Fxact Calculus of First and Second Derivatives of
Arbitrary Feed-Forward Neural Networks

Serge lovleff*
December 7, 2001

Abstract

In this article we show how to calculate general feed-forward neural
networks first and second derivatives and all order derivatives of a mul-
tilayer perceptron. Our approach is simple and founded on an idea first
discovered by Vapnick [9]. This approach allows to integer in an evident
way a penality or added constraints on the parameters. We show that the
Hessian is bloc diagonal and that the computation of the first and second
derivatives can be done with only one back-propagation. Morever, in the
perceptron case it appears clearly there is a significant reduction of the
number of data to handle in second order estimation methods.

1 Introduction

Standard learning algorithm of the multilayer perceptron uses a back-propagation
algorithm to evaluate the first derivatives of the objective function. The calcu-
lus of the first derivative allows to use a gradient algorithm (first order method)
whose defaults are well-known : low convergence and tricks of the local minima
or by the almost flat spot of the objective function.

To accelerate convergency, second order methods are frequently used : essen-
tially the conjugate gradient method or the quasi-Newton methods like BFGS
and its variants approaching the Hessian during the iterations [5, 8]. Methods
based on the exact Hessian such as Newton-Raphson or truth region methods [4]
do not seems to have been implemented. This is due to the fact it is said that for
large networks, the effective computation of the full Hessian is time-consuming
[2]. Our aim is thus, in a first part, to obtain an efficient method of calculation
of the first and second derivatives for an arbitrary feed-forward neural network.
Secondly, to develop theses formulas for the main feed-forward neural networks
used : the multilayer perceptron (for which we obtain derivatives at all order)
and the radial basis function (RBF) networks. We obtain that the Hessian is
bloc diagonal for a general feed-forward neural network and can be effectively

*Serge iovleff is with the IUP of Statistics and Computation, University of South Britain,
56000 Vannes, France. E-mail : Serge.lovleffQuniv-ubs.fr

computed with only one back-propagation. Moreover, in the case of the per-
ceptron the number of non nul elements is greatly reduced so that the Hessian
could be computed in an extremely reasonnable time. As far as we know, this
fact has not been noticed until now. Remind that exact calculus of the second
derivatives of a multilayer perceptron has been obtained by Bishop [1] and for
an arbitrary feed-forward neural networks by W.L Buntine and A.S. Weigend
[2] (see also [6]). In both cases the authors use the ”chain-rule” to derivate
and obtain an algorithm requiering 2h + 2 back-propagations to compute the
Hessian (where h is the number of hidden units). At the moment, to our mind,
no explicit formula for the higher order derivatives exists in the perceptron case.
Our approach is different in two ways :

1. For the mathematical modelisation : we use the layer disposition of the
feed-forward neural networks and do not work with a directed aciclyc
graph.

2. For the calculus of the first and second derivatives we do not use the
”chain-rule”. We follow an idea of Vapnick [9] and work with an under
constraint optimization problem.

This approach clarify a bit the notations and sheds new light on the back-
propagation algorithm : it is just the computation of the Lagrange multiplier.
This document is organized in the following way. In a first time we intro-
duce the notations we will use, and we describe the working way of a general
feed-forward neural networks. Then we describe the optimization problem that
we have to solve. We calculate the first and second derivatives of an arbitrary
feed-forward neural network and obtain the back-propagation algorithm to com-
pute them effectively. Results are then detailed for the two main feed-forward
networks actually used : the multilayer perceptron and the RBF networks.

2 Preliminaries

Let’s define first the vocabulary. The neural networks are described in a func-
tional point of view by three aspects:

1. An architecture which describes the relationship between the neurons with
an oriented graph (The nodes represent the neurons and the arrows the
communication direction between them).

2. A propagation method which describes how the neurons communicate be-
tween themselves through the arrows.

3. An activation which represents the treatment realized in an individual way
by the neurons.

The feed-forward Neural networks are characterized by a layer disposition of
the neurons which does not permit a layer to communicate with the neurons of

the layers behind them. However, a neuron of a layer is allowed to communicate
with any neuron of any layer ahead him.

A neural networks is set up by a group of unknown parameters that we have
to estimate (learning step) using a sample (the examples). The parameters are
estimated by minimizing a cost function (or objective function).

2.1 Notations

For the dimensions, we assume that we have m + 1 layers and that for each layer
we have sg, $1,...,8, units and tq,ts,...,t,, parameters.

For the index, we always use the subscript i to number the examples, the
subscript j to number the units in a layer, the uperscript & to number the layers
and the subscript [to number the parameters.

Generally we try to use capital letters X, H, E, ... for vectorial quantities
and the letters z, h, e, ... for scalar quantities.

In order to get compact notations, we use the following conventions :

e For every 1 < k < m, the sets W* represent Rt x...x Rf*, and the special
set W = W™ is called the parameter space.

e W* denote an element of R* and W¥* an element of W*. An element
W™ =W € W is called a parametrization of the Neural Network.

In a similar way :

e for every 0 < k < m, the sets X* represent R* x ... x R®* and the special
set X = X"™ is called the configuration space.

e X* denote an element of R**, X* denote an element of X*. An element
X™ =X € X™ is called a configuration of the Neural Network.

Concerning the activation and propagation functions, we use the following
conventions :

e We note h;? the activation function of the j-st neuron of the layer k (k > 0)
and we assume that h? is class C? where p is the derivation order that
we want to calculate. The activation functions do not depend of the
parameters.

We note H* the vector of the s functions (h%)5: ;.

e In a similar way we note hf(p) the p-st derivative of the activation function

and H*®) the vector of the p-st derivatives.

e We note P* the propagation function of the neural networks of the layers
0, 1,...,k—1 to the layer k. This function depend on a group of parameters
Wk
Pk . Xkl xR — RS
(Xk_l,Wk) — Pk(Xk—l;Wk)

Thus P* = (pk)5%, is a vector of s functions. We assume that the p¥ are
class CP reports to W* and are class C! reports to X*~1. We note P* the

vector of the s, functions (p¥)5:,.

Xk
by Dyy.p¥ the vector of the first derivatives (p¥/dwf) and by D3,.pk
the matrix of the second derivatives (6%p¥/0wf dw}))

e Finally, we denote by D%, P* the matrix of the first derivatives (6]);-c / axfl) ,

2.2 Propagation equations

A parametrization W fixed and a vector X° taken as input, we propagate it
using the recurrence formula

X = HH(PH(XH 1 TH)) M)

This equation is called the propagation equation. The vector X™ is called the
calculated output of the networks.
Later, we shall also use the following notation

XKO) = RO (PH(XEL W))

Examples of usual neural networks are postponed in section 4.

3 [Estimation of the parameters (Learning step)

We assume to have in hand a training set of the form (X?,Y;), fori=1,...,n.
For a given parametrization W, we can compute the output of the neural net
(Xi™,...,X™) using the propagation equation (1). We give ourselves a loss
function g(X™,Y;) and we assume that g is class C' reports to X™ (generally
the loss function is taken as quadratic, i.e. g(X™,V;) = 1/2]|Y; — X™|” but
many other choices are possible). We give also a penalisation function pen(.)
on the parameters (we can take for example pen(W) = A" ||WkH where A
is an a priori fixed parameter) and we assume pen() is class C? reports to W.

The estimation of the parameters is done by minimizing the objective func-
tion

Z 9(Xi",Yi) + pen(W). 3)

Note that g depends on the parameters W through X/* and that in this form,
the minimization problem (3) is not correctly specified. It can be completely
specified in two ways. The usual way consists to consider X¥ as a function of
W* and in solving the following optimization problem on W

minE(W) = 3" | g(X™(W),Y;) + pen(W) where

XM(W) = H™P™XP, X} WY ..., X" L(Wm-1), wm))

: (4)
X?(W?) = H*(P*(X),X}(W');W?))
X} (WY = HY(PYXD;WT))

and then using the chain-rule for derivatives to compute the derivatives. Observe
that when the propagations functions P* are not very simple, the calculus of
the first and second derivative can be very tiedous.

The second way consists to integrate directly the propagation equation (1)
as a constrain in the optimization problem and then to solve on W x X"

min)7, g(X[",Y;) + pen(W) (5)
we. XF=HHPHXFLWE) 1<i<n 1<E<m.

Thus, we want to estimate simulteanously the parametrization and the n con-
figurations of the feed-forward neural network.

We transform the constrained minimization problem (5) in an unconstrained
minimization problem by introducing the Lagrange multiplier. We define the
line vectors EF = (ek,...,ef)fori=1,.... nand k=1,...,m, and we now
want to solve the following problem on W x X" x X"

n m

min£ = 3 (X V2) 4 pen(W)+ 3 3 BF(xE - HE(PEXETW4)). (6)
=1 =1 k=1

This approach has been introduced by Vapnick [9]. The problems (4) and (5)
look very similar. In order to show that both approach are equivalent, we point
out that if f; and fo are two real functions of p and ¢ variables with p < ¢,

and morever for every (z1,...,%p), the derivatives 0f>/0x, k > p+ 1, can be
anulated at a unique point (zp41(z1,--.,%p),- .-, Z4(T1,--.,2p)) then, if
filze, ... zp) = fa(@r, . oy @py Tpp1 (1, o, Zp), oo Zg(Z1, .0, 2p))

every extrema of f; can be expressed as an extrema of fo and vice-versa.
Derivating £ in respect to EF and annulating these derivatives we get the

propagation equation (1). Inserting it in the problem (6), the variables EF disa-

pear, and we get the problem (4). This show the equivalence of both approach.

3.1 Derivatives calculus

To solve the problem (6) and apply the standard optimization algorithms, we
have to calculate the first and second derivatives of £ in report to the parameters
W and the first derivative in report to the variables E and X. Also we will see
that it is possible to get an explicit solution to annulate the gradient with respect
to these variables. In order to simplify our notations, we drop the index ¢ from
the equations.

The derivatives in respect to the Lagrange multipliers e;? are easely found
oL -
ek mf - hf(pf(X’“ LWR)).
J

Annulating theses equations we get the propagation equation (1).

Derivating in respect to the variables x;?, we have to distinguish while k = m
and while k£ # m. In the first case we have

oc Bg te
axj Oac
and when 1 < k < m, we have
Skl
CEEER R WL D
k1=k+1 j1=1

where xf(l) has been defined in equation (2). Annulating these equations, we
get the backpropagation equations

09

ejr = 81: (7)
< 1 1 pl
e;: — z Z k ;c(l P (Xk 1. Wk) (8)
k1=k+1 j1=1

Finally, we calculate the derivatives in respect to the parameters wl’“, for the
first derivative we have

oL SN k(D) 6 Open
_— = - , . Xk]'Wk l:].,,t 9
puf =~ 2% puf %)+ NG
For the second derivative we have
0L 8%pen
_— = — if k k2,
Bwlkf 8wlk; 611);“11611);“22 17
32[: _ 82pen . o ekxk(l) BQP_I; (X.kil'Wk)
owk ow owFowr &~ 7" dwk owk ’
1 2 1 2]71 1 2
Sk ok op*
j=1 Wi, Wi,
otherwise.
3.2 Implementation
Let us reintroduce the index ¢ and assume that % =0 when k! # ky. In

Wiy
this case, by equation (10), the Hessian is bloc diagonal and the number of non

null second derivatives are at most 3 +t3 + ...+ t2,.
The main steps to compute the first and second derivatives consist firstly in
propagating all the exemples X? and for k =1 to m to compute the quantities

XE = HE(PRXETS W)
XfW = HRO(PEXE W)
X = HRO (PRI W),

The second step consists in back-propagating the errors and to compute the
Lagrange multiplier
E" = Dxmg(X",Yi)
andfork=m—-1to1

m
Ef = Z Elelag(Xk(l))D}XkPkl(Xfl_IQWkl)-
k1=k+1

The final step consists in computing the vectors of the first derivatives
(1
Dyl == 30" ebath Dlyu p (XE1T7%) + iy pen(W)
i=1 j=1
and the matrices of the second derivatives

D%V’“‘C_ Zzez] zgz)‘DW’c](Xk 5 Wk)+DWkpen(W)
i=1 j=1

4 Examples

4.1 A completely connected m-layers perceptron

The usual perceptron perform a linear propagation from the layer k — 1 to the
layer k. In our framework this can be generalized in the following way : the
propagation functions P* are linear functions performing the transformations

Pk(Xk_l;Wk) WO kXO Wk 1 ka 1

The parameters of the layer k are the weight matrix W** with 0 < k; < k < m.
It is possible to introduce a bias by agregating an element always equal to 1 to
the vectors X?.

The first and the second derivatives of this propagation function are easily
computed. For every 0 < ky1,ko < kK < m, every 1 < j < sg,, and every
1 S j17j2 S Sk, W€ have

6pk 62 k

J k1
=zt and — =0 (11)
ki1k J1 ki1k kok

8’11}“11 8’11}“11 6’11}”22

and for every 0 < k1 < k < m, we have
Dl PRXTHWE) = WhHE,

The back-propagation equation is thus

m
3" EFDiag(x[M)Wk,
k1=k+1

For the first derivatives, we compute the gradient vector corresponding to the
j-st line of the matrix Wktk2 (k; < ky)

6Wk1 k2 Ze’w S

For the second derivatives, by (11) we just have to compute the Hessian corre-
sponding to each lines of W¥1:#2 ag all other derivatives are null. For the j-st
line, we have

oL _ Z kg ® xhi bt
o (W)’
J
The number of non-null second derivatives of a perceptron is thus »,* | sk Y P 0 Sp, -
In the case of the usual perceptron (only connexion between contiguous layer
are allowed), this number is reduced to Y ;- sgss_,. This is much less than
the usual Y}, (sksk—1)? storage needed by second order method.

4.1.1 Higher order derivative calculus

The calculus of the higher order derivatives is easy, we give as an example the
p-st order derivative, which is

6wk1,k2 a kl,kz - eijl ijl ij2 o xz]p
Jijz2 - Wy, 5,

oL — _ ke $k2(p)$k1 k1 (12)

The derivative is reduced to zero as soon as either the line index of two weights
or the layer number index are different.

4.2 The Radial Basis Function (RBF) Neural Networks

For the first layer, the propagation functions p; are some quadratic functions
P (X0 gy, My) = (X0 — p) M;(X° — pj)

where the M are symetric positive definite matrices. The networks parameters
for the first layer are the centers and the ponderation matrices

W = (uy, Mj)jL,.

That makes an important number of parameters, that can be reduced by as-
suming the hypothesis either M; = Diag(1/03;,...,1/0% ;) or M; = 1/0%1d
(isotropic case). The activation functions for the ﬁrst layer consist of radial
functions, and in general are taken as the exponential function : h; () = e~2%,
For the following layers (k = 2,...,m), the propagation functions are some
linear functions as for the perceptron.

As in the perceptron case, it is useful to add to the vectors X a component
always equals to 1. With this convention, the propagation function p} can be
written as

py(X% W) = XOW,; X0

where each W is a square matrix of size (so+1)? with a generic element wj, j, ;.

In regards to the RBF neural networks, only the first layer take part with
a quadratic propagation, and the back-propagation equation is the same as for
a perceptron. Only the calculus of the parameters derivative taking part in the
propagation from layer 0 to layer 1 are different. The derivatives with respect
to the parameters wj, j,; are

OL _ 1,110 10
L it} Jj1*¥ g2
6w91]2]

whereas the second derivatives with respect to the parameters wj, j,; and wj, j, ;
are)
o°L 1(2
T = _elat®@40 29 20 49
Wy jojOW;s jaj

73 J1j2"jz ¥ ja

5 Conclusion

We obtain a back-propagation algorithm to evaluate in an exact manner the first
and second derivatives of a completely general feed-forward neural network : ar-
bitrary propagation functions, direct connections between non contiguous layer
and general objective function that can include a regularization term on the
parameters.

We show that in the perceptron case the Hessian is bloc diagonal. There-
fore, a significant increase in speed and efficiency in the estimation parameters
methods currently used, should be realized by implementing a method using
the effective calculus of the second derivative to estimate the parameters of a
feed-forward neural network. Morever, from a statistical point of view, the Hes-
sian is an estimate of the information matrix of the model. It can thus be used
for testing hypothesis of nullity of the weights in a backward pruning method
as implemented by [3] or by [7]. Those points will be the aim of our further
investigations.

References

[1] C. Bishop, ”Exact calculation of the hessian matrix for the multilayer
Perceptron”, Neural Computation, vol. 4, pp. 494-501, 1992.

[2] W.L. Buntine, A.S. Weigend, ” Computing 2nd derivatives in feed-forward
networks. A review.”, IEEE transactions on Neural Networks, 5 (3), pp-
480-488, 1995.

[3] Y. Le Cun, J.S. Denker, and S.A. Solla, ”Optimal brain damage”, in
Advances in Neural Information Processing systems 2 (NIPS*89), D.S.
Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, pp. 598-605, 1990.

[4] J. Nocedal, S.J. Wright, Numerical Optimization, Springer Verlag, 1999.

[6] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical
Recipes: The Art of Scientific Programming, Cambridge University Press,
1986.

[6] F. Rossi, ”Second Differentials in Arbitrary Feed-Forward Neural Net-
works”, Proceeding of the IEEE International Conference on Neural Net-
works, Washington DC (USA), pp. 418-423, 1996.

[7] J. Rynkiewicz, ”Estimation et identification de modéles autorégressifs non-
linéaires multidimensionnels”, Technical Report Samos 125, Paris 1 Uni-
versity, 2000.

[8] A.J. Shepherd, Second-Order Methods for Neural Networks, Springer Ver-
lag, 1997.

[9] Vapnick V. N. The Nature of Statistical Learning Theory, Springer Verlag,
1995.

10

