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Motivation

p High-dimensional data are
p difficult to represent
p difficult to understand
p difficult to analyze

p Example: MLP (Multi-Layer Perceptron) or RBFN (Radial-
Basis Function Network) with many inputs: difficult 
convergence, local minima, etc.

p Need to reduce the dimension of data while keeping 
information content!
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Motivation: example
p Supervised learning with MLP
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What we have:

p High-dimensional numerical data
coming from:
p sensors
p pictures, 
p biomedical measures 

(EEG/ECG), 
p etc.
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What we would like to have:

p A low-dimensional representation of the data in order to:
p visualize
p compress, 
p preprocess, 
p etc.
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Why ?

p Empty space phenomenon:
p # points necessary for learning grows exponentially 

with space dimension

p Curse of dimensionality
p « Spiky » hypercube
p Empty hypersphere
p Narrow spectrum of distances

Hypercube Hypersphere
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How ?

p Build a (bijective) relation between
p the data in the original space
p the data in the projected space

p If bijection:
p possibility to switch between representation spaces

(« information » rather than « measure »)

p Problems to consider:
p noise
p twists and folds

p impossibility to build a bijection
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Content

p Vector Quantization and Non-Linear Projections

p Limitations of linear methods
p Principal Component Analysis (PCA)
pMetric Multi-Dimensional Scaling (MDS)
p Limitations

p Nonlinear Algorithms
p Variance preservation
p Distance preservation (like MDS)

p Neighborhood preservation (like SOM)
pMinimal reconstruction error

p Comparisons

p Conclusions
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NLP <-> VQ

p Non-Linear Projection

p Reduction of the dimension of 
the data (from d to p)

p Vector Quantization

p Reduction of the number of 
data (from N to M)

X X

1 vector

number of
vectors

space dimension space dimension

Warning: « lines and columns » convention adopted in linear algebra –
contrary to most neural network courses and books…
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Principal Component Analysis (PCA)

p Goal:
p To project linearly while keeping the variance of the data

p Computation:
1. Covariance matrix C of the data

C = E{Xi Xi
T} = 1/N X XT 

2. Eigenvectors and eigenvalues of C
Vi = main directions

λi = variance along each direction

3. Projection & Reconstruction
Y = V1≤i≤p

T X

X ≈ Z = V1≤i≤p Y

p Also called « Karhunen-Loeve » transform

projection
« unprojection »
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Metric Multi-Dimensional Scaling (MDS)

p Goal:
p To project linearly while keeping the (N-1)*N/2 pairwise distances

p Computation:
1. Matrix D of the squared distances

D = [ d²i,j ] = [ (Xi - Xj )T (Xi - Xj) ]

2. EigenVectors and eigenvalues of D aften centering (= X XT)
Vi = coordinates along the main directions
λi = variance along each direction

3. Projection
Y = sqrt( diag( λ1≤i≤p ) ) V1≤i≤p

T

p Result of PCA = result of metric MDS !!!
p Only distances are needed -> more independent from 

representation !
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Limitations of linear projections

p Detection of linear 
dependencies only

p What happens with non-linear 
dependencies?
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Local PCA
Kernel PCA
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Local PCA (1/2)

p Criterion:
p Preserve variance (like PCA) locally

p Calculation: 
1. Vector quantization:

prototypes Cr = representave points of data Xi

2. Tesselation:
Voronoï zones = set of Xi with same BMU index r(i)

3. PCA on each zone:
the model is locally linear and globally non linear

4. Encoding:
Xi (dimension d) transformed in r(i) & Yi  (dimension p) 
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Local PCA (2/2)

p Example

p Shortcomings:
p No « continuous » representation
pMosaic of « disconnected » coordinate systems

r(i)
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Kernel PCA (1/3)

p Criterion:
p To preserve variance (like PCA) of transformed data

p How ?
p To transform data non-linearly 

(in fact, to transform non-linearly the MDS distance matrix)
p Transformation: allows to give more weigth to small distances
p Tranformation used: often Gaussian
p Interesting theoretical properties:

pnon-linear mapping to high-dimensional spaces

pMercer’s condition on Gaussian kernels

p…
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Kernel PCA (2/3)

p Calculation:
1. Dual Problem (cfr PCA <-> MDS):

(C = X XT) D = XT X = [ Xi
T Xj ] 

2. Nonlinear transformation of data:
D’ = [ Φ( Xi , Xj ) ] with Φ s.t. Φ(u,v) = ϕ(u) ϕ(v) (Mercer condition)

3. Centering of D’

4. Eigenvalues and eigenvectors of D’:
Vi = coordinates along the main directions

5. Projection:
Y = V1≤i≤p

T
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Kernel PCA (3/3)

p Example:

p Shortcomings:
p Eigenvalues = 0.138, 0.136, 0.099, 0.029,…
p Dimensionality reduction is not guaranteed…
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Sammon’s NLM
CCA / CDA
Isomap
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Sammon’s Non-Linear Mapping (NLM) 1/2

pCriterion to be optimized:
pDistance preservation (cfr metric MDS)

pSammon’s stress = 

pPreservation of small distances firstly

pCalculation:
pMinimization by gradient descent

( )
∑

∑ <
<

δ
−δ

δ ji j,i

j,ij,i

ji
j,i

d 2
1

distances in
projection space

distances in
original space
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Sammon’s Non-Linear Mapping (NLM) 2/2

p Example:

p Shortcomings:
p Global gradient: lateral faces are « compacted »
p Computational load (preprocess with VQ)
p Euclidean distance (use curvilinear distance)
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Curvilinear Component Analysis (1/2)

pCriterion to be optimized:
pDistance preservation
pPreservation of small distances firstly 

(but « tears » are allowed)

p

pCalculation:
1. Vector Quantization as preprocessing
2. Minimization by stochastic gradient descent (±)
3. Interpolation

( ) )d(FdE s,r
sr

s,rs,rCCA
2

∑
<

−δ=
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Curvilinear Component Analysis (2/2)

p Example:

p Shortcomings:
p Convergence of the gradient descent: « torn » faces
p Euclidean distance (use curvilinear distance)
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NLP: use of curvilinear distance (1/4)

p Principle:
Curvilinear (or geodetic) distance

= 
Length of the shortest path from one node to another

in a weighted graph
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NLP: use of curvilinear distance (2/4)

p Useful for NLP

Curvilinear distances are easier to preserve!
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NLP: use of curvilinear distance (3/4)

p Integration in projection algorithms:

( ) )d(FdE s,r
sr

s,rs,rCCA
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use curvilinear distance
(instead of Euclidean one)
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NLP: use of curvilinear distance (4/4)

Projected open box:
Sammon’s NLM

with Euclidean distance

Faces are « compacted »

Projected open box:
Sammon’s NLM

with curvilinear distance

« Perfect »!
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Isomap (1/2)

p Published in Science 290 (December 2000):
A global geometric framework for nonlinear dimensionality reduction.

p Criterion:
p Preservation of geodesic distances

p Calculation:
1. Choice of some representative points (randomly, without VQ!)
2. Classical MDS, but applied on the matrix of geodesic distances
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Isomap (2/2)

p Example:

pShortcomings:
pNo weighting of distances: faces are heavily « compacted »
pNo vector quantization
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SOM
Isotop
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Self-Organizing Map (SOM) (1/2)

p Criterion to be optimized:
p Quantization error & neighborhood preservation
p No unique mathematical formulation of neighborhood criteria

p Calculation:
p Preestablished 1D or 2D grid:

distance d(r,s)

p Learning rule:

)CX(e∆C ri

))i(r,r(d

r −α= λ
−

2

2

2

rir CX)i(r −= minarg
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Self-Organizing Map (SOM) (2/2)

p Example:

p Shortcomings:
p Inadequate grid shape: faces are « cracked »
p 1D or 2D grid only…
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Isotop (1/3)

p Inspired from SOM and CCA/CDA

p Criterion:
p Neighborhood preservation
p No known math. formula…

p Calculation within 4 steps:
1. Vector quantification
2. Linking prototypes Cr

3. Mapping (between d-dim. and p-dim. spaces)

4. Linear interpolation
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Isotop (2/3)

1. Vector quantification

No preestablished shape

2. Linking of all prototypes

« Data-driven neighborhoods»

3D 3D
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Isotop (3/3)

3. Mapping

VQ (~SOM) of a Gaussian pdf

4. Linking of all prototypes

Local linear interpolations

2D 2D
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Autoassociative MLP
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Autoassociative MLP (1/2)

p Criterion to be minimized:
Reconstruction error (MSE) 

after coding and decoding of the data
with an autoassociative neural network (MLP)

p Autoassociative MLP: unsupervised (in=out)

Auto-encoding
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Autoassociative MLP (2/2)

p Example:

p Shortcomings:
p « Non-geometric » method
p Slow and hasardous convergence (5 layers!)
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Comparisons: dataset

p Abalone (UCI Machine learning repository):
p 4177 shells
p 8 features (+ sex)

pLength

pDiameter

pHeight

pWhole weight

pShucked de la chair

pViscera des viscères

pShell weight

pAge (# rings)

p VQ with 200 prototypes

p Reduction from dimension 7 to 2 and visualization of the age 
(colors)
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Comparisons: results (1/4)

p Sammon’s nonlinear mapping:
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Comparisons: results (2/4)

p Curvilinear Component Analysis:
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Comparisons: results (3/4)

p Self-organizing map:
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Comparisons: results (4/4)

p Isotop:
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Comparisons: summary

p Warning: model complexity !

Isotop
(adaptative neighborhoods)

Curv. Comp. Analysis
(adaptative weighting)

«Flexible»
method

Self-Organizing Map 
(fixed neighborhood)

Sammon’s mapping 
(fixed weighting)

«Rigid»
method

Neighborhood preservationDistance preservation
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Research directions

p NLP methods
p Neighborhood decrease in CCA/CDA

p Curvilinear distance (geodesic)
p Study and implementation
p Integration in SOM, CCA, Sammon’s NLM and Isotop

p Non-Euclidean distances
p Alternative metrics are considered (Linf, L1, L0.5, etc.)
p Integration in curvilinear distance, VQ and NLP

p Piecewise linear interpolation
p Study and implementation
p Integration in Sammon’s NLM, CCA and Isotop

p New algorithm: Isotop
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