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Abstract

This work concerns estimation of linear autoregressive models with
Markov-switching using expectation maximisation (E.M.) algorithm.
Our method generalise the method introduced by Elliot for general
hidden Markov models and avoid to use backward recursion.
Keywords : Maximum likelihood estimation, Expectation-Maximisation
algorithm, Hidden Markov models, Switching models.

1 Introduction

In the present paper we consider an extension of basic (HMM). Let (Xt; Yt)t2Z
be the process such that

1. (Xt)t2Z is a Markov chain in a �nite state space E = fe1; :::; eNg,
which can be identi�ed without loss of generality with the simplex of
R
N , where ei are unit vector in R

N , with unity as the ith element and
zeros elsewhere.

2. Given (Xt)t2Z, the process (Yt)t2Z is a sequence of linear autoregres-
sive model in R and the distribution of Yn depends only of Xn and
Yn�1; � � � ; Yn�p.

Hence, for a �xed t , the dynamic of the model is :
Yt+1 = FXt+1

(Y t
t�p+1) + �Xt+1

"t+1 with FXt+1
2 fFe1 ; :::; FeN g linear

functions, �Xt+1
2 f�e1 ; :::; �eN g strictly positive numbers and ("t)t2N� a

i.i.d sequence of Gaussian random variable N (0; 1).
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De�nition 1 Write Ft = � fX0; � � � ;Xtg, for the �-�eld generated by X0; � � � ;Xt,

Yt = � fY0; � � � ; Ytg, for the �-�eld generated by Y0; � � � ; Yt and
Gt = � f(X0; Y0) ; � � � ; (Xt; Yt)g, for the �-�eld generated by X0; � � � ;Xt and

Y0; � � � ; Yt.

The Markov property implies here that P (Xt+1 = ei jFt ) = P (Xt+1 = ei jXt ) :
Write aij = P (Xt+1 = ei jXt = ej ) and A = (aij) 2 R

N�N and de�ne :
Vt+1 := Xt+1 � E [Xt+1 jFt ] = Xt+1 � AXt: With the previous notations,
we obtain the general equation of the model, for t 2 N :�

Xt+1 = AXt + Vt+1
Yt+1 = FXt+1

(Y t
t�p+1) + �Xt+1

"t+1
(1)

The parameters of the model are the transition probabilities of the ma-
trix A, the coeÆcients of the linear functions Fei and the variances �ei . A
successfull method for estimating such model is to compute the maximum
likelihood estimator1 with the E.M. algorithm introduced by Demster , Lair
and Rubin (1977). Generally, this algorithm demands the calculus of the
conditional expectation of the hidden states knowing the observations (the
E.-step), this can be done with the Baum and Welch forward-backward al-
gorithm (see Baum et al. (1970)). The derivation of the M-step of the E.M.
algorithm is then immediate since we can compute the optimal parameters
of the regression functions thanks weighted linear regression.

However we show here that we can also embed these two steps in only
one. Namely we can compute, for each step of the E.M. algorithm, directly
the optimal coeÆcients of the regression functions as the variances and the
transition matrix thanks a generalisation of the method introduced by
Elliott (1994).

2 Change of measure

The fundamental technique employed throughout this paper is the discrete
time change of measure. Write � the vector (�e1 ; :::; �eN ), �(:) for the density
of N (0; 1) and h:; :i the inner product in R

N .
We wish to introduce a new probability measure �P , using a density �, so

that d �P
dP

= � and under �P the random variables yt are N (0; 1) i.i.d. random
variables.

1This likelihood is computed conditionally to the �rst \p" observations.

2



De�ne

�l =
h�;Xl�1i�(yl)

�("l)
; l 2 N

� ; with �0 = 1 and �t =
tY

l=1

�l

and construct a new probability measure �P by setting the restriction of
the Radon-Nikodym derivative to Gt equal to �t. Then the following lemma
is a straightforward adaptation of lemma 4.1 of Elliot (1994) (see annexe).

Lemma 1 Under �P the Yt are N (0; 1) i.i.d. random variables.

Conversely, suppose we start with a probability measure �P such that
under �P

1. (Xt)t2N is a Markov chain with transition matrix A.

2. (Yt)t2N is a sequence of N (0; 1) i.i.d. random variable.

We construct a new probability measure P such that under P we have
Yt+1 = FXt

�
Y t
t�p

�
+ �Xt"t+1: To construct P from �P , we introduce

��l := (�l)
�1 and ��t := (�t)

�1 and we de�ne P by putting
�
dP
d �P

�
jGt = ��t,

De�nition 2 let (Ht); t 2 N be a sequence adapted to (Gt), We shall write :


t(Ht) = �E
�
��tHt jYt

�
and �i (Yt+1) =

�
�
Yt+1�FXt(Y

t
t�p+1)

h�;eii

�
h�; eii� (Yt+1)

:

The proof of the following theorem is a detailled adaption of the proof of
theorem 5.3 of Elliott (1994) (see annexe).

Theorem 1 Suppose Ht is a scalar G-adapted process of the form : H0

is F0 measurable, Ht+1 = Ht + �t+1 + h�t+1; Vt+1i + Æt+1f (Yt+1), k � 0,
where Vt+1 = Xt+1 � AXt, f is a scalar valued function and �, �, Æ are G
predictable process (� will be N -dimensional vector process). Then :


t+1 (Ht+1Xt+1) := 
t+1;t+1 (Ht+1)

=
PN

i=1

�


t (HtXt) ;�

i (yt+1)
�
ai

+
t
�
�t+1



Xt;�

i (yt+1)
��
ai

+
t
�
Æt+1



Xt;�

i (yt+1)
��
f (yt+1) ai

+
�
diag (ai)� aia

T
i

�

t
�
�t+1



Xt;�

i (yt+1)
��

(2)

where ai := Aei, a
T
i is the transpose of ai and diag (ai) is the matrix with

vector ai for diagonal and zeros elsewhere.
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We will now consider special cases of processes H. In all cases, we will calcu-
late the quantity 
t;t (Ht) and deduce 
t (Ht) by summing the components
of 
t;t (Ht). Then, we deduce from the conditional Bayes' theorem the con-
ditional expectation of Ht :
Ĥt := E [Ht jYt ] =


t(Ht)

t(1)

.

3 Application to the Expectation (E.-step) of the
E.M. algorithm

We will use the previous theorem in order to compute conditional quantities
needed by the E.M. algorithm.

Let J rs
t =

tX
l=1

hXl�1; eri hXl; esi be the number of jump from state er to

state es at time t, we obtain :


t+1;t+1
�
J rs
t+1

�
=

PN
i=1




t;t (J rs

t ) ;�i (Yt+1)
�
ai

+ h
t (Xt) ;�
r(Yt+1)i asres:

(3)

Write now Or
t =

Pt+1
n=1 hXn; eri for the number of times, up to t, that X

occupies the state er. We obtain


t+1;t+1
�
Or
t+1

�
=

PN
i=1




t;t (Or

t ) ;�
i (Yt+1)

�
ai

+ h
t (Xt) ;�
r(Yt+1)i ar:

(4)

For the regression functions, the M-Step of the E.M. algorithm is achieved
by �nding the parameters minimising the weighted sum of squares :

nX
t=1


i (t)
�
yt �

�
ai0 + a1yt�1 + � � � + apyt�p

�2�

where 
i (t) is the conditional expectation of the hidden ei at time t knowing
the observations y�p+1; � � � ; yn.

Write  T (t) = (1; yt�1; :::; yt�p) and �i = (ai0; :::; a
i
p), suppose that the

matrix
�Pn

t=1 
i (t) (t) 
T (t)

�
is invertible. The estimator �̂i(n) of �i is

given by :

�̂i(n) =

"
nX
t=1


i (t) (t) 
T (t)

#�1 nX
t=1


i (t) (t)Yt:

Hence, in order to compute �̂i(n), we need to estimate the conditional
expectation of the following processes :
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1.

T Ar
t+1(j) =

t+1X
l=1

hXl; eri Yl�jYl+1

for �1 � j � p and 1 � r � N .

2.

T Br
t+1(i; j) =

t+1X
l=1

hXl; eriYl�jYl�i

for 0 � j; i � p and 1 � r � N .

3.

T Crt+1 =
t+1X
l=1

hXl; eri Yl+1:

4.

T Dr
t+1(j) =

t+1X
l=1

hXl; eriYl�j

for 0 � j � p and 1 � r � N .

Applying theorem (2) with Ht+1(j) = T Ar
t+1(j), H0 = 0, �t+1 = 0, �t+1 =

0, Æt+1 = hXt; eri Yt�j and f(Yt+1) = Yt+1, if j 6= �1 or Æt+1 = hXt; eri and
f(Yt+1) = Y 2

t+1 if j = �1, gives us


t+1;t+1
�
T Ar

t+1(j)
�
=

PN
i=1




t;t (T A

r
t (j)) ;�

i(Yt+1)
�
ai

+ h
t(Xt);�
r(Yt+1)i Yt�jYt+1ar;

(5)

where ar is the r-th column of A.
Then, applying theorem (2) with
Ht+1(j) = T Br

t+1(i; j), H0 = 0, �t+1 = 0, �t+1 = 0 , Æt+1 = hXt; eri Yt�jYt�i
and f(Yt+1) = 1 gives :


t+1;t+1
�
T Br

t+1(i; j)
�
=

PN
i=1




t;t (T B

r
t (j)) ;�

i(Yt+1)
�
ai

+ h
t(Xt);�
r(Yt+1)i Yt�jYt�iar:

(6)

Next, applying theorem (2) with
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Ht+1 = T Crt+1, H0 = 0, �t+1 = 0, �t+1 = 0, Æt+1 = hXt; eri and
f(Yt+1) = Yt+1 gives :


t+1;t+1
�
T Crt+1

�
=

PN
i=1




t;t (T C

r
t (j)) ;�

i(Yt+1)
�
ai

+ h
t(Xt);�
r(Yt+1)i Yt+1ar:

(7)

Finally, applying theorem (2) with
Ht+1(j) = T Dr

t+1(j), H0 = 0, �t+1 = 0, �t+1 = 0 , Æt+1 = hXt; eriYt�j
and f(Yt+1) = 1 gives :


t+1;t+1
�
T Dr

t+1(j)
�
=

PN
i=1




t;t (T D

r
t (j)) ;�

i(Yt+1)
�
ai

+ h
t(Xt);�
r(Yt+1)iYt�jar:

(8)

The \Maximisation" pass of the E.M. algorithm is now achieved by up-
dating the parameters in the following way.

Parameters of the transition matrix The parameter of the transition
matrix will be updates with the formula :

âsr =

T (J sr

T )


T
�
Or
T

� : (9)

Parameters of the regression functions For 1 � r � N , let

Rr :=
�
Rr
ij

�
1�i;j�p+1

be the symmetric with

Rr
11 = 1; Rr

1j = Rr
j1 = T̂ Dr(j), Rij = T̂ Br(i� 1; j � 1) and

Cr = (T̂ Cr; (T̂ Ar(i))0�i�p) we can then compute the updated parameter �̂r
of the regression function Fer with the formula :

�̂r = (Rr)�1Cr (10)

Parameters of the variances Finally, thanks the previous conditional
expectations, we can directly calculate the parameters �̂1; :::; �̂N , since for
1 � r � N the conditional expectation of the mean square error of the rth
model is

�̂2r =
1

Or

�
T̂ Ar(�1) + �̂Tr R

r�̂r � 2�̂Tr C
r
�
: (11)

This complete the M-step of the E.M. algorithm.
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4 conclusion

Using the discrete Girsanov measure transform, we propose an new way to
apply the E.M. algorithm in the case of Markov-switching linear autoregres-
sions.

Note that, contrary to the Baum and Welch algorithm, we don't use
backward recurrence, altought the cost of calculus slighty increase since the
number of operations is multiplicated by N

2 , where N is the number of
hidden state of the Markov chain.
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Annexe

Proof of lemma 1

Lemma 2 Under �P the Yt are N (0; 1) i.i.d. random variables.

Proof The proof is based on the conditionnal Bayes'Theorem, it is a simple
rewriting of the Proof of Elliot , hence we have

�P (Yt+1 � � jGt ) = �E
�
1fYt+1��g jGt

�
Thanks the conditionnal Bayes' Theorem we have :

�E
�
1fYt+1��g jGt

�

=
E
�
�t+11fYt+1��g jGt

�
E [�t+1 jGt ]
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=
�t

�t

�
E
�
�t+11fYt+1��g jGt

�
E [�t+1 jGt ]

:

Now

E [�t+1 jGt ] =

Z 1

�1

h�;Xti�(Yt+1)

�("t+1)
� �("t+1)d"t+1

=

Z 1

�1
h�;Xti�(FXt(Y

t
t�p+1) + h�;Xti � "t+1)d"t+1 = 1

and since "t+1 =
Yt+1�FXt(Y

t
t�p+1)

h�;Xti
:

�P (Yt+1 � � jGt ) = E
�
�t+11fYt+1��g jGt

�
=

R1
�1

h�;Xti�(Yt+1)
�("t+1)

� 1fYt+1��g � �("t+1)d"t+1

=
R �
�1 �(Yt+1)dyt+1 = �P (Yt+1 � �)

�

Proof of Theorem 2

Theorem 2 Suppose Ht is a scalar G-adapted process of the form : H0

is F0 measurable, Ht+1 = Ht + �t+1 + h�t+1; Vt+1i + Æt+1f (Yt+1), k � 0,
where Vt+1 = Xt+1 � AXt, f is a scalar valued function and �, �, Æ are G
predictable process (� will be N -dimensional vector process). Then :


t+1 (Ht+1Xt+1) := 
t+1;t+1 (Ht+1)

=
PN

i=1

�


t (HtXt) ;�

i (yt+1)
�
ai

+
t
�
�t+1



Xt;�

i (yt+1)
��
ai

+
t
�
Æt+1



Xt;�

i (yt+1)
��
f (yt+1) ai

+
�
diag (ai)� aia

T
i

�

t
�
�t+1



Xt;�

i (yt+1)
��

(12)

where ai := Aei, a
T
i is the transpose of ai and diag (ai) is the matrix with

vector ai for diagonal and zeros elsewhere.

Proof Here again it is only a rewriting of the proof of Elliot.
We begin with the two folowwing results :

Result 1

�E [Vt+1 jYt+1 ] = �E
�
�E [Vt+1 jGt;Yt+1 ] jYt+1

�
= �E

�
�E [Vt+1 jGt ] jYt+1

�
= 0:

(13)
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Result 2

Xt+1X
T
t+1 = AXt(AXt)

T +AXtV
T
t+1 + Vt+1(AXt)

T + Vt+1V
T
t+1:

Since Xt is of the form (0; � � � ; 0; 1; 0; � � � ; 0) we have

Xt+1X
T
t+1 = diag(Xt+1) = diag(AXt) + diag(Vt+1)

so

Vt+1V
T
t+1 = diag(AXt)+diag(Vt+1)�A diag(Xt) A

T�AXtV
T
t+1�Vt+1(AXt)

T :

Finaly we obtain the result

hVt+1i := E[Vt+1V
T
t+1 jFt ]

= E[Vt+1V
T
t+1 jXt ]

= diag(AXt)�A diag(Xt) A
T :

(14)

Main pro� We have


t+1;t+1(Ht+1) = �E
�
��t+1Ht+1Xt+1 jYt+1

�
= �E

�
(AXt + Vt+1) (Ht + �t+1+ < �t+1; Vt+1 > +Æt+1f(yt+1))� ��t+1 jYt+1

�
Thanks equation (13),


t+1;t+1(Ht+1) = �E
�
((Ht + �t+1 + Æt+1f(yt+1))AXt+ < �t+1; Vt+1 >)� ��t+1 jYt+1

�
:

so :


t+1;t+1(Ht+1) =
NX
j=1

�
�E
�
((Ht + �t+1 + Æt+1f(yt+1)) < AXt; ej > ej) ��t+1 jYt+1

�	
+ �E

�
< �t+1; Vt+1 > ���t+1 jYt+1

�
;

hence


t+1;t+1(Ht+1) =

NX
j=1

NX
i=1

�
�E
�
((Ht + �t+1 + Æt+1f(yt+1)) < Xt; ei >) ��t+1ajiej jYt+1

�	
+ �E

�
< �t+1; Vt+1 > ���t+1 jYt+1

�
:

we have noted ai = Aei, so


t+1;t+1(Ht+1) =

NX
i=1

�
�E
�
((Ht + �t+1 + Æt+1f(yt+1)) < Xt; ei >) ��t+1ai jYt+1

�	
+ �E

�
< �t+1; Vt+1 > ���t+1 jYt+1

�
:
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Since for an adapted process Ht to the sigma-algebra Gt

�E
�
��t+1Ht jYt+1

�
=

NX
i=1




t(HtXt);�

i(yt+1)
�

So, for all er 2 E

�E
�
��t+1Ht < Xt; er > jYt+1

�
=
PN

i=1




t(HtXt < Xt; er >);�

i(yt+1)
�

=
PN

i=1




t(HtXtX

T
t er);�

i(yt+1)
�

But we have also :


t(HtXtX
T
t ) =

NX
i=1

h
t(HtXt); eii eie
T
i ;

So we have :

�E
�
��t+1Ht < Xt; er > jYt+1

�
=

NX
i=1




t(HtXtX

T
t er);�

i(yt+1)
�
= h
t(HtXt);�

r(yt+1)i :

Since �, �, Æ are G predictible and f(yt+1) mesurable with respect to Yt+1,
the result (14) yield us the conclusion �
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