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INTRODUCTION-IINTRODUCTION-I

••  ANNs are a biologically-inspired attractive paradigm of computation for
many applications: pattern recognition, system identification, cognitive
modeling, etc.

••   Properties of ANNs are:
➪  Capability of “learning” and “self-organizing” to carry out a
given task: ill-defined and input/output mapping.
➪  Potential for massively parallel computation.
➪  Robustness in the presence of noise.
➪  Resilience to the failure of components.

••   Practical applications require the choice of a suitable network
topology, the learning rule and the processing function computed by
individual units
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INTRODUCTION-IIINTRODUCTION-II

••  ANNs are often hard to design because:
➪  Many basic principles governing information processing are
difficult to understand.
➪  Complex interactions among networks unit make engineering
techniques inapplicable.
➪  The scaling problem: some solutions are not good if the
complexity of the problem increases.

••   In addition to experience and trial and error methods to design an
ANN, how could we appeal to more efficient automated procedures?
Using EVOLUTIONARY COMPUTATION.

••   Genetic Algorithms, Evolution Strategies and Evolutionary
Programming: population-based stochastic search algorithms, inspired
in principles of natural evolution
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SEARCH METHODSSEARCH METHODS

Based on calculus         Random                 Enumeratives

Direct  Indirect                                    Dynamic Programming

Stochastic scalator             Evolutionary             Tabu
(Simulated Annealing)        Algorithms

 Genetic AlgorithmsGenetic Algorithms   Evolution Strategies      Evolutionary
       Programming

 Parallel      Sequential
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GENETIC ALGORITHMS-IGENETIC ALGORITHMS-I
••   GAs are based on the Darwin’s evolution and natural selection concepts.
••   GAs are systematic methods to resolve searching and optimization
problems, applying analog methods than the biological evolution: selection
based on population, reproduction and mutation.
••   An optimization problem consist of:

- Space of search Σ with M symbols and dimension MN. Any point in
this space is a vector of N components of the M symbols.
- A fitness or cost function F: Σ → R, to be optimized.

••   General framework of a GA.
1. Generate the initial population P(0) at random, and set i=0;
2. REPEAT

a) Evaluate each individual in the population;
b) Select parents from P(i) base on their fitness in P(i);
c) Applied search operators to parents and produce offspring which
    form P(i+1);
d) i=i+1;

3. UNTIL termination criterion is satisfied.
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GENETIC ALGORITHMS-IIGENETIC ALGORITHMS-II
••   The individuals of the population are chromosomes
or genotypes: arbitrary data structure that encodes a
certain solution to the problem. Its meaning, in
relation with the problem at hand, is a phenotype.
Different genotypes may encodes for the same
solution or phenotypes, but the reverse does not
hold.

••  Each component of the chromosome represents a
gene, and the molecular base of the gene is the
ADN.

••   The gene is said to be in several states, called
alleles (feature values), and its position in the string,
loci (string positions):

A=a1a2a3a4a5a6a7
A= 0 1 1 1  0 0 0
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GENETIC ALGORITHMS-IIIGENETIC ALGORITHMS-III
Advantages:Advantages:
••   It is enough with a small, and even null, knowledge a priori of the
characteristics of the problem  to be solved.
••   It is not necessary the direct control of the environment.
••  Neither is necessary to search in the whole space of possible solutions.
••   They use global information
••   The characteristics acquired by the parents during the evolution are
inherited by the offspring.
••   Robustness. GAs are capable of finding a good solution

Limitations:Limitations:
••   The epistasis problem: iterations not wanted among the genes, in which a
gene suppresses the expression of another. To solve it, elitist selection.
••   Premature convergence. Selection to get o good trade-off between
exploration and exploitation.
••   Long computation times. Parallelization of the algorithm or distribute the
population
••  Fall in local minima
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EXAMPLEEXAMPLE::
Evaluation and selectionEvaluation and selection::
➪  Evaluation is performed through the fitness function.
➪  Selection probability
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➪  Fitness proportionate selection with the roulette wheel method
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EXAMPLEEXAMPLE::
ReproductionReproduction:: crossover and mutation operators:
➪  In crossover o recombinationcrossover o recombination first couples are randomly
formed with all parents individuals, with a crossover rate, pc.
Then, the two bit strings are cut at the same random position and
the second halves are swapped between the two individuals,
each containing characters from both parents.

Crossover operator
Before After
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MUTATION OPERATOR

BEFORE AFTER

EXAMPLEEXAMPLE::

➪  Mutation operatorMutation operator:: it simulate transcription error that can
happen with very low probability, pm, when a chromosome is
duplicated.
➪  Mutation contributes with new information, essential for
the evolution, that is, it introduces diversity in the population.
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EXAMPLEEXAMPLE::

➪  The performance of a GA depends on: dimension of the
population, application frequency  of the selection, crossover and
mutation operators, and how these operators are used.
➪  Optimization of a polynomial functionOptimization of a polynomial function::
. Binary encoding
. Population= 100 individuals
. Length of each individual = 30
. Study interval:[0,230]
. pc = 0.5
. pm = 0.03

After 7 generations, the average
fitness has been stabilized.
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EXAMPLEEXAMPLE::

➪  Optimization of a polynomial functionOptimization of a polynomial function::
. Binary encoding
. Population= 10 individuals
. Length of each individual = 10
. Study interval:[0,210]
. pc = 0.5
. pm = 0.03

Small population and short
length of individuals makes the
effect of mutation operator very
active and the GA does not work
properly.
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EXAMPLEEXAMPLE::

➪  Optimization of a polynomial functionOptimization of a polynomial function:
. Binary encoding
. Population= 10 individuals
. Length of each individual = 10
. Study interval:[0,210]
. pc = 0.3
. pm = 0.03

The GA behaves incorrectly
due to low pc = 0.3.
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THE SCHEMA THEOREMTHE SCHEMA THEOREM

➪  Binary alphabet Ω={0,1}; extended alphabet Ω’= {0,1,*}
➪  A schema E represents all strings, which match it on all positions other
than *. The schema (*101) matches two strings: {(0101),(1101)}
➪  Number of possible schematas=(base+metasymbol)m, with m the length
of an individual.
➪  Every schema E matches 2r strings, with r de number of metasymbols.
The schema (*1*0) matches four strings

➪  Each string of the length m is matched by 2m schemata.
➪  Order O(E)= Number of fixed positions in the template string.
O(10**11)=4; O(1****)=1
➪  Length L(E)= Distance between the first and  last fixed positions in its
template string. It is a measure of  compactness information.
L(10**11)=6-1=5; L(1*****)=1-1=0
➪  Fitness at time t, F(E,t)= Average fitness of all strings in the population
matched by the schema E.
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MEANING OF OPERATORSMEANING OF OPERATORS

Selection:Selection:

Crossover:Crossover:

Mutation:Mutation:

Combined effects:Combined effects:
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Building Block hypothesis: A genetic algorithm seeks near
optimal performance through the juxtaposition of short,
low-order, high performance schemata.
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DESIGN STEPS OF AN ANNDESIGN STEPS OF AN ANN

1st   DATA PREPROCESSING

    SELECT INPUTS AND OUTPUTS

    SELECT ENCODING
2nd CONFIGURATION

    TOPOLOGY

    CONNECTIVITY

3rd TRAINING
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EVOLUTIONARY DESIGN OF EVOLUTIONARY DESIGN OF ANNsANNs

WEIGHTS         NETWORK        LEARNING         INPUT DATA
        ARCHITECTURE        RULES

BINARY    REAL NUMBER
REPRES.        REPRES.

    DIRECT     INDIRECT   NODE TRANSFER    ARCHITECTURE AND
ENCODING   ENCODING         FUNCTION                   WEIGHTS
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CONNECTION WEIGHTS IN A DEFINED ARCHITECTURECONNECTION WEIGHTS IN A DEFINED ARCHITECTURE

➪  To find the suitable weights to perform the task at hand.
➪  Classical learning algorithms (backpropagation, conjugate gradient, ...)
get trapped in local minimun and never find it if the error function is
multimodal and/or non-differenciable.
➪  We may formulate the training process as the evolution of the
connecting weights for a determined architecture and learning task.

➪  Two steps: weights representation and evolutionary process.

1) Decode each individual into a set of connection weights and construct
a corresponding ANN with the weights.

2) Evaluate each ANN by computing its total mean square error between
actual and expected outputs. The fitness is determined by the error.

3) Select parents for reproduction based on their fitness.

4) Apply search operators to generate offspring.
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EVOLUTIONARY DESIGN OF EVOLUTIONARY DESIGN OF ANNsANNs

WEIGHTS         NETWORK        LEARNING         INPUT DATA
        ARCHITECTURE        RULES

BINARY    REAL NUMBER
REPRES.        REPRES.

    DIRECT     INDIRECT   NODE TRANSFER    ARCHITECTURE AND
ENCODING   ENCODING         FUNCTION                   WEIGHTS

BINARY    REAL NUMBER
REPRES.        REPRES.
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CONNECTION WEIGHTS IN A DEFINED ARCHITECTURECONNECTION WEIGHTS IN A DEFINED ARCHITECTURE

Binary representation:Binary representation:

➪  The chromosome representing the net is a list of weights in a predefined
order, each weight represented by a binary string to be decoded into real
values between, for instant, -1 and +1.
➪  It facilitates the hardware implementation of ANNs
➪  In binary representation several encoding methods can be used: Gray,
BCD, exponential, etc.

➪  Drawbacks: poor scalability, i.e., if the number of connections increases,
the length of the string increases severely, degrading the features of the
GA.
➪  If higher precision is needed in the weight value, more bits have to be
added to the binary representation
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CONNECTION WEIGHTS IN A DEFINED ARCHITECTURECONNECTION WEIGHTS IN A DEFINED ARCHITECTURE

Real number representation:Real number representation:

➪  Each chromosome is a real
vector, being each component a
weight.
➪  Search space becomes
very large.
➪  It has many advantages,
but requires specialized
genetic operators.
➪  Evolutionary Programming
and Evolution Strategies are
techniques well-suited in this
kind of representation. Crossover operator
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CONNECTION WEIGHTS IN A DEFINED ARCHITECTURECONNECTION WEIGHTS IN A DEFINED ARCHITECTURE
Permutation problem:Permutation problem:
➪  Networks topologically equivalent but different encoding. Any
permutation of the hidden nodes produce equivalent network functions and
fitness measurements.
➪  Limit the crossover standard operator. Evolutionary programming does
not use crossover
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CONNECTION WEIGHTS IN A DEFINED ARCHITECTURECONNECTION WEIGHTS IN A DEFINED ARCHITECTURE

Flow diagram for designing connection weights:Flow diagram for designing connection weights:
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CONNECTION WEIGHTS IN A DEFINED ARCHITECTURECONNECTION WEIGHTS IN A DEFINED ARCHITECTURE

Hybrid training:Hybrid training:
➪  GAs are not efficient in fine-tuned local search, although they are good

at global search.
➪  Finding initial weights with GAs and then  local search with

backpropagation.
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EVOLUTION OF ARCHITECTURESEVOLUTION OF ARCHITECTURES

➪  Selection of architecture is a very important task: connectivity
and transfer function of each node:

••   Few connections and linear nodes → limited capability
••  Many connections and non-linear nodes → overfit noise

in the training data and poor generalization.
➪  Usually, architecture design is performed in an unsystematic
manner by guesswork and trial and error.
➪  Methods such as constructive-destructive algorithms are
susceptible to becoming trapped at local minima and depends on
the initial topology.

➪  Design the architecture of an ANN is a search problem in the
architecture space where each point represents an architecture.
So GAs are a promising technique.
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EVOLUTION OF ARCHITECTURESEVOLUTION OF ARCHITECTURES

➪  Why GAs are good candidates:
  ••  The surface of search is infinitely large: number of

   possible nodes and connections is unbounded.
••   The surface is non-differentiable: changes in the number
   of nodes or connections are discrete and can have a
   discontinuous effect on GAs performance.
••   The surface is complex and noisy: mapping from an
   architecture to its performance is indirect, epistatic and
   dependant on the evolution method.
••  The surface is deceptive: similar architectures may have
   quite different performance.
••   The surface is multimodal: different architectures may
   have similar performance.
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EVOLUTION OF ARCHITECTURESEVOLUTION OF ARCHITECTURES

Flow diagram to design the architecture of an ANN:Flow diagram to design the architecture of an ANN:
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EVOLUTION OF ARCHITECTURESEVOLUTION OF ARCHITECTURES

➪  Direct encoding: all aspects of a network architecture (connections
and nodes) are encoded into the chromosome.
➪  The X-OR problem of two bits: connectivity or adjacency matrix

Matrix lower triangular: feedforward
Matrix triangular: feedback



Dpto. Tecnología Electrónica
Universidad de Málaga

EVOLUTION OF ARCHITECTURESEVOLUTION OF ARCHITECTURES
➪  Direct encoding: relationships between genotypes and
phenotype

➪  Drawbacks:scaling problem. Very long chromosomes
➪  The permutation problem
➪  Useful for small architectures 
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EVOLUTION OF ARCHITECTURESEVOLUTION OF ARCHITECTURES

➪  Indirect encoding: only the most important parameters of an
architecture are encoded (hidden layers and hidden nodes in
each layer). The details of each connection is either predefined
or specified by deterministic developmental rules.

➪  Last tendency in indirect encoding is to use grammatical
encoding: technique for developing or growing ANN, rather
than looking for a complete network description at the
individual level.
➪  Grammatical encoding presents better scalability, reduces
the effect of the permutation problem, and allows to find
building blocks of general utility and of reusing developmental
rules for general classes of problems.
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EVOLUTION OF ARCHITECTURESEVOLUTION OF ARCHITECTURES

➪  Developmental ruleDevelopmental rule::
 ••  Grammar: one or more productions
 ••  Production: rewriting rule that associates a left-hand side

(head) to a  right-hand side (body). The two side are
separated by the metasymbol →.

 ••  Terminal elements: either 1 (connection) or 0 (non-
connection)

 ••  The connectivity pattern of the architecture in the form of
a matrix is constructed from a basis, i.e., a single element
matrix, by repetitively applying suitable developmental
rules to non-terminal elements till the matrix contains only
terminal elements.
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EVOLUTION OF ARCHITECTURESEVOLUTION OF ARCHITECTURES

➪  Developmental ruleDevelopmental rule::
S is the initial element

Development of an
architecture
from the initial element.
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EVOLUTION OF ARCHITECTURESEVOLUTION OF ARCHITECTURES

➪  Developmental ruleDevelopmental rule::

S  A  B C  D A  a  a  a  a B  i  i  i  a

•  •  •  •  

Chromosome encodingChromosome encoding

There are some controversial with this approach

•  •  •  •
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NODE TRANSFER FUNCTIONSNODE TRANSFER FUNCTIONS

➪  The transfer node in the architecture is supposed to be fixed
by human expert, and often the same for all the nodes, at least
for all the nodes in the same layer.

➪  But node transfer function may evolve with GAs. Different
approaches:

••  For each individual in the initial population, 80% nodes
use sigmoid transfer function and 20% Gaussian transfer
function. The evolution was used to decide the optimal mixture
between these two transfer function. The transfer function
themselves were not evolvable.

 ••   With sigmoid and Gaussian transfer nodes, the total
number is not fixed, and is allowed growth and shrinking of the
ANN by adding or deleting nodes.
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ARCHITECTURE AND CONNECTION WEIGHTSARCHITECTURE AND CONNECTION WEIGHTS

➪  Usually connection weights have to be learned after a near
optimal architecture is found. Evolution of architectures
without connections weights brings a mayor problem: noisy
fitness evaluation.

➪  Phenotype’s (an ANN with a full set of weights) fitness is
used to approximate its genotype’s (an ANN without any
information on weights) fitness. Two mayor sources of noise:

••  Different random initialization of weights may produce
different training results: the same genotype could have
different fitness.
••  Different training algorithms may produce different
training results even from the same set of initial weights.
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ARCHITECTURE AND CONNECTION WEIGHTSARCHITECTURE AND CONNECTION WEIGHTS

➪  Evolve architecture and weights simultaneously.
➪  Each individual with two chromosomes: one for the area

of connectivity definition (ACD) and other for the area of
weight definition (AWD).
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ARCHITECTURE AND CONNECTION WEIGHTSARCHITECTURE AND CONNECTION WEIGHTS

➪  Area of weight definition:

µ=0, connectivity
feedforward. Lower
triangular matrix.

µ=1, total connectivity.
Recurrent neural
networks.
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ARCHITECTURE AND CONNECTION WEIGHTSARCHITECTURE AND CONNECTION WEIGHTS

➪  Encoding example of an ANN with I=4, O=2, L=2, H1=3,
H2=2, µ=0 and W=3.
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ARCHITECTURE AND CONNECTION WEIGHTSARCHITECTURE AND CONNECTION WEIGHTS

➪  Flow diagram for simultaneous design of architecture and
weights.

Fitness= θ(E)+ς(H)+η(W)
θ(E)=λE, Error
ς(H)= ρΣ(H), Neurons
η(W)= δ(Σabs((weights)+
           Σabs(bias)), Weights
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ARCHITECTURE AND CONNECTION WEIGHTSARCHITECTURE AND CONNECTION WEIGHTS

➪  The N-bit parity combinatorial problem. N=3.

µ=0
Fitness= θ(E)+ς(H)+η(W)
θ(E)=λΣKΣj(Yj(K)-dj(K))2

λ=45; ρ=30; δ=15
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ARCHITECTURE AND CONNECTION WEIGHTSARCHITECTURE AND CONNECTION WEIGHTS

➪  Sequence detection: 110

Input    1011011101011101101..
Output  0000100010000010010..

µ=1
λ=104; ρ=103; δ=1
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ARCHITECTURE AND CONNECTION WEIGHTSARCHITECTURE AND CONNECTION WEIGHTS

➪  Performance:
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ARCHITECTURE AND CONNECTION WEIGHTSARCHITECTURE AND CONNECTION WEIGHTS

➪  Other proposal uses
Evolutionary Programming
to avoid crossover
operators which may
destroy both ANNs to be
exchanged.
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EVOLUTION OF LEARNING RULESEVOLUTION OF LEARNING RULES

➪  Training algorithm may have different performance when applied to
different ANN architectures: relationship  between network architecture
and learning process is generally unknown.

➪  An ANN should adjust
its learning rule adaptively
according to its
architecture and the task
to be performed.
➪  GAs may guide the
learning rule: evolution
cycle of learning rules ⇒
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EVOLUTION OF LEARNING RULESEVOLUTION OF LEARNING RULES
➪  Encoded learning is very noisy: we use Phenotype’s fitness (an ANN
training result) to approximate genotype’s fitness (a learning rule’s fitness).
➪  The evolution of learning rules has to work on the dynamic behavior of an
ANN. How to encode the dynamic behavior of a learning rule into a static
chromosome?  Universal representation is impractical.
➪  Constrains:

•  Weight-updating depends only of local information (activation of the
input and output nodes, the current weight, ...).
•The learning rule is the same for all connections in an ANN.

➪  A learning rule is assumed to be a linear combination of these local
variables and their products:

t is time, ∆ω∆ω∆ω∆ω is the weight change, xi are local variables, and θθθθ’s are
real coefficients determined by the evolution.
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INPUT DATA SELECTIONINPUT DATA SELECTION

➪  In real problems, the possible inputs to an ANN can be quite
large, and there may be some redundancy among different
inputs.

➪  Besides statistical methods, GAs can be applied to find a near-
optimal set of input features to an ANN.

➪  In the encoding of the problem, each individual in the
population represents a portion of the input data.

➪  The evolution of an individual is carried out by training an ANN
with these inputs and using the result to calculate its fitness
value. The ANN architecture is often fixed.
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APPLICATION TO ELECTRIC LOAD FORECASTINGAPPLICATION TO ELECTRIC LOAD FORECASTING

➪  Power consumption in the province of Malaga during 1992-1993
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APPLICATION TO ELECTRIC LOAD FORECASTINGAPPLICATION TO ELECTRIC LOAD FORECASTING

➪  Maximum and minimum temperatures during the year 1992
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➪  Forecasting has been performed with statistical techniques, with 
ANNs and with genetic ANNs.
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➪  Results

ER92= Training
relative error for
year 1992.

ER93=
Forecasting
relative error for
year 1993.
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CONCLUSIONSCONCLUSIONS
➪  GAs have proved to be a powerful search method.
➪  Parallelization techniques are necessary to reduce the
computation time.

➪  GAs can be introduced into the design of ANNs at many
different levels:

••   The evolution of connection weights.
••   To find a near-optimal architecture automatically.
••  Simultaneous evolution of weights and architecture to get
   better results.
••   To allow an ANN to adapt its learning rule to its 
   environment

 ➪  Its applicability to actual problems: electric load forecasting.


