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Motivation

/# High-dimensional data are
/ difficult to represent
4 difficult to understand
4 difficult to analyze

/4 Example: MLP (Multi-Layer Perceptron) or RBFN (Radial-
Basis Function Network) with many inputs: difficult
convergence, local minima, etc.

+# Need to reduce the dimension of data while keeping
information content!
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Motivation: example

/# Supervised learning with MLP
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What we have:

/# High-dimensional numerical data
coming from:

4 Sensors
/ pictures,

# biomedical measures
(EEG/ECG),

A etc.
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What we would like to have:

/4 A low-dimensional representation of the data in order to:
4 visualize
/4 COMpress,
4 preprocess,
4 etc.
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Why ?

4 Empty space phenomenon:

4 # points necessary for learning grows exponentially
with space dimension

+# Curse of dimensionality
/4 « Spiky » hypercube
4 Empty hypersphere
4 Narrow spectrum of distances

Hypercube Hypersphere
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How ?

/ Build a (bijective) relation between
/the data in the original space
/the data in the projected space

/ If bijection:

4 possibility to switch between representation spaces
(« information » rather than « measure »)

+# Problems to consider:
4 noise
/ twists and folds
+ impossibility to build a bijection
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NLP <-> VQ

/4 Non-Linear Projection /4 Vector Quantization
1 vector
/
X number of
vectors X

1 T

—>
space dimension space dimension
/4 Reduction of the dimension of /4 Reduction of the number of
the data (from d to p) data (from N to M)

Warning: « lines and columns » convention adopted in linear algebra —
contrary to most neural network courses and books...
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Principal Component Analysis (PCA)

4 Goal:
4 To project linearly while keeping the variance of the data

4 Computation:

1. Covariance matrix C of the data o
C=E{XX}=1/NXXT 7

2. Eigenvectors and eigenvalues of C
V; = main directions 35 L
A, = variance along each direction

3. Projection & Reconstruction

Y = Vige' X < projection
X=Z=Viiep ¥ o « unprojection »

~ # Also called « Karhunen-Loeve » transform
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Metric Multi-Dimensional Scaling (MDS)

4 Goal:
4 To project linearly while keeping the (N-1)*N/2 pairwise distances

4 Computation:

1. Matrix D of the squared distances
D= [dzi,j] =[(Xi- Xj)T (Xi ‘Xj)]

2. EigenVectors and eigenvalues of D aften centering (= X XT)
V; = coordinates along the main directions
A, = variance along each direction

3. Projection
Y = sqrt( diag( Alsisp) ) VlsispT

/# Result of PCA = result of metric MDS !

/# Only distances are needed -> more independent from

e representation !

o™
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Limitations of linear projections

/ Detection of linear /# What happens with non-linear
dependencies only dependencies?
Principal Components Monlinear Dependencies
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Local PCA (1/2)

/ Criterion:
/ Preserve variance (like PCA) locally

# Calculation:
1. Vector quantization:
prototypes C, = representave points of data X;
2. Tesselation:
Voronoi zones = set of X; with same BMU index r(i)
3. PCA on each zone:
the model is locally linear and globally non linear
4. Encoding:
X; (dimension d) transformed in r(i) & Y; (dimension p)
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Local PCA (2/2)

4 Example

r(i)

+# Shortcomings:
/ No « continuous » representation
/ Mosaic of « disconnected » coordinate systems
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Kernel PCA (1/3)

+ Criterion;
/4 To preserve variance (like PCA) of transformed data

4 How ?

4 To transform data non-linearly
(in fact, to transform non-linearly the MDS distance matrix)

/ Transformation: allows to give more weigth to small distances
/# Tranformation used: often Gaussian
/ Interesting theoretical properties:

#non-linear mapping to high-dimensional spaces

#Mercer’s condition on Gaussian kernels

4.
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Kernel PCA (2/3)

# Calculation:
1. Dual Problem (cfr PCA <-> MDS):
(C=XXT) D=X' X=[XTX]
2. Nonlinear transformation of data:
D'=[®( X, X;) ] with ® s.t. D(u,v) = ¢(u) $(v) (Mercer condition)
3. Centering of D’
4. Eigenvalues and eigenvectors of D’:
V; = coordinates along the main directions
5. Projection:
Y = Vige'
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Kernel PCA (3/3)

4 Example:

+# Shortcomings:
4 Eigenvalues = 0.138, 0.136, 0.099, 0.029,...
/ Dimensionality reduction is not guaranteed...
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Sammon’s Non-Linear Mapping (NLM) 1/2

#Criterion to be optimized: distances in
#Distance preservation (cfr metric MD?)/ original space

1 Z(ai’j i
ZSammon's stress = 3.3 8,j «—__ distancesin

i<j . .
<) projection space

#Preservation of small distances firstly

# Calculation:
#Minimization by gradient descent
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Sammon’s Non-Linear Mapping (NLM) 2/2

4 Example:

I‘,'I M
SR i i e 1N
e | .‘}I‘,‘.

+# Shortcomings:
/# Global gradient: lateral faces are « compacted »
/4 Computational load (preprocess with VQ)
/ Euclidean distance (use curvilinear distance)
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Curvilinear Component Analysis (1/2)

#Criterion to be optimized:
#Distance preservation
#Preservation of small distances firstly

(but « tears » are allowed)
4

#Calculation:
1. Vector Quantization as preprocessing

2. Minimization by stochastic gradient descent (+)
3. Interpolation

L& Michel Verleysen
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Curvilinear Component Analysis (2/2)
4 Example:

+# Shortcomings:

/# Convergence of the gradient descent: « torn » faces
/ Euclidean distance (use curvilinear distance)
o,
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NLP: use of curvilinear distance (1/4)

# Principle:
Curvilinear (or geodetic) distance

Length of the shortest path from one node to another
in a weighted graph
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NLP: use of curvilinear distance (2/4)

# Useful for NLP

Curvilinear distances are easier to preserve!
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NLP: use of curvilinear distance (3/4)

/# Integration in projection algorithms:

use curvilinear distance
(instead of Euclidean one)

£,
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NLP: use of curvilinear distance (4/4)

Projected open box: Projected open box:
Sammon’s NLM Sammon’s NLM
with Euclidean distance with curvilinear distance
s >
&_; \ _'. 3 iy
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X  AX \ AT
1 % 75 F
b : /|
\ >
Faces are « compacted » « Perfect »!
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Isomap (1/2)

+ Published in Science 290 (December 2000):

A global geometric framework for nonlinear dimensionality reduction.

+ Criterion;
/ Preservation of geodesic distances

# Calculation:
1. Choice of some representative points (randomly, without VQ!)
2. Classical MDS, but applied on the matrix of geodesic distances
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Isomap (2/2)

4 Example:

#Shortcomings:
#No weighting of distances: faces are heavily « compacted »
#No vector quantization
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Self-Organizing Map (SOM) (1/2)

/ Criterion to be optimized:
/ Quantization error & neighborhood preservation
4 No unique mathematical formulation of neighborhood criteria

« Calculation: ATATATASATATATATS" ATATATATATATAY ATATATATATaS
/4 Preestablished 1D or 2D grid: |« 000 S
distance d(r,s)

# Learning rule:
r(i)=argmin,|X; -C,|

-d2(r (i)
AC, =ae 2% (X -C,)
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Self-Organizing Map (SOM) (2/2)

4 Example:

+# Shortcomings:
/# Inadequate grid shape: faces are « cracked »

. 41D or 2D grid only...

o™
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Isotop (1/3)

/# Inspired from SOM and CCA/CDA

/ Criterion:
4 Neighborhood preservation
#No known math. formula...

+ Calculation within 4 steps:
1. Vector quantification
2. Linking prototypes C,
3. Mapping (between d-dim. and p-dim. spaces)
4. Linear interpolation

.“'Q:i&:j; Michel Verleysen 6
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Isotop (2/3)

1. Vector quantification 2. Linking of all prototypes

3D
No preestablished shape « Data-driven neighborhoods»
Michel Verleysen 37
Isotop (3/3)
3. Mapping 4. Linking of all prototypes
2D 2D

VQ (~SOM) of a Gaussian pdf Local linear interpolations
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Autoassociative MLP (1/2)

+ Criterion to be minimized:
Reconstruction error (MSE)
after coding and decoding of the data
with an autoassociative neural network (MLP)

+ Autoassociative MLP: unsupervised (in=out)

Auto-encoding
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Autoassociative MLP (2/2)

4 Example:

+# Shortcomings:
4 « Non-geometric » method
/ Slow and hasardous convergence (5 layers!)
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Comparisons: dataset

/# Abalone (UCI Machine learning repository):
44177 shells
/4 8 features (+ sex)
ZLength
4 Diameter
4 Height
4Whole weight
4 Shucked de la chair
#\Viscera des viscéres
4 Shell weight Callfornia Red Abalone
#Age (# rings)
#4NQ with 200 prototypes
/ Reduction from dimension 7 to 2 and visualization of the age
(colors)
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Comparisons: results (1/4)

4 Sammon'’s nonlinear mapping:
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Comparisons: results (2/4)

+# Curvilinear Component Analysis:
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Comparisons: results (3/4)

# Self-organizing map:

H E R H u

HE B EEDN [

H B RN

HE B E N |

H B RN

H E BN

H BN
u H N |
" B RN

. EEEEEEEN
[ ]
:'%-‘;‘;:jr Michel Verleysen 5

23



4 Isotop:

Comparisons: results (4/4)
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Comparisons: summary

Distance preservation

Neighborhood preservation

«Rigid» Sammon’s mapping Self-Organizing Map

method (fixed weighting) (fixed neighborhood)
«Flexible» | Curv. Comp. Analysis Isotop

method (adaptative weighting) | (adaptative neighborhoods)

4 Warning: model complexity !
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Research directions

4 NLP methods
4 Neighborhood decrease in CCA/CDA
+ Curvilinear distance (geodesic)
# Study and implementation
/ Integration in SOM, CCA, Sammon’s NLM and Isotop
/4 Non-Euclidean distances
/ Alternative metrics are considered (L, Ly, Ly5, €tc.)
/ Integration in curvilinear distance, VQ and NLP
+ Piecewise linear interpolation
+ Study and implementation
/ Integration in Sammon’s NLM, CCA and Isotop
/4 New algorithm: Isotop
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