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Abstract

In this paper, we improve known results on the convergence rates of spectral distributions of
large dimensional sample covariance matrices of gizen. Depending on the limiting value
y of the ratiop/n and by using the tool of Stieltjes transforms, we first prove that the expected
spectral distribution converges to the limiting Manko-Pastur distribution at a rate@fn~2)
fory ¢ {0,1}, and ofO(n~%) for y = 1, under the assumption that the entries have a finite 8-th
order moment. Furthermore, the rates for both the convergence in probability and the almost sure
convergence are investigated.
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1 Introduction

The spectral analysis of large dimensional random matrices has been actively developed in the last
decades since theitial contributions of Wigner (1955, 1958), see the review by Bai (1999) and the
references therein. Various limiting distributions were discovered including the Wigner semicircu-
lar law (Wigner, 1955), the Maenko-Pastur law (Maenko and Pastur, 1967) and the circular law
(Bai,1997).

Let A be ann x n symmetric matrix, and; < --- < A, be the eigenvalues of. The spectral
distribution/4 of A is defined as

1 .
FA4(z) = = x number of elements ik : A\, < 2} .
n

Let X, = (2;;)pxn D€ @p x n Observation matrix whose entries are mutually independent and have
a common mean zero and variance 1. The entrié§,omay depend on but we suppress the index

n for simplicity. In this paper, we consider the sample covariance majyix n‘lXpX;,. Assume

that the ratiop/y of sizes tends to a positive limitasn — oco. Under suitable moment conditions

on the entries;;’s, it is known that the empirical spectral distribution (ESB):= F5# converges to

the following Macenko-Pastur distributiof, with indexy with density

27r1xy (x—a)b—2a), fa<a<bd

F(x) =
0, otherwise,

wherea = (1 — /y)%, b= (1+ /9)*

An important question arose here is the problem of the convergence rates. However, no significant
progress had been made before the introduction of a novel and powerful tool, namely the Stieltjes
transforms, by Bai (1993a,1993b). Using this methodology, Bai (1993b) proved that the expected
ESD, EF, converges taF, at a rate of0(n~'/4) andO(n~5/*%) according toy # 1 ory = 1,
respectively. In a further work by Bat al. (1997), these rates are also established for the convergence
in probability of the ESDF, itself.

In this work, we prove the following theorems which give a significant improvement of these rates.

The following conditions will be used.

(C.1) Ez; =0, Ex%:l,lﬁiﬁp,lﬁjgn,

(C2) sup Elay|® < o0,

27]777‘

(C3) Z Ex?]I(WzﬂZE\/E) = 0(712) ,for anye > 0.
9]

(C.2)  sup Elzj;|" < oo, forallintegerk > 1.

27]777‘

Throughout the text, we use the notatip = O,(a,,) if the sequencéa,, ' 7,,) is tight, andZ,, =
0,(a,) whena; ' 7, tends to O in probability. Let bgf|| = sup,. | f(z)].

Theorem 1.1 Assume that the conditiofs1-2-3are satisfied. Then

Onz), if 0<y<l1
HEFp - Fy” =



Theorem 1.2 Assume that the conditiofs1-2-3are satisfied. Then

0,(n7%), if 0<y<l
15, — Byl = )
Op(n79), if y=1

Theorem 1.3 Assume that the conditiofs1-2’-3are satisfied. Then, for all > 0 and almost surely,

o(n”ET), i y#£1,
HFp_FyH:

It is worth noticing that the convergence rates given above for the(casg < 1 also apply to
the casey > 1, since the last case can be reduced to the first case by interchanging the roles of row
and column sizeg andn.

The proofs of these main results will be given in Section 4. To simplify their presentation, we first
establish several intermediate results in Section 3 after the introduction of some necessary notations
and preliminary consequences in Section 2.

2 Definitions and easy consequences

Throughout the paper, the transpose of a possibly complex mAtisxdenoted byA ", and its con-
jugate byA. For each fixep, » andk = 1,...,p, let us denote by, = (z11,...,7r,)" thek-th

row of X, arranged as a column vect®{,, (k) be the(p — 1) x n sub-matrix obtained frorX, by

deleting itsk-th row. Let us define

1 1 1
ar = —Xp(k)xk  Sp = EXp(k)xg(k) B, = EXg(k)Dkxp(k),
Lt -1 -1 2.1)
B = EXPDXP D, = (Sy—=2I,1)~, D = (S—=:zI,)7,
', = D.Dy, A, = D;S.D;.

Herel,, is them-dimensional identity matrix anga complex number with a positive imaginary part.
Following Bai (1993b), the Stieltjes transform of the spectral distributipof the sample covari-
ance matrixS, is defined forz = u + wv with v > 0, by

my(e) = | by,

o T — 2

and it is well-known that

1
my(z) = ;tr(S —2I)7t.

Similarly, the Stieltjes transform of the spectral distribut@ﬁ’%) of the sub-matriXS;, satisfies

1
1tr(Sk — ZIp_l)_l .



Lastly, the Stieltjes transform of the (limiting) Maenko-Pastur distributioh, is

m(z) = /OO L ir ()

o & — 2

- 2.2)

_z—\/z22 -4z y=1.

2z ’

Here the square rogyz is the one with a positive imaginary part. Bai (1993b) also provided the
following bounds form (=) which will play a key role in next derivations :

M , 0< y < 17
Vy(l—y)
m(z) < (2.3)
2 _
7 y=1
Lemma2.1Lletx = (z1,...,2,)" andy = (y1,...,4,)" be independent real random vectors

with independent elements. Suppose that forlalk ;7 < n, Ez; = Fy; = 0, Elz;|* =
Ely;|? = 1, Elz;|* < L < oo, and thatA is ann x n complex symmetric matrix. Lef =

max;<, ( Ele;|*, Ely;[*). Then
(). ExTAy|?=tr(AA);

2.

(i)). ExTAx|> < (L - Dtr(AA) + |trA

(i). ExTAx—trA> <(L—-1)(trAA);

(iv). ElxTAx — trA|** < dj [vartr(AA)* + (Ltr(AA))*]  for k > 2 and some positive con-
stantd, depending ork only.

Lemma 2.1 can be proved in an elementary way and is stated ietB&i(1997).

Lemma 2.2 Let G; and (', be probability distribution functions and = « + v, v > 0. Then for
each positive integen,

o 1 2
[ i) - G| < G- Gl



Proof. LetbeG™ := G| — 5. We have, by integration by parts,

=
- | [

- “/_oo o [ + oy © S
o[l )

. 1 Re(z) 1 o) . 2
= 167§ 0—=mr + | —— =|G*|— . 1
| — z|™|_ |x — z| Re(2) v

We will need the following auxiliary variables.

IN

g = —— Z wk] Xk 'Bix; — EtrB),
8}; = ——Z xk] — 1 Xk kak—tT‘Bk)
- 1
e = —(tT‘Bk—EtT‘Bk) = —(tT‘Dk—EtT‘Dk),
n n
1
7 = —E(rBy — trB) = ~E(trDj, — trD) — —
n n n
Br = ——Z e - +z-1+ XkBka7
. 1
Br = z—1+4 —trBy,
n

1
8 = z—1+—trB
n

We summarize below some inequalities which will be used in the derivations\ ket| EF, —
F|| and M := sup; ;,, Elz;;|*. For fixed(n,p) andl < k < p, we define ther-algebrar*) =
o(x; :i=1,...,p;i#k)andFy =o(x; : i=1,...,p; i > k). Notice thatF;, C F©*),

(). (Lemma 3.3 of Bai (1993a)) :

(p = DEP (@) = pFy(a)] < 1. (2.4)
(i). ((3.11) of Bai (1993a)) :
(k)
|trD — trDy| = ‘/ dlpFy(@ x(— . DFp (@) <o h (2.5)
(iii). ((4.7) of Bai (1993a)) :
R |
my(z) = —;;@ (2.6)



(iv). (Lemma 2.2 of Baket al. (1997)) :

Elmy(z) — E(m, () < p~lo™% (2.7)

(v). (from 57| > Im(B3;) = v(1+ n~'trAy)):

1B (1 + ntrAy) <o h (2.8)
(vi).
1 _
1Bkl > Im(By) = v(1 + EangDkak)- (2.9)
(vii).
L o7 o L o7 ==
|1+———ak1)k ak|§§1—%——ak1)k1)kak. (2.10)
n n
Let A\x;, 7 = 1,2,...,p — 1, be the eigenvalues &} which can be decomposed in a diago-

nal form on a basis of orthonormal and real eigenvectors. ILbe a complex matrix having the
product formL = M‘N" for some integerg, ¢ and factorsM, N equal to one of the matrices
{Dy, Dy, By, B }. An important feature that we will frequently use in the sequel is that such a ma-
trix L. can be decomposed into a diagonal fanthe same basis of the eigenvector8gf Moreover,

the eigenvalues di can be straightforwardly expressed in term of #ie’s. In particular, we have

the following

Lemma 2.3 Assume thaz| < 7"whereT > 1. Then for all integerg > 1

. 1 -1
tr(Fk) < — trI'y (2.12)

v

£—1
tr(Ag)* (%) triy . (2.12)

IN

Proof. (i) The inequality (2.11) follows from

p—1 p—1
1 1
t I1 ¥4 — < —2((—1) — —Q(Z—I)t I1 .
r(Tx) 217|/\kj—2|% <w 217|/\kj—2|2 v Ty
Jj= Jj=

(ii) For the inequality (2.12), we have

p—1 Ai‘
l _ J
tr(Ak) - Z|/\k _ Z|2é‘
j=11""%

The conclusion follows from that The functigr{\) := A~*|A — z|? defined on(0, ) is convex and
has an uniqgue minimum of valyg® satisfying

2

e =2(Vur+0v?)—u=2 Y ZU— |

|2|+u = T

[}




Lemma 2.4 For the Marcenko-Pastur distributiot, , we have

L1, O<y<l,

b (1-v)vy
——dly(z) < (2.13)
|z — 2]

“ |z| Lo~ /2 y=1.

Proof. For0 < y < 1, we have by elementary calculus that the density functigifz) has an
unique maximum of valuér (1 — y),/y)~'. Thus

/b;dF(w) < ! /b ! dx
o =2 7w (=) Y e e = 2P

1 -1

TN

IN

Wheny = 1, a = 0 andb = 4. We find that

S|
| st
4 dx
<lzI7WT2 1

€T
_ < —
w/o Vellr—w)?+ o3~ 7y Valle — u)? + 7]
Lemma 2.5 For the Marcenko-Pastur distributio’,, we have for any < v < 4,/y,
144/2(1 + ) 1 5
sup F,(z+u)— F,(2)|du < ve .
o LRl R e

Proof. It is enough to consider the part< « < v only in the integral since the remaining part
for —v < w < 0 can be handled in a similar way. Set= a + A with A > 0 and®(X) =
Jo [Fy(z + u) — Fy(x)]du. Then

v z+u a+A+v
o)) = / du/ Fy’(t)dt:/ R b R N/ T s P
0 z

a+A 27Tyt

= A+07,\_|_U_u U —u) du
_A i — ) (2.14)

Letp(u) := (u+a)~'\/u(d/y — u).

Cased <y < 1: We have: > 0 and the derivative dbg(¢(u))? is

1 1 2 212yya— (1+y)u)

v 4y —u uta  u(dy—u)(u+ta)

Letp := (1 4+ y)~'(2a\/y). Thus¢(u) is decreasing whem > p and increasing when < p. Since

W) ([ ot o an) |

2wy




it follows that for A > p, ®(A) is decreasing and theh(\) < ®(p) ; and forA < p — v, ¢(A)
is increasing and the?(\) < ®(p — v). Hence®(\) reaches its maximum only for some €
(max(p — v,0), p). Now suppose that € (p — v, p), it follows from (2.14) that

B(\) <

oyl/t pAFv oy _
y / Ato=u o
27y )i U+ a

= 2>y {0+ v+ a) [(VAFo- VA

—a (arctan\/ —:au’ct:am\/E ] —é ,\_|_U)3/2_/\3/2}} ‘
a

Notice that—+/a arctan - NG is convex , we get

1 I A A
\/_E (arctan ;I—v — arctan \/;) > ﬁ (\//\ + v - \/X) .

and by setting* = v/ A+ v — v/, we have

a

* * * 1 *2
d(N) < 3/4{(a—|—A—|—v)(/\ mA)—(A (A+VAX + 327}

_ *2 *3

= Ty3/4 [\/_/\ + = A ] (2.15)
Letc? = % Since\ + v > ¢ 2a, we have

VA < c
VAFo+VA)?2 — Vat+ Vo
1 2c

Arer v S Vv
Hence

2 7c » TV2(1+y) 1 2
TS e S T s Vi ()

Casey —1: Herea = 0and

MU ALy —u [4—u

B(\) = A — — du

d®(N) 1A \/4—u \/4—/\
— = — — /| du .
dA 27 Jy U A

But (4 — u)/u is decreasing for > 0, thus® () is decreasing fok > 0. Hence

/v—ul —ud< W2

Combining these two cases proves the lemma. 1

8



3 Intermediate lemmas

In this section, we establish some more technical IemmaswLetsupMn{E|xij|f}.

Lemma 3.1 For each? > 1/2 with vy, < oo, there exist positive constantsindependent of and
v, such that for allz, v satisfyingrv > T, we have

¢
E ( |g;|”‘ f<k>) < eqn~ (1 T ltrAk) (3.1)
n
and
20
E ( (|€ﬁk*)|é ]—'(k)) < et (3.2)
k
Proof. We have
2
E (|€2|%|}'(’“)) = E 1 Z(xi] -1)+ %(szka —trBy)| |FW
n
7=1

24

n

2= 3 B - 1))+ B pdBexi - By | 7))

i=1

IN

= A+ B.

For the first termA, by the Burkholder inequality, we get

20
n

E Z(wi] - 1)

i=1
L

n n

< ¢ E Z(xz] —-1)? < cm™' E Z(xz] — 1)% < covgn® .
i=1 i=1

For the second terrB, we first notice that

tr (Bkﬁk) =trBy +ZtrAyg ,

and
1 T
By = |y + oDy <14 <2
n n nv
Hence
1 — T 1
—ir (BkBk) <24 —trA, <T (1 + —tT‘Ak) .
n n n
Therefore by Lemma 2.1,

E (|x;kak - terW‘ f<k>)

L
_ 1
< Cg(l/4g + MZ)(tT‘BkBk)Z < CgT_Zn_Z (1 + —tT‘Ak) .
n

9



Combining the bounds fad and B proves the first conclusion. The second conclusion immediately
follows by taking into account the inequality (2.8).1

Lemma 3.2 If n=1/2 < v < 1, then there are positive constarits, C'» such that for largen and
eachk < n,

(). | Eir(DDy)| < CrpBtt
). Blepf? < Co (14122 A850) .
Proof. (i). Recall thatA = || EF, — F,||. By Lemma 2.2,

‘/_Z ﬁd( Efp(e) - Fy(ﬂ@))‘ < 2@—? .

Application of Lemmas 2.1 and (2.4) yields that

B DD = -1 [ LB

—eo | = 2]

< \ | o= D BRI @) - p EF )
—|—p‘/iﬁd[EFp(9€)—F 2] —I—p‘/:;ﬁdﬂ/(x)

G| [ i)

By Lemma 2.4, the last term is bounded ®ypv—! or C3p(]z|\/v)~! according ta) < y < 1 or
y = 1. Taking into account the condition/» > 1, we have for large:, pv > 2C for the first case
and for the second one, sing® < v < |z|, py/v > 2C5. The conclusion (i) follows in both cases.

IN

(ii). The conclusion follows from (i), (3.1) and the fact
tT‘BkEk = tT‘(Ip_l + ZDk)(I—I—Eﬁk) < 2(])—|— |Z|2tT‘Dkﬁk) . |
Let us define, = v for0 < y < 1 andv, = /v fory = 1.

Lemma 3.3 Assumgz| < T with 7" > 2, and\/nv > 6+/27(M + 2). Then for largen and a
positive constant§’; ,

P
D E(ST) < Cin(A+ v (3:3)
k=1

Proof. First notice that from the definition ef, we have(3;)~! = ;' (1 + 85 '¢7). By (2.5),

K 2T
Ely< ==

v nv

|6r — B = —|—1—|—z(ter—trD)|< (1—|—

10



Taking account of (2.6) and (3.2), we obtain

> E(sI

k=1

P P 1 P P
—|+ E E !
< 2E ‘w 7t 2.5 5 kZ +ED S
~ gl — =% l?
p »E
< 2B Z W*Z w 1z P Ee )
AT L P ]: 1/2 4 E(le*|2] 75
k=1 k=1 k=1
< 4T 1/2 -1/2,, —1 - 1 - 1
< (n ; + (2MT) ZE [ E([52177) + p Elmy(2)|
k=1 k=
P
< T+ Mpw 0™ 4+ 2MT) 2= 20 CE(8E T + p Blmy(2) — E(my(2))]
k=1

+pl E(my,(2)) — m(2)] + plm(2)|

P
< 20272+ M) 2 2N T R(IBETY + Vvt 4+ 2pA0T 4 plm(2).
k
k=1

Since2[2T (2 + M)]/?v=1n~1/? < 1/3, we find
p
> E(A
k=1

Notice that for largex, %yn <p< %yn The conclusion follows by taking into account the bounds
for m(z) givenin Eq. (2.3). 1

(\/ﬁv_l + 2pAv~t 4 p|m(z)|) .

[\')IOJ

Lemma3.4 Letz, = E(trD|F;_1) — E(trD|F). ThentrD — EtrD = Y7 _, 2, and(z) is
a martingale difference with respect (&), k = p,p — 1,...,0. Moreover, we have the following
formula for z;,

zp = { E(ar|Fr-1) — E(ar|Fr)} — E(bg|Fr-1) ,
with

52(1+04£Dk204k) oeszzoek — Ltr[(T+ 2Dy) Dy
> , b= n— . (3.4)

Proof. Since E(trDy|Fiy—1) = E(trDy|Fy), we have

ap =

2 = E[(H‘D — tT‘Dk)|.7:k_1] — E[(H‘D — tT‘Dk)|.7:k].

11



On the other hand,

1+ Lal'D) 2
trD —trD, = _ 1w DR

B
_ 1+ 5trl@+=DyDy] | ei(1+aiDiar) o Ditar = yir((1+zDi)Dy]
- B BB Br
14+ Ler[(IT+ DD
_ 1+ g [(ﬁ* k) ’“]+ak—bk.
k

The conclusion follows from

(1 + Lr[(I+ 2Dy) Dy
E i3
s

fk_l) g (1 + %tr[(I—L—sz)Dk]
B

fk)7

and

E(a{D,ﬂak\f(k)) — L1+ DDy N

n

Lemma 3.5 For each? > 1/2 with vy, < oo, there exist positive constantsand L, independent of
n andv, such that for all, v satisfyingLon=1/? < v < 1,

E|m, (2) — Emy(2)[* < eon™ 2 0™ (A + v,)".

Proof.  In the proof of this lemmag, andc, o will be used to denote universal positive constants
which may depend on the moments up to ordef underlying variables and may represent different
values at different appearance, even in one expression. Recall that we have

1 P
my(2) — Em,(2) = ;[trD — EtrD] = sz )
k=1

where the(z;) are defined in Lemma 3.4. We have

E(|Zk|zz‘fk) = E{‘[E(ak|}'k_1)— E (ag|Fr)] — ]E(bk|}"k_1)‘%‘}"k}

IN

2V B{ [E(@]Fict) = BlarlFP + [E (bl 7o) 71 |

IN

22 E{ 1B (0| Fe-)]” + [E (bl Fe)I| i |
22=1 { E ( (ak)%‘ fk) + E ( (bk)%‘ fk)} .
Note that by (2.9) and (2.10)| < v~!|e%/3;|. Hence by Lemma 3.1
1 €
2 7)) « L g |5k
o (| ) < 3 [

On the other hand, by Lemma 2.1 and assundig1,

IN

24

*

f““) < epon o BT

E ( |bk|2f‘ f<k>) < co(nB7) "2 (vag + M) [tr(T+ 2Dy) (I +2D;) DDy .

12



Since from (2.8) and (2.12), it holds that
13517 tr (I + 2Dg) (14 2Dg) DDy, < |85 HrAZ < nTov™?
we obtain
E{ 0| 7} < coon= "o B[ 15117 A

Therefore for alk > 1,

E(1a|7) < eon v B[ 1577 7]
< eon” TR Fi (3.5)
Applying Lemma 3.3 gives fof > 1
Dz < coon” A+ vy v (3.6)

k=1

Casel = 1: Since that{z; } is a martingale difference sequence, the above inequality yields
Elm,(z) — Em,(z n=? Z Ez|* < e1on 2 (A + vy )v™ ™ (3.7)

The lemma is proved in this case.

Case% << 1: By applying the Burkholder inequality for martingales (see Burkholder (1973))
and using the the concavity of the functioh we find

Elm,(2) — Emy(2) |2€

P £ P £
— _ _ _41¢
< ep® E(Z|2k|2) <em™ [E(Z|Zk|2)] < e [(A+v)o™] |
k=1 k=1

where the last step follows from the previous cse 1. The lemma is then proved in this case.

Casel > 1:
We proceed by induction in this general case. First, by another Burkholder Ingdoramartin-
gales, we have

p p ¢
Elmp(2) = Emp(2)]* < eop™ ) Bl [* + E( E(|2| |}'k)
k=1 k=1
= L+ L (3.8)
By (3.6)
I <coo(A+ vy)n_?’”lv_u. (3.9)

The lemma has been already proved §0K ¢ < 1. Suppose that the lemma is true fog 2.
Now, we consider the case whexe< ¢ < 2!*1. Application of (3.5) with/ = 1 gives

n

p
ST E(lal*| Fr) < coon oD E(IBETY F) -
k=1

k=1

13



Hence,
P ¢ P
I < coo(nv) ' E (Z E(| 55|~ Fr) ) <eron” oY T EIBE T (3.10)

Notice that if Lo > /2 thennv? > 2 and that

trD — trDg 1 ) _ "l
D = trDil L 61, 1827
P85 pv

(this comes from (2.5) and3;|=1 < v=! min(|8]|7t, |3;]~1)). This yields
k k

B = 1817 <157 - ()7 =

BrI~ < 1817+ p~ o2 B T < 2087

and
P P P
87 < Z Y IBHT = T < DB T o s
k:l :
P P P
< 2D BT <2 +2> 8"
k=1 k=1 k=1
Qi i oty
m,lzZ)].
= TGl T

Therefore, by applying Lemma 3.1 and if we chodse> (2¢,0)'/¢ so thate, on=‘v=2¢ < 1/2, we
have

p

> Es

k=1

IN

_ZZ 20 —I_ E|mp( )|Z
Iﬁkl
< e (n‘év‘ﬂz E|3;~ +p Elmp(Z)IZ)

k=1
< 2eeon By ()

From the above inequality and (3.10), we get

L < e o7 Elm, (2)[*
< om0 By (2) = By ()| + | By (2) — m(2)[ + [m(2)|"
< ey { Ejm, (z) — Em,(2)|"+ (A + vy)év_q . (3.11)

It can be readily checked that the ratio of the upper bound,fdeq. (3.9), over the second term from
the last inequality is bounded by a constant (for both cAses; < 1 andy = 1), namely

-1

<1,

(A4 vy )n=3Fy=4t 1
n=2lo=3 (A 4+ v,) vt [ n(A +v,)

14



becauserv? > 1 andv < 1. Therefore by (3.8) and (3.11), it follows that

E[m, (2) = Em,(2)*
< e Eimy, (2) = Emy (2)]C + eon” (A 4 vy) ot (3.12)

Finally by the induction hypothesis, we find

E[my, (2) — Emy (2) |2€

< ey [n_%_%(A—kvy)Z/?} _I_Cm—zz(A_l_vy)zv—M

) [(m)m“

< Qan_M(A + vy)év_‘w .

an_%(A T Uy)ZU—M

The proof of Lemma 3.5 is complete. 1

Remark 3.1. Application of Lemma 3.5 to the cage= 1 gives that there is some constant> 0
such that

EjtrD — EtrD|* < ¢ (A +v,)v™™ (3.13)

It is also worth noticing that if we substitula for any D, with & < n, Lemma 3.5 as well as the
above consequence (3.13) are still valid, with slightly different constaists

4 Proofs

Suppose that is a function of bounded variation. The Stieltjes transfgrof G is defined as

o) = [ o)

wherez = u + v andv > 0. Our main tool is the following proposition (Bai (1993a)).

Proposition 4.1 Let G be a distribution function and be a function of bounded variation satisfying
[ |G(z) — H(z)|dz < co. Denote their Stieltjes transforms pyz) and (=), respectively. Then

1 4 27
1G-H| < 0= m @y = 1) [/_A|9(Z)—h(2)|du+7 |x|>|§($)_H($)|dx
1
—su H(x — H(z)|dy|,
b [ ety - H ) y]

where the constants > B, v ande are restricted by

1 1 1 4B

= —d — =
U ﬂ/lulgau2+1“>2’ and k= =T By =) <

0,1).
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Denote the Stieltjes transform &f, andF, by m,(z) andm(z), respectively. By Proposition 4.1
with A = 25, B = 5 and Lemma 2.5, we have, for some constant0,

v

A
| EE, — FJ|| <c [/_A| Em, (2) — m(z)| du+ = /| |>5| EF,(2) — e(z)| det v, | | 4.1)

wheree(z) = 1 for z > 0 ande(z) = 0 otherwise.

In the sequel, for brevity; will be an universal constant which is not related to the estimation of
the order. Since it is already proved in Bai (1993a) that | EF}, — F, || = O(n~/%), A will be
treated as of order—'/4.

4.1 Proof of Theorem 1.1

We will estimate the first two terms on the right hand side of (4.1) with various choicgssobject
to v ~ n~'/2. We begin with the the second term. Lt be the largest eigenvalue 8f and recall
thatd = (1 + ,/y)?. Yin, Bai and Krishnaiah [1988] proved that under the conditiGris2-3 one
can find two sequenceés,) and(m,) satisfyingy, — 0 andm; ' log » — 0 such that

E(/\p)m <+ np)mp . (4.2)
Notice that
1- Fp(x) < I{/\pzw}v forz > 0. (43)

TakeB = 5, we get forallt > 0

| B @ - B ds
B

'] '] b mp
< / P(A, > z)dx < / ( * 77p) dz = o(n7") .
B B B

Thus the second term of the equation (3.1) can be neglected. Therefore what remains is to estimate
the order of the first term of (4.1).
By Eq. (3.14) of Bai [1993Db],

< 1 R |
= dF. = —trD=—- —.
mpla) = [ @) = St 23,

Let us defing, such that

1 sl 1
z+y—14+yzEm,(2) P EB

+5, .

my(z) =

Since

it is easy to see that




Now

| B3,
< LS (Be+ |8
= plEFP =T TG,
B R . 1, 1 5 1 et
= 3 EWZ [' B} 20) il ‘Tﬂ Eek~ TEay BT rmape B ]
P
1
< p|Eﬁ|2 [Z|E5k‘|‘5k -|-7Tk|—|-kz; Ee}| + Z (E

k=1

ok
+;‘(Eﬂ)2 E(ﬂk)
= |E8| 2 [Io+ N + I + I3].

We will estimate each of;’s to obtain a bound ohEé,| (cf. (4.4)). Since thatE(s} + ;) = 0, by
(2.5), we have

= —Z|7Tk| Z| EtrDy — EtrD| < 1/(nv) < Cyv.

Here and hereafter, the symld} denotes a positive constant which may be made arbitrarily small
by choosing,/nv large. From Lemma 3.2, Remark 3.1 and noticing that v,, we have

1 & 1 &
ho< S Bl = S (B L+ ml
MEA s 2 Bl )

< c l_|_A+Uy _I_A—I—vy 1 c(A4wvy)  Cu(A+vy)
- | ES nv? n2v4 nZv2) = |EB|lnv? =  |EB|
1 p
I, = ——)Y |E}| < (Eleg* + Ele

Now

- Z Elex|* < _Z( Ele|* + Ele* + |mul?) £ e(la1 + T2 + Ioa).

k=1

Since

tT‘BkEk = tT‘(Ip_l + ZDk)(I—I— Eﬁk) < 2(])—|— |Z|2tT‘Dkﬁk) ,
We have from the proof of Lemma 3.1,

Elex|* en™? {1+ n"? E(trB;B)?}

<
< ¢n 2{1—|—n terDk 2}
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Now

E(tr(DiDg))* = o 2 E(Im(tr(Dy)))?
< 207w + E(Im(tr(D)))?]
2071 4 2p*0™% E(Im(m,(2)))?
2071 4 4p*vT? Emy,(2) |2 + 4p*v ™2 E|my(2) — Emy(2)]?
ep*vH A+ v))? + c0T8(A +vy),

A

IAN A

where the second inequality follows from (2.5) and the last step follows from Lemma 3| Famg z)| <

| Emy(2) — m(2)| + |m(2)| < v7 (2A 4+ ayvy) with oy, == (1 +3,/7)/[\/y(1 — y)]for0 <y < 1
anda, :=2fory = 1. Thus

c{n ™+ o 0T A o) 0T (A o) )

C’U[vy + A ].

Iy <
<

Also, considerind);, instead ofD as in Lemma 3.5 and applying (2.4), one can show that for some
Lo such that for allLgn=1/2 < v < 1,

Iyp < c(A+ vy)Qn_4v_8 < C’U[vz + A?).

Since|rx| < |z|(nv)~1, we havelys < |2]*(nv)~%, and hence,

p
P_IZ Elep* < e(lor + Lo + Iy3)
k=1
< CWA* 4 0) + Cy (A% + 0)) + (nv) ™7
< C'U(A2 + vz)

Consequently, for some constaryt > 0,

c(A+vy) Cy Co(A +vy)
TEfme HTEE ™ + A7) S ~r

I, <
|
and

1 c,
< ——— Elei|* < A 42
3—pv|Eﬂ|2,; " < g A+ )

Summing up the above results, we obtain

| E6,| < |Eﬁ|2[10+11+12+13]
C, Adwv, A+v, A*+0]
< v+ + + . 4.4
Es |°T TS T TESR T o EGR (4-4)

On the other hand, by Lemma 2.2 and (4.1), we have

= |- B3, + By () — m(=)] 4 m(:) < | BG + 22T )

L
| ES|
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Note that the estimates (4.4) and (4.5) are valid fof.gh—'/2 < v < 1. As proved in Bai (1993b
(see Eq. (3.39)-(3.40) there), there is a constanich that for every > 0

A
/ | Emy,(2) — m(2)| du < cv
—A

provided thatup, | Ed,| < v (here and hereafterip, refers tasupy, < 4). Thus, ifsup, | Ed,| < v,
in view of (4.1), we can find a positive constantsuch that

A < cruy. (4.6)

Part (i) of Theorem 1.1 :
In this part,0 < y < 1 andv, = v. Write My = (1 + 2¢; + «,) and seleci > L, such that when
Ln~12 <y < 1, we have

Col > ME[1+ (14 )Mo+ (2+ c1 + ) M{] .

The proof will be complete once we have shown that for all largadLn~/2 < v < 1,

sup | Ed,| < v. 4.7)

It is proved in Bai (1993b) that (4.7) holds for all largeandc,n=/4 < v < 1, wherec, > 0 is
a constant, and henee < ¢;v. Applying these to (4.5), we have

| BB~ < v+ 2A/ v+ oy < Mo. (4.8)

This means that for all largeandc,n =1/ < v < 1, both (4.7) and (4.8) hold. Now lettingdecrease
to Ln~'/2, sincesup,, | ES,| is continuous iny, one of the following cases must hold:
Case 1sup, | ES,| < vistrue forallLn=1/? < v < 1;
Case 2. Thereisac [Ln~'/2, con~/4) such thaup,, | ES,| = v
and| E3|7! < Mo;
Case 3. Thereisac [Ln~'/2, con~'/4) such thasup,, | ES,| < v
and| E3|~! = M.

The theorem then follows if Case 1 is true. Thus to complete the proof of the theorem, it suffices to
show that Cases 2 and 3 are impossible. Note that in either Cases 2 or 3, wk kavey by (4.6).

If Case 3 happens, then there existe [Ln~1/2, cyn~'/*) andug, such that E3(z0)|~' = My,
wherezy = ug + ivg. Then, by (4.5), we have

| EB(20)| 7" < 2¢4 +ay +vo < 2¢; +ay + 1 = My,

which leads to a contradiction to the equality assumption. If Case 2 happens, then therg exist
[Ln=2, can='/*) anduy, such that E4,(z0)| = vo, wherezg = ug + ivo. From (4.4) we have

| E(Sp(20)| S U()CUMg[l —|— ClMO —|— (1 —|— C%)Mg] < vg.

This is also a contradiction to the equality assumption. The proof of Theorem 1.1 is complete for the
casel) < y < 1.
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Part (ii) of Theorem 1.1 :
Wheny = 1, F,(z) andF), (=) satisfy the following conditions:

F,(0) = F,(0) Zﬁxﬂ%@%:lmxﬂ@@%:L

Thus £, (z) = [ tdF,(t) and £ (z) = [ tdF,(t) are two distributions and’, () satisfies the
Lipschitz conditionj.e. there exists a constant> 0 for anyz andy such that

|Fy(2') = Fy(2)] < Ll2" — <] (4.9)
Therefore there is a constantsuch that

1 . .
—sup/ |Fy(z 4+ u) — Fy(2)| du < eqv
[u|<270

UV oz

According to the definition of},(z) and F), (x) it follows for any . > 0 and everyt > 0 that

/ T BB, (1) - Fy(e)lde = o(u™)
d4p

| mR @ - B@lde = ot

+u

Let 7, (2) andr(z) denote the Stieltjes transform b} (z) and F;, (=) respectively , then
my(2) =1+ 2my(2), m(z) =14 zm(z)

The proof of the Theorem 1.1, part (i) can be applied to the estimatiohs-of| F,,(z) — F, (z)| and
|1, (2) — 1(2)|®. Therefore there is a constant- 0, when1/2 > v > én~'/2 itis followed that

supE|zé,| < w, (4.10)
Elzm, (z) — zm(z)| = E|m,(z) — m(z)] < wv. (4.11)

By (4.1) and Lemma 2.5, there is a constantsuch that
A < H/ |Em, (2) — m(2)| du+ can/v
lul<25
_— [Bomy (2) = 2m(2)] gy
lu|<25 |2|

du C3
< m}/ ———— 4 /v < kulog — + /0.
luj<25 Vu? 4 v? ? v

Sincexvlog 2 < /v whenv is small enough, it is followed that

A< (CQ + 1)\/5

The proof of Theorem 1.1, part (ii) is complete. 1.
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4.2 Proof of Theorem 1.2
By Chebyshev inequality, it suffices to show that

2
O(n~3), for0<y<1,
B|E, - 1y = 0 ) o
O(n79), fory=1
Cased <y < 1: From (4.1), it follows that
EHFp o Fy||
A 1
< ¢ / E|lm,(z) — m(z)|du+ —/ E|F,(z) — e(z)|dz + v
—A U J|z|>B
A A
< ¢ [/ Elm,(z) — ]Emp(z)|du—|—/ | Em,(2) — m(z)|du
—_A —-A
1
—|——/ | EF,(2) — e(2)|dx + v .
U Jz|>B
In the above argument, we have used the fact fidi, () —e(z)| = | EF,(2)—e(z)|forall |z| > B.

As in the proof of Theorem 1.1, we have shown that the last three terms on the right hand of the
above inequality are of ord&?(v) for all Ln=1/2 < v < 1. Applying Cauchy-Schwarz inequality
and Remark 3.1, and the restt= O(»~'/2) proved in Theorem 1.1, we conclude that

A A
/ E[my(z) — Emy(2)|du < / (Elmy(2) = Emy(2)]*)"/*du
—-A —-A
< en~ty=3/2 <w,

for some positive constartand allcn=2/> < v < 1. The proof of Theorem 1.2 in this case is
complete.

Casey = 1: Similarly we have forallLn=/2 <v < 1,
A
BlE -yl < | [ Blmy() - By (ldu+ Vi
—A

Applying Cauchy-Schwarz inequality and Remark 3.1, and the reésettO(n~'/4) proved in The-
orem 1.1, we conclude that

IN

A
| (Bl )~ Emy(2)f)
—A

en— Lo~ 201t — ep—ly=T/4 < v1/2,

A
/ Ejm,(z) — Em,(z)|du
—A

IN

for some positive constartand allcn=%° < v < 1. The proof of Theorem 1.2 in this case is
complete. 1
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4.3 Proof of Theorem 1.3
By Proposition 4.1 we have

A

A
15 = Fyll < e [/_Almp(Z) - Emp(Z)ldU+/_A| Em,(2) — m(z)|du

1
t [ IR - c@lde o,
|z[>B

v

(4.12)

Yin, Bai and Krishnaiah (1988) has proved that under the assumption of Theorem 1.3, with probability
one, for all largen, S, has no eigenvalues larger th&nor less than-B (recall thatB = 5). Thus,
with probability one, for all large:,

/ |F,(z) — e(z)|dz = 0.
|z|>B

Moreover in the proof of Theorem 1.1, we have proved that the second term on the right hand of (4.12)
has ordeO (v,) forall Ln='/2 < v < 1.

Caseld < y < 1: Recall that in this case;,, = v. To complete the proof of Theorem 1.3, set
v = en~2/5+7 with somes > 0. We will show that

vt /_i |my (2) — Emy, (2)|du — 0 a.s. (4.13)

Now, applying Lemma 3.5, we obtain for eagh- 0,

P(/_i|mp<z>— B ()] du > o)

IN

A
v —2k 2k—1 ma (2) — m z%u
(v6)~2(24) /AE' ) () = Em, (2)[2d

IN

f_zk(QA)Zk [Ck (n—zv—5>k}

< 02(55)_%7@_5%.

The right hand side of the above inequality is summable by chodsiurh thattnk > 1. Thus,
(4.13) is proved and the proof of Theorem 1.3 is complete in this case.

Casey = 1: The proof in this case is similar with, = \/v. By takingv = en~%/9%" with
somes > 0, we have
A
U_I/Q/ |my (2) — Emy (2)|du — 0 a.s. (4.14)
—A
1
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