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Abstract

The Expectation Maximisation (EM) algorithm is a popular technique for max-
imum likelihood in incomplete data models. In order to overcome its documented
limitations, several stochastic variants are proposed in the literature. However, none
of these algorithms is guaranteed to provide a global maximizer of the likelihood
function. In this paper we introduce the MEM algorithm — a Metropolis version
of the EM — that can achieve global maximisation of the likelihood.
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1 Introduction

The Expectation Maximisation (EM) algorithm (Dempster et al., 1977) is a general
iterative method finding the maximum likelihood estimate of the parameters for an
underlying distribution from a given data set when data are incomplete. Roughly
speaking there are two main situations where the EM algorithm is of central impor-
tance. The first occurs when the process we are interested in can not be directly
observed and indeed the observed data originates from a non-invertible distortion
of that process (missing values, censored data, hidden Markov models). The second
occurs when the likelihood function is analytically or numerically intractable but
can be thought as the marginal of a data-augmented (thus larger) model which has
a much simpler (though unobservable) likelihood function.

Let us briefly recall the algorithm. We are given a parametric family of dis-
tributions (Pθ) and the observable vector Y is part of a so-called complete vector
X = (Y,Z). Both Y and X have a density function, say g(y; θ) and f(x; θ) respec-
tively, with respect to some σ-finite measure dy and dx on the corresponding spaces.
Here, θ is a parameter belonging to some subset Θ of the Euclidean space Rp. Let
y be the observed data. The objective is to compute the maximum likelihood esti-
mator θ̂ = argmaxθ∈Θg(y; θ). The EM algorithm maximizes g(y; θ) by iteratively
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maximizing the conditional expectation of the logarithm of the complete data den-
sity, log f(x; θ), given y and a present value θ′. More precisely, each iteration of the
EM algorithm is decomposed into two steps: an E-step and M-step. At iteration k,
given the current estimate θk−1, the E-step consists in calculating

S(θ, θk−1) = Eθk−1
(log(f(X; θ)|Y = y) , (1·1)

where the expectation Eθ(·|Y = y) is the conditional expectation to Y = y under
the probability distribution Pθ (the associated conditional density will be denoted
by h(·|y; θ)). The M-step consists in finding

θk = argmaxθ∈ΘS(θ, θk−1) . (1·2)

The algorithm repeats these two steps until convergence is reached.
A detailed account of the convergence properties of the sequence (θk) can be

found in Dempster et al. (1977), Wu (1983) and a more recent review is given
by Meng and van Dyk (1997). The wide-spread popularity of the EM is largely
due to its “monotonicity”: the sequence (g(y; θk)) is increasing and, under suitable
regularity conditions, (θk) converges to a stationary point of l(θ). Note that the
monotonicity is guaranteed even for the Generalized EM (GEM) algorithm (Demp-
ster et al., 1977) when θk is chosen such that

S(θk, θk−1) ≥ S(θk−1, θk−1).

However, despite these appealing features, the EM algorithm has several limita-
tions. First, it is only a local and deterministic maximizer of the likelihood and its
asymptotic behaviour depends heavily on the starting values used. More seriously,
apart from some simple models, the algorithm is far from easy to set up: namely
the E-step as well as the M-step — or both steps in even worse situations —, can
be intractable or numerically inefficient. In order to circumvent these drawbacks,
various improvements have been proposed. On one hand, several authors have pro-
posed non stochastic solutions mainly for speeding up the M step. On the other
hand, stochastic solutions introduce a simulation step making use of pseudo-random
draws at each iteration. This extra-randomness has a double effect. It circumvents
the computation in closed form of the conditional expectation in the E step and
prevents that the iterations stay near the unstable stationary points.

However, as reviewed in Section 2, none of these suggested improvements is
guaranteed to provide a global maximizer of the likelihood function. The aim of
this paper is to introduce such a global maximizer by combining the Monte-Carlo
imputation principle and ideas from the simulated annealing technique to achieve
the global optimization of the likelihood function.

First Section 2 gives a quick discussion on several known stochastic versions of
the EM algorithm. This discussion also provides some background for the definition
of our algorithm. We give this definition in Section 3, where the basic properties
of the MEM algorithm is established. The convergence analysis of the algorithm is
done in Section 4. Finally, in Section 5 we provide some experiments in two typical
situations found in the statistical literature.

2 Stochastic variants of EM algorithm

In this section we shortly review several known stochastic variants of the EM al-
gorithm, namely the stochastic EM (SEM), the Monte Carlo EM (MCEM) and
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the stochastic approximation version of the EM (SAEM) algorithms. Note that
the motivations for the introduction of a stochastic step at each iteration are not
the same for these algorithms. The simulation step of SEM relies on the Stochas-
tic Imputation Principle, meaning that one completes the data y by a sample from
h(·|y; θ), while MCEM and SAEM use pseudo-random draws in order to get a Monte
Carlo approximation for the E-step (1·1). However, despite the different motiva-
tions, all the three algorithms can be considered as a random perturbation of the
deterministic dynamic system generated by EM.

The MCEM algorithm

Wei and Tanner (1990) proposed a Monte Carlo implementation of the E step,
estimating the expectation in (1·1) by

Sk(θ) =
1

mk

mk∑

j=1

log f(y, Z̃k,j ; θ) (2·1)

where Z̃k,1, . . . , Z̃k,mk
are i.i.d. random samples from the conditional density

h(z|y; θk−1) = f(x; θk−1)/g(y; θk−1) .

Then, in the M-step we find

θk = argmaxθ∈ΘSk(θ) .

There are very few available results concerning the convergence of the MCEM. It
is important to note that unlike EM, MCEM does not deterministically increase
the likelihood at each iteration. This situation makes the convergence analysis
difficult and the central difficulty is how to choose the sequence (mk) of Monte
Carlo replications to guarantee convergence. In their paper Wei and Tanner (1990)
roughly recommend to start with small values of mk and then to increase mk as
θk moves closer to the maximizer of l(θ). Recently, Booth and Hobert (1999)
propose a practical rule for (mk) based on consecutive confidence ellipsoids (see also
experiments in Levine and Casella, 2000). However, a well-justified rule for (mk)
guaranteeing the convergence of the MCEM algorithm remains an open problem.

The SEM algorithm

The SEM algorithm (Celeux and Diebolt, 1985) has been the first stochastic version
of EM algorithm. Nowadays it appears as a special case of MCEM when mk = 1.
The sequence (θk) generated by SEM does not converge pointwise. Actually, (θk)
forms a homogeneous Markov chain which is expected to converge weakly to the
unique stationary probability distribution ψ. Pointwise convergence is achieved by
considering averaged estimates of the form

θ̃n =
1

n− n0

n∑

k=n0

θk , (2·2)

where n0 is the length of the burn-in period in order to reduce the influence of
the initial condition. When n → ∞, θ̃n converges to the mean of the stationary
distribution ψ which is by definition the SEM estimator. The asymptotic properties
of the SEM estimator are studied by Celeux and Diebolt (1993) in the case of finite

3



Gaussian mixtures and by Chadoeuf et al. (2000), who deal with censored Boolean
segment processes. Nielsen (2000) gives large sample results for some estimators
derived from the sequence (θk). Note also that an on-line version of the SEM
has been proposed by Yao (2000), where the convergence to a local maximum is
established.

The SAEM algorithm

The stochastic approximation EM (SAEM) algorithm has been proposed by Delyon
et al. (1999) and makes use of a stochastic approximation procedure for estimating
the conditional expectation (1·1). The basic idea is similar to the one of MCEM but
the Monte Carlo integration is substituted in the E-step by a stochastic averaging
procedure, namely

Sk(θ) = Sk−1(θ) + γk(log f(y, Z̃k,1; θ)− Sk−1(θ)) , (2·3)

where Z̃k,1 is a random sample from the conditional density h(z|y; θk) and (γk) is a
decreasing sequence of positive step-sizes. The M-step does not change. One of the
interesting features of SAEM is that its convergence analysis can be based on recent
results from the stochastic approximation theory. However, pointwise almost sure
convergence of the sequence (θk) to a local maxima of g(y; θ) is proved by Delyon
et al. (1999) under conditions that models from an exponential family essentially
satisfy.

3 MEM: a Metropolis version of the EM algorithm

We are interested in a situation where both the E and M steps from the EM algo-
rithm cannot be expressed in closed form.

The proposed MEM algorithm starts like the MCEM by some i.i.d. random
draws to get the Monte-Carlo approximation Sk of the conditional expectation of
the complete log-likelihood (1·1). Then, instead of a deterministic maximisation
M-step of the function Sk yielding the next estimate θk, we perform a random
move in the parameter space according to a so-called Metropolis rule based on the
approximation Sk. Therefore, θk will be a doubly random function of the current
value θk−1, in the sense that it depends on both the random draws Z̃k,j and the
random Metropolis-type move. Obviously, we will require these two randomness to
be independent.

The idea is inspired by the theory of simulated annealing, see e.g. van Laarhoven
and Arts (1987), and the hope is that the used Metropolis-type moves not only mimic
a M-step but can also provide a global maximizer of the target function.

We now give the precise definition of the MEM algorithm. Let (Θ,A,m) be
the parameter space equipped with a probability measure m on a σ-field A. To
define a Metropolis rule, we are given a sequence (Qk) of Markov transition kernels
on Θ (proposal kernels). Each Qk is assumed to be symmetric w.r.t the reference
probability m, that is the measure m(dθ)Qk(θ, dθ′) is symmetric on the product
space Θ2, namely

∫

A
Qk(θ, B)m(dθ) =

∫

B
Qk(θ, A)m(dθ) , for all (A,B) ∈ A2.

Moreover, let (mk)k∈N be an increasing and unbounded sequence of positive integers.
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The MEM algorithm:

1. At time k = 0, pick a starting value θ0.

2. At time k ≥ 1, given the current estimate θk−1,

• draw mk i.i.d. samples Z̃k,1, . . . , Z̃k,mk
from the conditional

density h(z|y; θk−1) and define

Sk(θ) =
1

mk

mk∑

j=1

log f(y, Z̃k,j ; θ); (3·1)

• Metropolis updating: propose a tentative value θ′ from the k-
th proposal kernel Qk(θk−1, ·) and accept it (θk = θ′) with
probability

ck(θk−1, θ
′, Z̃k) = 1 ∧ exp

{
mk[Sk(θ′)− Sk(θk−1)]

}
, (3·2)

where a ∧ b = min (a, b) and Z̃k = (Z̃k,1, . . . , Z̃k,mk
).

3. Iterate Step 2 until some stopping condition is satisfied.

At time k, the random proposal θ′ is automatically accepted if Sk(θ′) ≥ Sk(θk−1);
in this respect MEM mimics a step of a GEM algorithm. On the other hand, the
random nature of the Metropolis rule implies that even a proposal θ′ such that
Sk(θ′) < Sk(θk−1) could be accepted with a positive probability. This feature is of
central importance for the MEM algorithm to escape from local maxima.

The MEM sequence (θk) forms a time-inhomogeneous Markov chain with tran-
sition kernels

Pk(θ, A) =
∫

A
ak(θ, θ′)Qk(θ, dθ′) + χA(θ)

∫

Θ
[1− ak(θ, θ′)]Qk(θ, dθ′) (3·3)

where A ∈ A and χA is the indicator function of the set A and the function
ak : Θ × Θ → [0, 1] is the underlying acceptance probability function

ak(θ, θ′) =
∫

ck(θ, θ′, z̃k)
mk∏

i=1

h(zi|y, θ)dz1 . . . dzmk

=
∫ (

1 ∧
mk∏

i=1

f(y, zi, θ
′)

f(y, zi, θ)

)
mk∏

i=1

h(zi|y, θ)dz1 . . . dzmk
. (3·4)

First we prove that each Pk has an invariant probability measure (i.p.m.) πk(dθ)
proportional to gmk(y, θ)m(dθ).

Lemma 1 Assume that D−1
k =

∫
Θ g(y, θ)mkm(dθ)) < ∞. Then, Pk is a reversible

kernel with i.p.m. πk given by

πk(dθ) = Dkg(y, θ)mkm(dθ) . (3·5)
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Proof. It is sufficient to prove that πk(θ)Pk(θ, dθ′) is a symmetric measure on
Θ2, that is

∫

A×B
Pk(θ, dθ′)g(y, θ)mkm(dθ) =

∫

B×A
Pk(θ, dθ′)g(y, θ)mkm(dθ); .

for any (A,B) ∈ A2. We have
∫

A×B
g(y, θ)mkPk(θ, dθ′)m(dθ)

=
∫

A×B
ak(θ, θ′)Qk(θ, dθ′)g(y, θ)mkm(dθ)

+
∫

Θ×Θ
χA(θ)χB(θ)[1− ak(θ, θ′)]Qk(θ, dθ′)g(y, θ)mkm(dθ) .

For the first term on the right-hand, it will be sufficient to prove that ak(θ, θ′)g(y, θ)mk

is a symmetric function, since Qk(θ, dθ′) is a symmetric kernel. That is the case
because

g(y, θ)mkak(θ, θ′) =
∫

g(y, θ)mk

(
1 ∧

mk∏

i=1

f(y, zi, θ
′)

f(y, zi, θ)

)
mk∏

i=1

h(zi|y, θ)dz1 · · · dzmk

=
∫ [∏

mk

f(y, zi, θ) ∧
∏
mk

f(y, zi, θ
′)

]
dz1 · · · dzmk

.

For the second term the symmetry is clear and the claim follows immediately.

Lemma 1 displays the key feature of the MEM algorithm by inheritance from
the Metropolis-type simulated annealing algorithm: as mk increases to infinity,
the invariant density Dkg

mk(y, θ) concentrates more and more on the set of global
maxima of the target function g(y, θ). Actually when the MEM converges, the
support of the limiting distribution is exactly the set of these maxima.

4 Convergence of the MEM algorithm

The MEM chain (θk) is not a standard Metropolis chain because in our context,
the objective function, namely the observed likelihood function g(y, θ) is unknown.
Therefore, to prove the convergence of the MEM algorithm, we propose to adapt the
work of Haario and Sacksman (1991) (hereafter [HS]) about the simulated annealing
on a general state space.

4·1 The behavior of the sequence of i.p.m. (πk)
∞
k=1

As in [HS], we first study the sequence of i.p.m’s (πk). We recall the definition (3·5)
and without loss of generality we assume g(y, θ) > 0 for all θ ∈ Θ. Then we can
identify πk as a Boltzmann distribution

πk(dθ) = Dke
−mkH(y,θ)m(dθ), (4·1)

with “energy” function H(y, θ) = − log g(y, θ). Following [HS] we define LH(z) as
the steepness indicator of the energy function H, namely

LH(z) =
∫

R
e−zxλH(dx), z ∈ C,
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where the measure λH has the distribution function

λH(x) = m{θ|H(y, θ) ≤ x} .

Theorem 3.2 of [HS] yields the following estimate

k∑

i=n+1

‖πi − πi−1‖ ≤ log
LH(mn)
LH(mk)

, 1 ≤ n ≤ k.

4·2 Estimates for the ergodicity coefficient of Pk

Let us first recall the definition of Dobrushin’s ergodicity coefficient. The norm ‖λ‖
of a probability measure λ on (Θ,A) is the total variation norm. For a transition
kernel P (θ, dθ′), the Dobrushin contraction coefficient δ(P ) is

δ(P ) = sup
λ 6=µ

‖µP − λP‖
‖µ− λ‖ ,

where the sup is taken over all pairs of different probability measures defined on
(Θ,A); see Seneta (1979). We have 0 ≤ δ(P ) ≤ 1 and the sub-multiplicativity
property δ(PP ′) ≤ δ(P )δ(P ′). Set

ω(y, z) = inf
(θ,θ′)∈Θ2

f(y, z, θ′)
f(y, z, θ)

, b(y) = inf
θ∈Θ

∫
h(z|y, θ)ω(y, z)dz .

It is clear that both ω and b are nonnegative and bounded by 1. In the sequel we
will need the following

Hypothesis 1 b(y) > 0.

Remark 1. Assume that 1) Θ is a compact space; 2) for every θ and with respect to
the conditional distribution h(·|y, θ), the function z 7→ ω(y, z) is not null everywhere;
3) for all z, the map θ 7→ h(z|y, θ) is continuous. Then b(y) > 0.

Let ∆(y) = − log b(y) and for 1 ≤ n ≤ k, P (n,k) = Pn+1 · · ·Pk and Q(n,k) =
Qn+1 · · ·Qk. The Lemma below shows how the kernel P (n,k) inherits contraction
from Q(n,k).

Lemma 2 Under Hypothesis 1 and for all n, k, 1 ≤ n ≤ k, we have

1− δ(P (n,k)) ≥ e−∆(y)
Pk

j=n+1 mj [1− δ(Q(n,k))].

Proof. We first show that

ak(θ, θ′) ≥ e−∆(y)mk . (4·2)

In fact:

ak(θ, θ′) =
∫ (

1 ∧
mk∏

i=1

f(y, zi, θ
′)

f(y, zi, θ)

)
mk∏

i=1

h(zi|y, θ)dz1 . . . dzmk

≥
∫ (

1 ∧
mk∏

i=1

ω(y, zi)

)
mk∏

i=1

h(zi|y, θ)dz1 . . . dzmk

=
(∫

ω(y, zi)h(z|y, θ)dz

)mk

≥ e−∆(y)mk .
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Set c = exp{−∆(y)
∑k

j=n+1 mj}. Then we have that, for any probability measure
µ and A ∈ A,

µP (n,k)(A)

=
∫

Θ
µ(θn)

∫

Θ
Pn+1(θn, dθn+1) · · ·

∫

A
Pk(θk−1, dθk)

≥
∫

Θ
µ(dθn)

∫

Θ
an+1(θn, θn+1)Qn+1(θn, dθn+1) · · ·

∫

A
ak(θk−1, θk)Qk(θk−1, dθk)

≥ c
(
µQ(n,k)

)
(A) ,

where the two estimates follow from (3·3) and (4·2), respectively. Then the conclu-
sion follows using standard arguments (see the end of the proof of Lemma 4.1 in
[HS]).
Remark 2. Following the above proof, a better estimate could be obtained as
follows. Assume the proposal kernels have a density: Qk(θ, θ′) = sk(θ, θ′)m(dθ′).
Set

ωk(y, z) = inf
{

f(y, z, θ′)
f(y, z, θ)

: (θ, θ′) ∈ Θ2 , sk(θ, θ′) > 0
}

,

bk(y) = inf
θ∈Θ

∫
h(z|y, θ)ωk(y, z)dz ,

∆k(y) = − log bk(y) .

Clearly ωk(y, z) ≥ ω(y, z), ∆k(y) ≤ ∆(y). Then, the conclusion of Lemma 2 can be
refined as

1− δ(P (n,k)) ≥ exp−
Pk

j=n+1 ∆j(y)mj [1− δ(Q(n,k))]. (4·3)

4·3 Weak convergence of the MEM

By analogy with the simulated annealing algorithm, the sequence (mk) is called an
inverse temperature schedule. Our main result below states essentially that, if this
sequence grows as the logarithm, the MEM algorithm converges to a distribution
concentrated in the set of the maxima of the likelihood function g(y, θ). In the
sequel [x] stands for the integer part of x.

Theorem 1 Assume that the following conditions are satisfied.

1. The parameter space Θ is a compact subset of Rn with a non empty interior
and equipped with inherited topology, and let m be the normalized restriction
of Lebesgue measure on Θ.

2. The log-likelihood function log g(y, θ) is continuous on Θ taking its maximum
value at a finite number of interior points, say θ∗1, . . . , θ

∗
r . Moreover the Hes-

sian matrix

J(θ∗i ) = − ∂2

∂θ2
log g(y, θ)

∣∣∣∣
θ=θ∗i

is positive definite at each θ∗i , i = 1, . . . , r.

3. Suppose that for some s ≥ 1 and for all k ≥ 1,

δ(Qks+1Qks+2 · · ·Q(k+1)s) ≤ d < 1.
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4. There exists ε ∈ (0, 1) such that the sequence (mk) satisfies one of the following
conditions:

(a) mk ≤ log(k+2)
(1+ε)s∆(y) and the mapping k → 1/mk is convex ;

(b) mk ≤ log(k+2)
(1+ε)s∆(y) and limk→∞

m
[k−k1−ε/2]

mk
= 1.

Then, the distributions µk of θk converge weakly to the probability measure π∞
defined by

π∞(dθ) =

∑r
j=1 vjχθ∗j (dθ)∑r

j=1 vj
,

with vj = [detJ(θ∗j )]
−1/2.

Proof. This is merely a straightforward application of Theorem 7.7 of [HS] taking
into account the following:

1. here the cooling schedule is Tk = 1/mk;

2. the smoothness conditions assumed on the target function g(y, θ) imply that
on any small enough neighborhood of a maximum point θ∗i , the following
quadratic expansion holds

− [log g(y, θ)− log g(y, θ∗i )] = (θ − θ∗i )
T J(θ∗i )(θ − θ∗i ) + o(||θ − θ∗i ||2) .

Then the mixing weights (vi) for the limiting distribution π∞ are given by

vi = m
(
z ∈ Rp : zT J(θ∗i )z ≤ 1

)
= const. [detJ(θ∗j )]

−1/2 .

Remark 3. Condition 1, 2 and 4 are standard smoothness assumptions fulfilled
by most of usual incomplete data models. In Condition 4, (mk) can be relaxed along
the same lines leading to the refinement of Eq. (4·3) and under the same assumption
that the proposals have a density function. Then, the conclusion of Theorem 1 still
holds if we substitute ∆̃k(y) for ∆(y) where

∆̃k(y) = min {∆j(y) : 1 + [(k − 1)/s]s ≤ j ≤ s + [(k − 1)/s] } .

Here the ∆j(y)’s are defined in the remark after Lemma 2.
Only Condition 3 is not trivial to check. However note that Θ is compact and let

us consider a Gaussian kernel as proposal Qk(θ, dθ′) defined by θ′ = θ+ε, with some
independent zero-mean Gaussian random vector ε having a fixed variance-covariance
matrix. Then, if we make some projection at the boundary of the domain Θ (see
[HS] for details), Condition 3 is satisfied.

5 Examples

Example 1: MEM is a global maximizer

The first example that we provide is a rather simple model taken from Arslan et al.
(1993). Here the likelihood has several well-known local maxima implying that the
classical EM algorithm will run to a local maximum nearest to the starting value.
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The observed data is y = (−20, 1, 2, 3) assumed to follow a Student’s t-distri-
bution with 0.05 degrees of freedom and unknown location parameter θ. The log-
likelihood is given by

l(θ) = −0.525
4∑

i=1

log{0.05 + (yi − θ)2} (5·1)

which does not admit a closed-form solution for the MLE of θ. In the complete-
data x = (y, z), the missing variables z = (z1, . . . , z4) are defined so that Yi|zi ∼
N (θ, 1/zi) independently for i = 1, . . . , 4 and Zi ∼ G(0.025, 0.025), where G(a, b)
denotes the Gamma distribution with mean a/b. The log complete-data density can
be written as

log f(x; θ) = const− 0.475
4∑

i=1

log zi − 0.025
4∑

i=1

zi − 0.5
4∑

i=1

zi(yi − θ)2.

It is not difficult to show that the conditional distribution of Zi given yi is

Zi|yi ∼ G
(

0.525, 0.025 +
(yi − θ)2

2

)
.

The log-likelihood function is plotted in Figure 1 and has four local maxima θ̂
located at

θ̂1 = −19.993, θ̂2 = 1.086, θ̂3 = 1.997, θ̂4 = 2.906.

It is easy to show also that the mapping induced by the EM algorithm is defined by

θk =
∑

i=1 yiwi(θk−1)∑
i=1 wi(θk−1)

, (5·2)

where wi(θ) = 1.05 · [0.05 + (yi − θ)2
]−1.

In our experiment, we have chosen 5 starting values (−30,−18, 1.5, 2.5, 30). For
these values the fixed points of the mapping (5·2) are (−19.993,−19.993, 1.997, 1.997,
1.086).

We fixed the number of iterations of MEM equal to 3 000. Then, we used
MEM in a kind of deterministic fashion, i.e., before each MEM run, the seed of
the pseudo-random generator is set to the same value, regardless of the starting
values. Thus for each of the 5 runs the procedure employs the same pseudo-random
numbers. The proposal density for θ′ at iteration k is a N (θk−1, 4) (see Remark
3) and the temperature schedule is the logarithmic rule mk = log(k + 2)/3. The
Figure 5 shows the behaviour of MEM for each iteration. In particular we note
that the algorithm can escape from fixed points that are local maxima. However,
our experience with the algorithm suggests that the choice of the variance in the
proposal density deserves some care. Setting small values of the variance (e.g. less
than or equal to 1) leads to a quite low convergence rate.

Example 2: a mixed logit-normal model

Our interest in this model originates from the work of McCulloch (1997) where
the author considers the computation of the likelihood estimator by the MCEM
algorithm in a particular situation. The model is a mixed logit-normal model with
a single, normally distributed random effect and a single fixed effect:

10



−40 −20 0 20 40

−
1

6
−

1
4

−
1

2
−

1
0

−
8

−
6

−
4

−
2

theta

lo
g

−
li
k
e

li
h

o
o

d

Figure 1: Arslan et al. (1993) example: the log-likelihood. The dotted points are the
log-likelihood at the starting values (−30,−18, 1.5, 2.5, 30) for the MEM algorithm.
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• the random effect is Z = (Zj), i.i.d. N (0, σ2);

• the fixed effect is u = (uij);

• conditionally to these effects, the response variables Y = (Yij) are independent
Bernoulli variables with parameters (pij) fulfilling the linear logistic model

log
pij

1− pij
= βuij + zj . (5·3)

Here i = 1, . . . , n and j = 1, . . . , q.

Let θ = (β, σ2) be the parameters. The missing data are the unobserved random
effect Z. For the complete-data x = (y, z), the likelihood is

f(x; θ) =
q∏

j=1

ξ0,σ2(zj)
n∏

i=1

exp[yij(βuij + zj)]
1 + exp[βuij + zj ]

.

Here ξ0,σ2 is the density function of N (0, σ2). Thus the observed likelihood function
is given through a product of q integrals

g(y; θ) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
f(y, z; θ)dz1 · · · dzq ,

which could be computed by numerical integration in this simple case, although the
numerical error is far from easy to be controlled when q is not too small. Since
this computation becomes infeasible for more complex random effect Z, e.g. Zij =
Ui + Vj , it is worth applying EM-family algorithms to find the likelihood estimator.

In his paper McCulloch (1997) proposes to solve this problem by using the
MCEM algorithm. It turns out that the conditional density h(z|y, θ) is as complex
as the observed likelihood g, hence also unavailable. Then, at time k, in place
of mk i.i.d samples Z̃k,1, . . . , Z̃k,mk

, McCulloch (1997) introduces a Markov chain
sampler of length mk to evaluate the Monte-Carlo mean (2·1). Later this model is
also considered by Booth and Hobert (1999) and Levine and Casella (2000) where
propose some more efficient versions of the MCEM algorithm are proposed.

Here we follow McCulloch (1997) for this Monte-Carlo step, by using a Metropo-
lis sampler to generate a Markov sample Z̃k,1, . . . , Z̃k,mk

whose invariant distribution
is the conditional distribution h(z|y, θk−1). This sample is then used to evaluate the
Monte-Carlo mean (3·1). For the reader’s convenience, we will recall this sampler
at the end of this example; see also §4.1 of McCulloch (1997).

We use the same setting as in the cited references for the simulation experiment.
Namely, β = 5, σ2 = 1/2, n = 15, q = 10 and uij = i/15. Indeed we use the data y
listed in Table 2 of Booth and Hobert (1999) to ease some comparison, since data
are not provided in McCulloch (1997)). For these data, the maximum likelihood
estimator is found to be (β̂, σ̂2) = (6.132, 1.766) by numerical integration.

We have chosen the parameters of the MEM algorithm in a close way than those
used by Booth and Hobert (1999) in their MCEM experiment. More precisely,

• the starting point is θ0 = (2, 1);

• the temperature schedule is a simple-minded logarithmic rule

mk = 100× log(k + e− 1) , k ≥ 1;

this schedule starts with m1 = 100 which is the initial value used in Booth and
Hobert (1999) and belongs to the family for which convergence is guaranteed
by Theorem 1.
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• at each iteration k, the proposal θ′ = (β′, σ2′) is defined as

β′ = βk−1 + ε1 , σ2′ = σ2
k−1 + ε2 ,

where θk−1 = (βk−1, σ
2
k−1) and εi are two independent Gaussian variables with

mean 0 and given variance 1/10.

Our purpose is to sketch the behaviour of the MEM algorithm in this important
situation rather than to provide an extensive simulation experiment. Note that the
complexity of the MEM algorithm as well as for the MCEM algorithm is proportional
not to the total number K of iterations, but the total number of Monte-Carlo
replications C = m1 + · · · + mK . We have run the MEM algorithm up to time
K = 10 000. This quite large time is counterbalanced by the low increasing rate of
the Monte-Carlo replication number mk which varies from m1 = 100 to mK = 921
(for the cited MCEM in Booth and Hobert (1999), K = 41 is quite small, while mk

is a step function increasing from 100 to 17 536).
We got 20 independent runs of the MEM algorithm with K = 10 000. Figure 5

displays one of such runs (the others are very similar). As we can see, the MEM se-
quence (θk) approaches well the likelihood estimator, although residual fluctuations
are present for large k. We believe, that in the current context, this is due to the
Monte-Carlo sampling error from the Markov chain sampler used to evaluate the
Monte-Carlo mean (3·1) as mk remains relatively small. A simple way to get rid of
these fluctuations is to consider the averaged sequence

θ̄k =
θ1 + · · ·+ θk

k

which is also displayed. Note that this average sequence can be recursively com-
puted. It is clear that the average MEM estimator converges quickly to the likelihood
estimator. It is this sequence that should be used in practice.

We conclude this example by recalling the McCulloch’s Metropolis sampler for
sampling from the conditional distribution h(z|y; θ) (McCulloch (1997)). At it-
eration k of the MEM algorithm, we generate mk values Z̃k,1, . . . , Z̃k,mk

using
this procedure. Let θ = (β, σ2) = (βk−1, σ

2
k−1) be the current estimate and set

z(t) = Z̃k,t = (z1(t), . . . , zq(t)) for t = 1, . . . , mk.

1. Initialize the chain with z(0) = (z1(0), . . . , zq(0)) by q i.i.d. draws from
N (0, σ2).

2. For t = 1, . . . ,mk and for j = 1, . . . , q

• propose an update z′ for zj(t−1) by an independent draw from N (0, σ2);
• accept this update, i.e. set zj(t) = z′ (otherwise zj(t) = zj(t − 1)) with

probability 1∧ α(zj(t− 1), z′) where

α(z, z′) = exp [(z′ − z)y+j ]
n∏

i=1

1 + exp[βuij + z]
1 + exp[βuij + z′]

, y+j =
n∑

i=1

yij .

Therefore the chain (z(t)) is an ergodic Markov chain with invariant density
h(·|y, θ).
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Figure 2: One run of the MEM algorithm up to 3 000 iterations from (a) θ0 = −30,
(b) θ0 = −18, (c) θ0 = 1.5, (d) θ0 = 2.5, (e) θ0 = 30. Dashed horizontal lines are
the global maximum of (5·1).
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Figure 3: One run of the MEM algorithm up to time 10 000 where the horizontal lines are
the values of the likelihood estimator β̂ = 6.132, σ̂2 = 1.766. (a) regression coefficient
estimator βk. (b) variance component estimator σ2

k. (c) averaged regression coefficient
estimator β̄k. (d) averaged variance component estimator σ̄2

k.
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