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Abstract. This work concerns estimation of multidimensional nonlin-
ear regression models using multilayer perceptron (MLP). For unidimen-
sional data, the ordinary least squares estimator matches with the Gaus-
sian maximum likelihood estimator. However, in the multidimensional
case, the Gaussian maximum likelihood estimator minimize the deter-
minant of the empirical error’s covariance matrix. This paper is devoted
to the study of this estimator using a MLP. In particular, we show how
to modify the backpropagation algorithm to minimize such cost function
and we give heuristic explanations in favor of the use of such function in
the multidimensional case.

1 Introduction

Consider a sequence (Y%, Z;), . of random vectors, where Y; € R¢, and Z; € RY
(d and d' are positive integer) verifying
Y = Fw, (Z4) + & (1)

where

— Fyw, is a function represented by a MLP with parameters or weights Wj.
— (g¢) is an i.i.d. centered noise with unknown invertible covariance matrix Ig.

Our goal is to estimate the true parameter by minimizing an appropriate cost
function. This model is called a regression model and a popular choice for the
associated cost function is the mean squares error :

1o 5
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where ||.|| denote the Euclidean norm on R?. The weights minimizing this cost

function : the ordinary least squares estimator, had been widely studied and if
the observations (Y;),.y are scalar, this estimator matches with the Gaussian
maximum likelihood estimator. However, this is not the case if the observations
Y; are d-dimensional with d > 2.



Indeed, when Fyy is a linear function it is well known that the ordinary least
square error is a sub-optimal estimator since the best linear unbiased estimator
1 .

is
n

W, = argmv[i/n % Z (Y: — Fw (Z))" I (Vs — Fw (Zy)) (3)
=1

where X7 denote the transpose of vector X and I'; * the inverse of . In general,
the covariance matrix I is unknown and we have to estimate this matrix in order
to get a better estimator of the weights. For example, Gallant [2] considers the
generalized least squares :

n
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assuming that I" is a good approximation of the true covariance matrix of the
noise Iy. A possible way to construct a sequence of (I'),cn. yielding a good
approximation of I is the following : using the ordinary least squares estimator
W., the noise covariance can be approximated by

n

r=r(i) =1 > (Vi = Py, (Z0)(¥i — Py, (20"

then, we can use this new covariance matrix to find a generalized least squares

estimate W2 :

W2 = argumin L 3° (¥ - Fw (20)7 (1) (% - Fi (20)
t=1

and calculate again a new covariance matrix

n

= 1 (W) = 1 300 = Fig (20)05 = Fyg (7).

It can be shown that this procedure gives a sequence of parameters
Wo—aT W2 Ty — - (5)

achieving a local maximum of the Gaussian log-likelihood.

However, if we consider the whole parameter (W, I'), such procedure will be
useless because we can directly maximize the Gaussian log-likelihood by mini-
mizing the logarithm of the determinant of the empirical covariance matrix :

T,, (W) := log det <% S % - Fw (Z) (Y — Fw(zt»T) . (6)

t=1

! This estimator is called BLUE



T, (W) is called the concentrated Gaussian log-likelihood but, naturally, it
can be used even if the noise is non-Gaussian.

This paper is devoted to the study of this cost function in the framework of
the MLP models. It is organized as follow :

In the second section, we introduce W, := argminwy T, (W), the weights
minimizing the cost function T;, (W). We show how to construct a numerical
algorithm to approximate this estimator thanks a modification of the backprop-
agation algorithm.

In the third section we give heuristic arguments in favor of the use of this
estimator when the covariance matrix of the noise is not the identity

In the fourth section we compare the performance of this estimator with the
ordinary least square estimator on a simulated example.

2 Minimization of T,, (W)

We introduce first some notations :

1. For a d x d matrix I, let (I3;),; .., be the vector
(I'1, oy ooy Tugy Toxy oo+ Togy I3, -+, Taa)-

2. If X is a multidimensional vector, let X (¢) be the ith element.

3. If A is an non singular matrix and A~! it’s inverse, let ai_jl be the coefficients
of AL

4. let tr (A) be the sum of diagonal element of the matrix A.

The observations are the data (y, 2¢); <;<,,, and we want estimate the param-
eters W* minimizing T, (W) = logdet (130 (e — Fw(z)) (e — Fw (2))7).
As usual, we cannot find exact solution to such problem. However, we can get
a good approximation of the solution with differential optimization. This in-
volve the calculus of the gradient with respect to the weights of the MLP of the
cost function which is performed thanks the following modified backpropagation
algorithm.

2.1 Calculus of the derivative of W — T,, (W) :

If I, (W) is a matrix depending of the parameter vector W, we get From Magnus
and Neudecker [5]

% Indet (I, (W)) = tr (FI%FH(WO

Hence, if I,(W) = Y1 (v — Fw(2:))(y+ — Fw(z))T, the derivative of
In(det (I, (W))) with respect to the weight Wy, is :

9 T I
m(ln(det(f'n (W) = (Fz'j )15i,j5d <6Wk)1§i,j§d




with
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The quantity %Vé;)(’) is computed by backpropagating the constant 1 for

the MLP restricted to the output ¢. The figure 1 give a example of a MLP
restricted to the output 2.

Fig. 1. MLP restricted to the output 2 : the plain lines
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Hence, the calculus of the gradient of T,, (W) with respect to the parameters
of the MLP is straightforward. We have to compute the derivative with respect
to the weights of each single output MLP extracted from our MLP by backprop-
agating the constant value 1. Then, according to the formula (7), we can easily
compute the derivative of each terms of the empirical covariance matrix of the
noise. Finally the gradient is obtained by the sum of all the derivative terms of
this empirical covariance matrix ponderated by the terms of it’s inverse as in
formula (8).



2.2 Differential optimization

Using the previous calculus, we can applied one of the numerous techniques of
differential optimization to find a local minimum of the cost function T,(W).
We can find a comprehensive review of such techniques in Press et al. [6] and we
recommend especially the BFGS algorithm, which is a very fast quasi-newton
algorithm.

We note that the calculus of the gradient of T,,(W) is more complex than
the calculus of derivatives with the classical mean square criteria, but, in gen-
eral, optimization algorithms are associated with minimization along a line like
Brent’s method and the derivatives of the cost function are less evaluated than
the function itself. So, finally, the minimization of T}, (W ) is only slightly more
costly than the minimization of the ordinary mean square criteria.

3 Heuristics on the efficiency of W;:

Under suitable assumptions, see for example Sussmann [7], the model admit a
theoretical MLP with an optimal parameter Wy defined up to a permutation of
the weights. Under weak conditions the estimator W} converges almost surely
to the true parameter, see for example Gourieroux et al. 13] This result of
consistency holds also for the ordinary least square estimator W,,, see for example
White [8].

The differences between W;f and W, is the speed of convergence or more pre-
cisely the variance of the two estimator in function of the number of observation.
The better estimator is the estimator with the smallest variance.

First of all, we have to remark that, if the density of the noise is really
Gaussian, the estimator W) is asymptotically efficient as maximum likelihood
estimator. This properties imply that no other consistent estimator can achieve
a better variance asymptotically. Gaussian assumption of the noise can appear
to be a strong assumption but it is justified by the theorem central limit and
the fact that the noise is generally the sum of a lot of random effects.

Moreover, as we have seen in the introduction, maximum Gaussian likeli-
hood estimator matches with the limit estimator of the iterated generalized
least square (cf equation (5)). So it matches with the generalized least square
estimator with the best approximation of I'y we can get from the observations
(ytazt)1§t§n-

If the regression function is linear the generalized least square estimator using
I} is optimal (BLUE), in the non linear case we have the same property but
only asymptotically.

Indeed, if ¢ (Wy) is the Jacobian matrix of the MLP function with respect
to the true weights, E is the expectation with respect to the true distribution
of the data (Y, Z) and W! are the weights minimizing cost function G, (W, I")
(see equation (4)), we get from Yao [9)] :

lim /(W5 = Wo) "5 N (0, @r)

n—oo



with

ér = [E (v (Wo) I "9 (Wo))]
x [E (4 (Wo) T~ (W0))] ™

" [E (4 (Wo) T LI 7 (W)

Now it is straightforward to establish (see for example Ljung [4]), that
VF : @p Z ¢1"0

where the inequality is the standard inequality for definite positive matrices?.

So the less asymptotically variant estimator is obtained when we use the true
covariance of the noise to compute the generalized least square criterion. It seems
finally natural to use the best estimation of the this true covariance matrix that
we can achieve from the data, and so to use the cost function T, (W).

4 Simulated example

Although the estimator associated to the cost function T, (W), is theoretically
better than the ordinary mean least square estimator we have to confirm this
fact on simulation. Indeed, their are some pitfalls in practical situations with
MLP.

The first point is that we have no guaranty to reach the global minimum of
the cost function, we can only hope to find a good local minimum especially if
we are using many estimations with different initials weights.

The second point, is the fact that MLP are black box, it means that it is
difficult to give an interpretation of their parameters and it is almost impossible
to compare MLP by comparing their parameters even if we try to take into
account the possible permutations of the weights.

All these reasons explain why we choose to compare the estimated covariance
matrices of the noise instead of compare directly the estimated parameters of
MLP.

4.1 The model

To simulate our data, we use a MLP with 2 inputs, 3 hidden units, and 2 out-
puts. We choose to simulate a time series because it is very easy task as the
outputs at time ¢ are the inputs for the time ¢+ 1. Moreover, with MLP, the sta-
tistical properties of such model are the same than with independent identically
distributed (i.i.d.) data.

The equation of the model is the following

Yit1 = Fw, (Y2) + €1

where

2 We say &r > &r, if and only if r — &1, is a positive semidefinite matrix



- Y= (0:0)
= (Y)1<4<1000) Y2 € R?, is the bidimensional simulated random process

— Fywy, is a MLP function with weights W, chosen randomly between —2 and
2.

— (&¢) is an i.i.d. centered noise with covariance matrix Iy = (11'881 11'881>.

In order to study empirically the statistical properties of our estimator we make
10 independent simulations of the bidimensional times series of length 1000.

On each time series we estimate the weights of the MLP using the cost func-
tion T, (W) and the ordinary least square estimator (M CQ). The estimations
have been done using the second order algorithm BFGS, and for each estima-
tion we choose the best results obtained after 20 random initializations of the
weights. Doing so, we avoid to plague our learning with poor local minima.

We show here the mean of estimated covariance matrices of the noise for the
different estimators:

1.793 1.785 1.779 1.767
Tn(W) (1.785 1.797) and MCO : (1.767 1.783>

the estimated standard deviation of the terms of the matrices are all equal to
0.003, so the differences observed between the two matrices are statistically sig-
nificants. We can see that the estimated covariance of the noise is in mean better
with the estimator associated to the cost function T3, (W), in particular it seems
that there is slightly less overfitting with this estimator, and the non diagonal
terms are greater than with the estimator associated with the M CO. Indeed,
as expected, the determinant of the mean matrix associated to T,, (W) is 0.036
instead of 0.050 for the matrix associated to the MCO.

5 Conclusion

In the multidimensional case the ordinary least square estimator are often sub-
optimal if the covariance matrix of the noise is not the identity matrix. In seeking
to take into account the covariance matrix of the noise we find that it is natural
to use the concentrated log-likelihood as cost function. We have shown that the
differential minimization of this cost function is easy with MLP, since we can
compute the gradient of this function tanks a modification of the backpropaga-
tion algorithm. Finally the theoretical advantages of this estimator have been
verified on a simulation and we can expect a amelioration of the learning process
in using this cost function. Even if this amelioration is small, it can be very im-
portant to improve the variance of the parameter especially when we are using
pruning techniques based on this variance like the SSM algorithm of Cottrell et
al. [1].
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