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Abstract.
Self-organizing maps (SOM) are widely used for their topology preservation property: neighboring input
vectors are quantified (or classified) either on the same location either on neighboring ones on a predefined
grid. But SOM are also widely used for their more classical vector quantization property. We show in this
paper that using SOM instead of the more classical Simple Competitive Learning (SCL) algorithm drastically
increases the speed of convergence of the vector quantization process. We also suggest to use the result of
SOM as initial conditions for the SCL algorithm, in order to benefit both from the increased convergence
speed and the convergence towards optimal states.

1. Vector Quantization

Vector quantization (VQ) is a widely used tool in many domains of data analysis. It consists in replacing a
continuous distribution by a finite set of quantifiers, while minimizing a predefined distortion criterion. Vector
quantization may be used in clustering or classification tasks, where the aim is determine groups (clusters) of
data sharing common properties. It can also be used in data compression, where the aim is to replace the initial
data by a finite set of quantified ones; labeling the quantified set and using the labels rather than the data
themselves makes compression possible. Vector quantization is basically an unsupervised process, while
supervised variants exist (LVQ1, LVQ2, in Kohonen [5]); in this last case, the distortion criterion takes class
labels into account.

Most of the methods used to perform VQ necessitate setting a priori the number of clusters or quantifiers. The
choice of this number results from a trade-off between the precision (distortion) of the quantization and the
necessity of an efficient description of the resulting clusters (quantity of information kept after quantization).

Once the number of quantifiers is predefined, a good criterion of the quality of the classification is the distortion
which measures the deviation between the data and the corresponding quantifiers. Let us recall the main
definitions and notations.

Let us consider a continuous data space Ω, of dimension d, endowed by a continuous probability density
function (pdf) f(x), where the cumulated density (or repartition function) is F(x)=P(X<x) (where P is the
probability law, and where the inequality is verified in each dimension).

A vector quantization Φ is an application from the continuous space Ω to a finite subset F (the codebook) formed
by n code-vectors or centroids or quantifiers q1, q2,…,qn of Ω. The positions of the code-vectors are supposed to
be computed as a result of a quantization algorithm or learning algorithm.

The aim of a vector quantization (VQ) is to compress the information by replacing all elements x of a cluster Ci

(subset of Ω) by a unique quantifier (or code-vector, or centroid) qi. For a given number n of code-vectors,
vector quantization tries to minimize the loss of information or distortion, measured by the mean quadratic error
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If a N-sample x1, x2,…,xN is available (randomly chosen according to f(x)), this distortion is estimated by the
intra-class sum of squares
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All classical VQ algorithms (LBG, k-means,…) minimize this distortion function by choosing appropriate
centroid locations. See for example Anderberg [1] or Lebart et al. [7] for proofs. There is no unique minimum of
the distortion function, and the result strongly depends on the initialization.

2. Simple Competitive Learning and batch VQ algorithms

There exist many algorithms that deal with the VQ problem. Most of them are very slow in terms of convergence
speed. The most popular one is the so-called Simple Competitive Learning algorithm (SCL) which can be
defined as follows (see for example [4]):

let Ω be the data space (with dimension d), endowed with a density probability function f(x). The data are
randomly drawn according to the density f(x) and are denoted by x1, x2,…,xN,. The number of desired clusters is a
priori fixed to be n. The quantifiers q1, q2, …, qn are randomly initialized. At each step t,

• a data xt+1 is randomly drawn according to the density f(x) ;
• the winning quantifier qi*(t) is determined by minimizing the classical Euclidean norm

|| xt+1 − qi*(t)|| = minj || xt+1 – qj || ;
• the quantifier qi*(t) is updated by qi*(t+1) = qi*(t) + ε(t) (xt+1 − qi*(t)).

where ε(t) is an adaptation parameter which satisfies the classical Robbins-Monro conditions (Σ ε(t) = ∞ and
Σ ε2(t) < ∞).

The SCL algorithm is in fact the stochastic or on-line version of the Forgy algorithm (also called moving centers
algorithm, LBG, Lloyd's algorithm). See for example [3], [8], [9]. In that version of the algorithm, the quantifiers
are randomly initialized. At each step t, the clusters C1, C2, …, Cn are determined by putting in class Ci the data
which are closer to qi than to any other quantifier qj. Then the mean values in each cluster are simultaneously
computed and taken as new quantifiers, before repeating the process. The Forgy algorithm works off-line as a
batch algorithm; it will be referred to as BVQ (for Batch VQ) in the following. It also exists an intermediate
version of the algorithm, frequently named the K-means method [10]. In that case, at each step, only one data is
randomly chosen, and only the winning quantifier is updated as the mean value of its class.

It can be proven ([1], [7]) and it is well-known that BVQ minimizes the distortion (1) or, more exactly, the
estimated one (2). Note that the stochastic SCL algorithm also minimizes this distortion, but only in mean value:
at each step, there is a positive probability to increase the distortion, as for any stochastic algorithm.

Let us denote by q1*, q2*, …, qn* one set of quantifiers which (locally) minimizes the distortion. Generally the
minimum is not unique and depends on the initial values. At a local minimum of the distortion, each qi* is the
center of gravity of its class Ci, with respect to the density f, and the quantifiers are fixed points of the BVQ
algorithm. In an exact form,
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Let us note that equations are implicit ones, since the Ci are defined according to the positions of the qi.



For example, in the one-dimensional case, the classes Ci (1 ≤ i ≤ n) are intervals defined by Ci = [ai, bi], with
ai = ½ (q*i−1 + q*i) and bi = ½ (q*i+1 + q*i), for 1 < i <n, and a1 = inf (Ω), bn = sup (Ω).

The BVQ algorithm is nothing else than the iterative computation of the solutions of equations (3) or (4). The
solution is not unique, and depends on the initial values.

The goal of this paper (after a preliminary work presented to ESANN’99, see [2]) is to evaluate the speed of
convergence of VQ algorithms. In situations where the solution is unique and where it is possible to compute the
exact values q*i, the performances will be evaluated through the rate at which the values qi converge to q*i (see
section 4).

3. Self-Organizing Maps (SOM)

Let us consider now the SOM algorithm (as defined by T. Kohonen in [5]) which can be seen as an extension of
the Simple Competitive Learning Algorithm (SCL) in its classical stochastic form, and of the Forgy Algorithm
(BVQ) in its batch form.

In this section, we consider the SOM algorithm with a fixed number of neighbors (although the number of
neighbors uses to decrease with time in practical implementations).

Actually the SOM algorithm is different from the SCL algorithm only because a neighborhood structure is
defined between the n quantifiers. The neighborhood structure of the SOM algorithm is mainly used for
visualization and data interpretation properties.

For a given neighborhood structure, where V(i) denotes the neighborhood of unit i, the SOM algorithm is defined
as follows. The quantifiers q1, q2, …, qn are randomly initialized. At each step t,

• a data xt+1 is randomly drawn according to the density f(x) ;
• the winning quantifier qi*(t) is determined by minimizing the classical Euclidean norm

|| xt+1 − qi*(t)|| = minj || xt+1 – qj || ;
• the quantifier qi*(t) and its neighbors qj*(t) for j in V(i) are updated by

 qj*(t+1) = qj*(t) + ε(t) (xt+1 − qj*(t)).

where ε(t) is an adaptation parameter which satisfies the classical Robbins-Monro conditions (Σ ε(t) = ∞ and Σ
ε2(t) < ∞).

We see that the SCL algorithm is a particular case of the SOM algorithm, when the neighborhood is reduced to
zero. Sometimes SCL is called 0-neighbor Kohonen algorithm. As to the batch SOM algorithm, it is also similar
to the Forgy (BVQ) algorithm. The only difference is that at each step, for a given set of classes C1, C2, …, Cn,
the quantifier qi is set to the mean value of the union of the class Ci and its neighbors. See [6] for example.

In the one-dimensional case, and for a one-dimensional structure of neighborhood, if the neighborhood V(i)
contains i-1, i, i+1 (two-neighbor case), the limit points q*i of the batch SOM algorithm verify equation (3) or
equation (4), where Ci is replaced by Ci

2 = Ci-1 ∪Ci∪Ci+1 = [ai, bi], with ai = ½ (q*i−2 + q*i-1) and bi = ½ (q*i+1 +
q*i+2), for 2 < i <n-1, and a1 = a2 = inf (Ω), and bn-1 = bn = sup (Ω).

Here again, the batch SOM algorithm is nothing else than the iterative computation of the solutions of equations
(3) or (4), when Ci is replaced by Ci

2.

The batch SOM algorithm and the classical stochastic SOM algorithm do not decrease anymore the distortion
(1), but the generalized distortion [11], that is the distortion extended to the neighbor classes (as long as the
number of neighbors ν remains fixed). This generalized distortion is given by
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where V(i) is the set of indexes in the neighborhood of i, including i. This generalized distortion function can
also be estimated through a finite set of samples x1, x2,…,xN , similarly to (2).



4. Experimental results: convergence to the exact solution of the VQ problem

The SOM algorithm is not equivalent to the SCL algorithm: it is deemed to minimize the generalized distortion
(5), and not the classical distortion of VQ problems (1). Despite this fact, we will show that the SOM algorithms
performs better than the classical SCL algorithm, i.e. converges faster towards the solution of (1), at least during
the first iterations of the algorithm.

We study this phenomenon from two points of view. First, in some cases where it is possible to exactly compute
the solutions of equations (3) or (4), we evaluate the error between the current values and the optimal values as a
function of the number of iterations, for both the SCL and SOM algorithms; this is the topic of this section.
Secondly, for more realistic data, we compare the decreasing slope of the true distortion (1) as a function of the
number of iterations, also for both algorithms; this is the topic of section 6

In some one-dimensional cases (d = 1), if the set Ω is a real interval, and if the density f is known and well-
behaved, it is possible to directly compute the solutions q*i , starting from a given set of increasing initial values,
by an iterative procedure.

If the initial values are ordered, the current values q1, q2, …, qn will remain ordered at each iteration of the SCL
algorithm. As mentioned in the previous section, the classes Ci (1 ≤ i ≤ n) are therefore intervals defined by
Ci = [ai, bi], with ai = ½ (qi−1 + qi) and bi = ½ (qi+1 + qi), for 1 < i <n, and a1 = inf (Ω), bn = sup (Ω). This
constitutes the first set of equations (Ci as a function of qi) used in this iterative procedure.

Equations (3) or (4) have no explicit solutions. However, it is possible to compute analytically the solutions q*i,
as a function of the limits ai and bi of the intervals Ci, for some "easy" densities f(x). This will constitute the
second set of equations (equivalent to (3)) used in the iterative procedure. Table 1 presents these recurrent
explicit equations for the densities f(x) = 2x, 3x2, e− x.
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Table 1 : Exact computation of the quantifiers as a function of the limits of the clusters, for some "easy"
examples of densities.

This iterative procedure is similar to the BVQ algorithm; formulas in Table 1 are the analytical solution of
equation (3), while the BVQ algorithm usually involves in practical experiments the use of approximation (4).

Knowing the optimal values of the quantifiers, it is be possible to study the speed of convergence of any Vector
Quantization algorithm. In that purpose, we will study the Euclidean distance between the current values of (qi(t))
resulting from some VQ algorithm and the solutions (q*i), as a function of the numbers of iterations. We define
the mean quadratic error

D2(t) = D2(q(t),q*) = (1/n) Σ1≤ i ≤ n (qi(t) – q*i) ² (6)

which will be the error measure of the Vector Quantization algorithm into consideration.

In practical situations, one can observe that the error measure D2(t) decreases to 0 very slowly when using the
SCL algorithm. Note that in all simulations we carefully start from the same initial increasing points, including
for the exact computation of the (q*i), in order to avoid any effect due to the initial conditions.



In Figures 1, 2 and 3, we represent the variations of the error measure D2(t), for the SCL algorithm and for the
SOM with 2, 4 and 8 neighbors. Figures 1, 2 and 3 respectively concern densities f(x) = 2x, 3x2 and e− x. We can
see for example that the SOM with neighbors decreases to the optimal values (q*i) much faster than the SCL
algorithm, even if it finally converges to its own optimal points as detailed above in section 3. These optimal
points minimize the generalized distortion extended to the neighbors (5), and are different from the (q*i).
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Figure 1 : Evolution of D2(t) as a function of the number of iterations, for the density f(x) = 2x.
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Figure 2 : Evolution of D2(t) as a function of the number of iterations, for the density f(x) = 3x2
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Figure 3 : Evolution of D2(t) as a function of the number of iterations, for the density f(x) = e-x

We also measured the evolution of D2(t) as a function of the number of iterations, for a Gaussian density N(0,1).
In this case, the exact values q*

i have been obtained through equation (4), by using very large samples to
compute at each step the Ci. Figure 4 shows this evolution of D2(t) as a function of the number of iterations,
respectively for the SCL algorithm and for the SOM with 2, 4, 8 and 16 neighbors.
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Figure 4 : Evolution of D2(t) as a function of the number of iterations, for the standard Gaussian N(0,1) density



One could argue that the comparisons are made on different algorithms, where the processing time per iteration
is different. The comparison in terms of number of iterations is thus not fair if the total processing time is
searched for. Nevertheless, as an example, the difference of the processing time of one iteration when using the
2-neighbors SOM algorithm instead of the SCL algorithm is significantly less than 1%; the differences shown in
Figures 1 to 4 thus remain significant.

This section has shown that the use of SOM can greatly increase the speed of convergence towards the exact
solutions of the VQ problem. Nevertheless, it must not be forgotten that the SOM algorithm will not finally
converge to these solutions after a great number of iterations, but rather will converge to the solution of (5). In
the next section, we then to use a mixed algorithm, beginning by some iterations of the SOM algorithm and
ending with a classical SCL procedure, in order to benefit both from the accelerated convergence and from the
convergence towards optimal states.

5. Hybrid algorithm SOM/SCL

Based on the results of the previous section, we propose to use a hybrid VQ algorithm (denoted by KSCL for
Kohonen SCL), which consists in an initial phase (a SOM algorithm with ν neighbors), followed by the classical
SCL. We compare the value of the error D2(t) after the same number of iterations for KSCL and SCL.

For example, let us fix a total number of iterations T, the initial ordered points q1(0), q2(0), …, qn(0), a constant ε
and various probability functions : f(x) = 2x on [0,1], f(x) = 3x2 on [0,1], f(x) = e− x on [0, +∞ [, the standard
Gaussian N(0,1). Let us also consider the 2-neighbors SOM algorithm (ν = 2).

In Figures 5, 6, 7 and 8, we represent the evolution of the error measure for different KSCL algorithms, for the
four probability densities that we took as examples. We consider four KSCL variants where the 2-neighbors
SOM algorithm is used respectively during 0%, 30%, 60%, 90% of the total number of iterations T.
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Figure 5 : Evolution of D2(t) as a function of the number of iterations, for 4 variants of the KSCL algorithm, on
the 2x density.
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Figure 6 : Evolution of D2(t) as a function of the number of iterations, for 4 variants of the KSCL algorithm, on
the 3x2 density.
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Figure 7 : Evolution of D2(t) as a function of the number of iterations, for 4 variants of the KSCL algorithm, on
the e-x density.
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Figure 8 : Evolution of D2(t) as a function of the number of iterations, for 4 variants of the KSCL algorithm, on
the standard Gaussian density.

We can observe in all simulations that the 2-neighbors algorithm greatly accelerates the decrease of the error
measure in the beginning of the curves. In all cases, using too early the SCL algorithm slows down the decrease.
Moreover, the performances remain better than those of the SCL algorithm, whatever is the choice of the KSCL
variant. Nevertheless, it is also clear that determining the optimal iteration for substituting SOM by SCL strongly
depends on the probability density. An optimal choice of this parameter would thus require extensive
simulations, which is not the goal searched for here.

We may conclude this section by claiming that, in any case, the SOM algorithm with a fixed number of
neighbors can work as an efficient initialization of the SCL algorithm to accelerate the convergence and improve
the performances. We verified this statement on many other probability densities, real data and for several values
of the number of neighbors ν.

In practical implementations of the SOM algorithm, the number of neighbors is made decreasing. Our
observations confirm that this widely used strategy is very efficient to improve the decreasing of the error
measure.

It would be interesting to consider this so-called error measure in multidimensional settings. Nevertheless, this
concept is not well suited to dimensions greater than 1. First, it becomes very hard to compute the optimal
quantifiers q*i. Secondly, even an efficient (compared to others) VQ algorithm may converge slowly to the
optimal quantifiers. The lack of ordering concept in dimension greater than 1 does not facilitate the problem
either, and the correspondence between the current quantifiers at a given iteration and their optimal values looses
its clear significance.

We will thus replace the concept of error measure by the concept of distortion as defined by (1) or (2). In the
next section, we study how the distortion is decreasing along the quantization process, in both cases (SCL
without neighbors, or SOM with a decreasing number of neighbors).

6. Experimental results: comparative evolution of the distortion

In this part, we study the vector quantization performances of SCL and, by computing the distortion defined in
equation (2) in the case of real data.



As we mentioned previously, the SCL is supposed to minimize this distortion, while the SOM (with fixed or
decreasing number of neighbors) is not. However we can observe that in any case, the SOM algorithm
accelerates the decrease of the distortion, at least during a large part of the simulation.

We represent the distortion as a function of the number of iterations, for 5 different quantization algorithms: SCL
and 4 variants of the SOM algorithm which differ by the number of neighbors. For a two-dimensional
neighborhood structure, we consider successively 3 SOM algorithms with a fixed number of neighbors (SOM5,
SOM9 and SOM25, the suffix being the number of neighbors) and then the classical SOM algorithm with a
decreasing number of neighbors (from 25 to 1, the last part of the SOM iterations being equivalent to SCL).

We illustrate these simulations on two data set. The table SAVING contains 5 variables measuring economic
ratios for 42 countries between 1960 and 1970; the table TOP500 contains 6 variables relative to 77 American
companies in 1986. 1

Figure 9 represents the distortion for the data SAVING, with 25 quantifiers, square grid (5 by 5) for SOM
algorithms and 500 steps of iterations. Figure 10 represents the distortion for the data SAVING, with 100
quantifiers, square grid (10 by 10) for SOM algorithms and 1000 steps of iterations. Figure 11 represents the
distortion for the data TOP500, with 100 quantifiers, square grid (10 by 10) for SOM algorithms and 1000 steps
of iterations.
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Figure 9 : Evolution of the distortion as a function of the number of iterations, on the Saving data set; 25
quantifiers are used (see text for details on the algorithms).

                                                       
1 The data are available on the WEB page …
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Figure 10 : Evolution of the distortion as a function of the number of iterations, on the Saving data set; 100
quantifiers are used (see text for details on the algorithms).
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Figure 11 : Evolution of the distortion as a function of the number of iterations, on the Top500 data set; 100
quantifiers are used (see text for details on the algorithms).

In each simulation, we can see that the SOM algorithm performs as the best quantifier (it leads to a lower
minimum of the distortion function). The SCL algorithm is very slow, and the SOM with non-decreasing number



of neighbors is powerful at the beginning of the iterations, but allows at some iteration the distortion to increase
(or would allow, after a larger number of iterations). In fact the classical SOM algorithm which ends with no
neighbor appears to be an excellent VQ algorithm. When the quality of the result is the ultimate goal (regardless
of the computation time), one can use the SCL algorithm after the SOM one to refine the solution (or in other
words, one can increase the number of iterations performed without neighbors in the SOM procedure).

7. Conclusion

The experiments illustrated in this paper, as well as many others performed on other data sets, prove that the
quality of the SOM algorithm resides not only in its topology preservation property, but also its vector
quantization one. The SOM algorithm may be recommended compared to other VQ techniques like SCL, in
order to reach a better minimum of the distortion error with a fixed number of iterations, or to reach faster a
similar value of the distortion.

The better convergence properties cannot be proven theoretically. Nevertheless, we can make the analogy with
simulated annealing techniques: the use of a neighborhood in the SOM algorithm introduces apparent disorder,
making it possible to escape from a local minimum of the objective function and to increase the slope of
convergence. Ending the VQ procedure with the SCL algorithm may be compared to ending a simulated
annealing technique with a "temperature" parameter equal to zero.
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