4 : Coefficients of variation of SSIntra obtained after L ocal
Bootstrap

Coefficients of variation (CV) as a fonction of the number of units
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Figure5: Evolution of the CVs of SSIntra for the POP data set when increasing
the number of units of the one dimensional SOM Map



4.4 A satistical test of the proximity relations among observations
in the SOM Map

We present in this section some results about the stability of the neighborhood
relations that appears in the SOM maps. The three first par of columns concern the
neighborhood with radius r=0, (i.e. the observations are considered as neighbor only
if they belong to the same class). The two last ones show the results for the POP data
set, and a radius neighborhood of 1 (i.e. the observations are neighbor if they belong
to the same class or to two adjacent classes).

Par of obs. Gauss 2 Par of obs | Gauss 3 Par of countries POP (r=0) POP (r=1)
3 units 3 units 6 units 6 units

137/43 1 137/43 0 49/21 0.04** 0.65**

CluCl1 CluCl1 Turquie/Haute Volta

137/255 0 137/255 1 49/13 Qrxx 0.22x**

ClUCI2 ClUCI2 Turquie/Cuba

137/437 0 137/437 0 49/47 Qrxx 0.05***

CIUCI3 CIVCI3 Turquie/Sweden

137/70 1 137/70 0 49/19 OF** (0

CluCl1 CluCl1 Turquie/France

137/278 0 137/278 0 49/20 OF** 0.25%**

ClUCI2 ClUCI2 Turquie/Greece

43/255 0 43/255 0 21/13 OF** OF**

ClUCI2 ClUCI2 Haute Volta/Cuba

43/437 0 43/437 0 21/47 OF** OFx*

CIVCI3 CIVCI3 Haute Volta/ Sweden

43/70 1 43/70 1 21/19 OF** OF**

CluCl1 CluCl1 Haute Volta/ France

43/378 0 43/378 0 47/19 Trx* Trx*

CluCl1 CluCl1 Sweden/France

255/437 0 255/437 0 13/47 0.02*%* 0.81x**

Cl2/CI3 Cl2/CI3 Cuba/ Sweden

255/70 0 255/70 0 13/19 0.02** 0.78***

Cl2/Cl1 Cl2/Cl1 Cuba/ France

255/378 0 255/378 0 13/20 0.69%** 0.97***

CI2/CI3 CI2/CI3 Cuba/ Greece

Table5: Frequencies of neighborhood obtained by L ocal Bootstrap
** gignificant at 5% - significant at 1%

Table 5 shows the results concerning STAB; ;. In column "Par of obs', the number of
two observations and, for the data sets Gaus 2 and Gaus 3, the cluster ownership are
mentioned (for example, the first par of observations of Gaus 2 data set is 137/43;
CI1/CI1 means that the observation 137 is member of cluster 1 and observation 43 is
member of cluster 1). For the POP data set, we mention the country names. The
number of units is mentioned in the title of the columns. All the estimations have
been computed with 100 bootstrap samples. The levels of signification have been
calculated from a Binomial distribution with p=1/6 (cf section 3). The main results
are the following:




for the Gaus 2 data set, we strictly obtain what was expected: if two
observations are in the same cluster, the probability to belong to the same
unit is 1 (and vice-versa). We have to remind here that the SOM agorithm
is a stochastic one...

for the Gaus_3 data set, the conclusions are the same as those obtained for
the Gaus 2 data set, except for observation 137, which is wrongly
associated with observations of the second cluster. On figure 4, we mark
this observation with a red point. As we can seg, it is located in the second
cluster (while issued from the first one). It corresponds to an error of
classification, due to its location and the results obtained by bootstrap are
fully coherent.

for the POP data set, the observed similarities between the countries agree
with the economic situation in the year 1984, as long as we know. It would
be necessary to study the map in a more detailed way to fully interpret the
results, but it is out of scope of the paper. However, it is evident that France
is completely different from Haute-V olta (nowadays Burkina-Faso), and that
France and Sweden are very similar, with respect to the considered
variables (see in the appendix).

5. Conclusion

These results are preliminary, but are very promising. We intend now to pursue these

tracks

by studying in a systematic way how to determine the correct number of
units using the coefficients of variation of the SSntra for the bootstrapped
samples, according to the number of units,

by analyzing more deeply the stability of the neighborhoods according to the
number of units, as we saw that the stability disappear when the number of
unitsis over-dimensioned,

by applying these methods to real numerous data and applying, in this
context, well-know numerical optimization to the Monte-Carlo procedure.

We think that this kind of work can supply to the innumerable users of the SOM
maps a new tool, which can make them more and more confident in the power and
the effectiveness of the Kohonen a gorithm.
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Annex 1
The POP Data Set (1984)

Country ANCRX TXMORT TXANAL SCOL2 PIBH CRXPIB ID
Afrique du sud 2,9 89 50 19 2680 -2,9 1
Algerie 2,9 114 58,5 47,9 2266 0,1 2
Arabie Saoudite 4.2 111 75,4 39,7 10827 -10,8 3
Argentine 1,2 44 53 69,5 2264 2 4
Australie 1,3 10,4 0 86 9938 -1,2 5
Bahrein 3,8 57 20,9 76,3 8960 -10,1 6
Bresil 2,2 75 23,9 62,3 1853 -3,9 7
Cameroun 2,4 106 55,1 445 939 6,5 8
Canada 1 10 0,9 93 9857 3 9
Chili 1,7 42 7,7 85,2 1853 -0,5 10
Chine 1,4 71 31 44 231 10 11
Coree du Sud 1,6 33 8,3 82,1 1716 9,3 12
Cuba 0,7 16,8 8,9 78,7 2046 5,2 13
Egypte 2,7 74 58,1 45,8 626 6 14
Espagne 0,9 9,6 6,8 88 5316 2,3 15
Etats Unis 1 11,2 0,8 91 11732 3,3 16
RDA -0,2 11,4 0,5 89 5103 4,2 42
RFA -0,1 12 0,7 87 12176 1 43
Royaume Uni -0,1 10,1 0,8 83 8655 35 44
Senegal 2,6 152 77,5 19,2 430 2,3 45
Suede 0,1 7 0,6 85 13920 1,8 46
Suisse 0,6 8 0,9 88 15522 -0,1 47
Syrie 3,8 60 46,3 50,7 1717 5,8 48
Turquie 2,1 119 31,2 42 1491 3 49
URSS 0,9 28,8 0,8 96 4562 4 50
Venezuela 3 40 19 57,7 3823 -2 51
Vietnam 2,3 97 13 59,5 220 52 52
Yougoslavie 0,9 31 13,2 83 2067 -1,3 53

Where: ANCRX is the Annua population growth, TXMORT is the Mortaity rate, TXANAL is the
Analphabetism rate, SCOL2 is the Population proportion in high school, PIBH is the GDP per head and
CRXPIB isthe GDP growth rate.

From : Blayo, F. & Demartines, P.(1991) : Data analysis : How to compare Kohonen
neural networks to other techniques ? In Proceedings of IWANN'91, Ed. A.Prieto,
Lecture Notes in Computer Science, Springer-Verlag, 469-476.



