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Introduction

1 )The Kohonen algorithm (SOM)

2) Forecasting vectors

3) Study of trajectories

4) Ozone pollution



Kohonen algorithm vs classical classification 

The classical classification algorithms are 

– the Forgy algorithm (or moving centers algorithm)
– the ascending hierarchical algorithm

( + variants)

Both are deterministic

Two main differences : 
– The SOM algorithm is stochastic
– A neighborhood structure between classes is defined



Forgy algorithm
At each step, the classes are defined (by the nearest neighbor method)

The code vectors are updated to be placed at the gravity center of the 
classes, etc.

After randomly choosing the code vectors, the associated classes are 
defined, then the classes are determined, then the code vectors and so 
on



Competitive learning (without neighborhood)

There exists a stochastic version of the Forgy algorithm, which 
is exactly the Kohonen algorithm without neighbor

Randomly
drown data
x(t+1)

Winning 
center qi*(t)

Updated 
quantifier



Hierarchical classification
One builds a sequence of embedded classifications, by grouping 
the nearest individuals, then the nearest classes, etc. for a given 
distance
During the clustering process, the intra-classes sum of squares 
increases from 0, to the total sum of squares
In general, one chooses the Ward distance, which minimizes at 
each step the jumps of the intra-classes sum of squares.



Classification tree



Variation of the intra-classes sum of squares
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Stochastic vs deterministic

The Forgy algorithm is the deterministic algorithm associated to
the Competitive learning algorithm (algorithm in mean)

In the same way, the Batch Kohonen algorithm is the mean 
algorithm associated to the Kohonen algorithm

The stochastic algorithms have interesting properties, 
– they are on-line algorithm
– they can escape from some of the local minima



Some neighborhood structures
One has to define a neighborhood structure among the classes
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Main property : Self-organization

If two observations are similar

– they belong to the same class (property shared by all the 
classification algorithms)

OR

– they belong to neighbor classes

This organization is not supervised



Mathematical definition
It is an original classification algorithm, defined by Teuvo Kohonen, 
in the 80s. 
The algorithm is iterative. 
The initialization gives a code-vector to each class, the code-
vectors belong to the data space and are randomly chosen

At each step, an observation is randomly drawn
It is compared  to all the code-vectors
The winning class is defined (its code-vector is the nearest for a 
given distance)
The code-vectors of the winning class and of the neighbor 
classes are modified in order to be closer to the observation
It is an extension of the Competitive Learning algorithm (which 
does not consider neighborhood)
It is also a competitive algorithm



Notations
The data space is K, subset of Rd

There are n classes, (or n units), structured into a network with 
predetermined topology (dimension 1,  2, cylinder, torus, 
hexagonal) 
This structure defines the neighborhood relations, the weight of
the neighborhood is defined by a neighborhood function
The code vector of unit i is denoted Ci, it has d components

After the random initialization of the code-vectors
At step t, 
– An observation x(t+1) is drawn 
– The winning unit is denoted  i0(x(t+1))
– The code-vector                              and its neighbors are updated ))(( 10 +txiC



Definition of the algorithm
ε(t) is the adaptation parameter, positive, <1, constant or  
slowly decreasing
The neighborhood function σ(i,,j)=1 iff i and j are neighbor, 
decreasing with |i-j|, the neighborhood size slowly decreases 
with time
Two steps, after drawing x(t+1), (independent drawings)
– Compute the winning unit

– Update the code-vectors
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Neighborhood functions σ
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Theoretical analysis
The algorithm can be written

C(t+1) = C(t) + ε H( x(t+1), C(t) )
The expression looks like a gradient algorithm
But if the input distribution is continuous, the SOM algorithm is 
not a gradient algorithm (ERWINN)

But in all our applications the data space is finite (data 
analysis). In this case, there exists an energy function 
which is an extension of the intra-classes sum of 
squares (cf Ritter et al. 92).

The algorithm minimizes the sum of the squared 
distances of each observation not only to its code-
vector, but also to the neighbor code-vectors



Intra-classes sum of squares

The algorithm SCL (0-neighbor) is the stochastic gradient 
algorithm which minimizes the intra-classes sum of squares 
(called quadratic distortion)

Ai is the class represented by the code vector Ci
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Intra-classes sum of squares extended to 
the neighbor classes
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This  function has many local minima

The algorithm converges, with Robbins-Monro hypothesis on 
the ε, (they have to decrease neither too slowly, nor too quickly)

The complete proof is available only for a restricted case, 
(dimension 1 for the data, dimension 1 for the structure).

To accelerate the convergence, the size of the neighborhood is 
large at the beginning and decreasing.



Voronoï classes
In the data space, the classes provide a partition, or Voronoï
mosaic,which depends on the Ci.
Ai(C) = {x  / ||Ci - x || = minj || Cj - x || } : i-th class. Its elements 
are the data for which Ci is the winning code-vector. 

Ci is the code-vector of class Ai

Ai
Ci



What it does ?

The SOM algorithm groups the observations into classes

Each class is represented by its code-vector

Its elements are similar between them, and resemble the 
elements of neighbor classes

This property provides a nice visualization along a Kohonen 
map



Clustering Kohonen classes

The number of classes has to be pre-defined, it is generally 
large

So it is very useful to reduce the number of classes, by using a
hierarchical clustering. This second clustering groups only 
contiguous classes (for the organization property)

This fact gives interesting visual properties on the maps.



Applications for temporal data

Many applications of the Kohonen algorithm to represent high 
dimensional data

The purpose is to give some examples of applications to 
temporal data, data for which the time is important

Rousset, Girard (consumption curves)

Gaubert (Panel Study of Income Dynamics in USA (5000 
households from 1968)

Rynkiewicz, Letrémy (Pollution)



Forecasting for vectorial data with fixed size

Problem : predict a curve (or a vector)

Example : a consumption curve for the next 24 hours, the time unit is 
the hour and one has to simultaneously forecast the 48 values of the 
complete following day (data from EDF, or from Polish consumption)

First idea : to use a recurrence 
– Predict at time t, the value Xt+1 of the next half-hour
– Consider this predicted value as an input value and repeat that 48 times

PROBLEM : 
– with ARIMA, crashing of the prediction, which converges to a constant 

depending on the coefficients
– with neural non linear model, chaotic behavior due to theoretical reasons

New method based on Kohonen classification



The data

The power curves are quite different from one day to another

It strongly depend on 
– the season
– the day in the week
– the nature of the day (holiday, work day, saturday, sunday, EJP, ...)



Shape of the curves



Shape of the curves



Method
Decompose the curve into three characteristics

the mean m, the variance σ2, the profile P defined by

j is the day, h is the half-hour

Predict the mean and the variance (one dimensional prediction)

Achieve a classification of the profiles

For a given unknown day, build its typical profile and redress it (multiply 
by the standard deviation and add the mean)
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Method
The mean and the variance are forecast with an  ARIMA 
model or with a Multilayer Perceptron
The input variables are some lags, meteo variables,  nature 
of the day

The 48 - vectors are normalized to compute the profile : 
their norms are equal to 1. 

The origin is taken at 4 h 30 : the value at this point is 
relatively  stable from one day to another



Origin of the day



The profiles

The distance between two profiles is computed with the same 
weight for each half-hour

The weather  does not  influence the profile : it acts only on the 
mean and the variance

Classification of the profiles, (vectors in R48, with  norm 1, and 
sum 0)

Classification using the Kohonen algorithm



Classification of the profiles



Advantages of the Kohonen method 

Advantages of the  Kohonen algorithm 

– The similar vectors belong to neighbor classes

– The typical profile is chosen as  representative of the class

– It is very simple to go to on the computation on new data, starting 
from the last values of the weights



Clustering the classes

To facilitate the interpretation of the classes, the 100 classes are 
grouped into 13 classes, according to a hierarchical classification

The limits of the new classes corresponds to the greatest inter-
classes distances for the 100-classes classification

One can observe that there is a significant arrangement on the 
map : from the top to the bottom, one can encounter 
successively the weekdays of Autumn and Winter, the weekdays 
of Spring and Summer, and the Saturdays and Sundays

These super classes are only used for representation
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Using for forecasting

To use this classification
– classify the past days as before

– make a calendar for associating to a given day j the number  i(j) of a 
class (or eventually the numbers of all the classes which contains 
this day), with their repetitions

– forecast the mean and the standard deviation with a one 
dimensional method, (ARIMA or perceptron) for the day j

– the forecasted curve for the day j is the profile associated to the 
class i(j) , (i.e. the mean profile of this class), or the weighted mean 
of the profiles of the concerned classes, corrected by multiplying by 
the standard deviation and by adding the mean



Corrected curves
For a day j, let aji be the number of instances of the day j in 
the class i 
Let Ci   be the weight vector of the unit i 

The estimated profile of the day j is

This profile is corrected and the forecasted curve is
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Examples of real and forecast curves



Domain of applications

The classification method is illustrated with the example of the
power curves, but it can be used for any classification task 
Electroencephalograms
Electrocardiograms
Changes ratio curves
Control screens
Price curves
etc..

The forecast method is also useful for any kind of curves



Study of individual trajectories
Let us consider individual data that describe 2507 households by 15 
quantitative variables, and for each year from 1984 to 1991.
So we have (3000 by 8) 15-vectors

The goal is to produce a robust segmentation using representative
variables 
Internal Market / External Market

– rules governing the relations between the workers and their occupation

Primary Segment / Secondary Segment
– Qualitative comparison of existing jobs

Panel Study of Income Dynamics in USA (5000 households from 1968)



The data (quantitative variables)

AGEH age of the head of household en 1984.
ANCH number of years of work since the age of 18.
CRSALH annual rate of growth of the hourly wage
HEXJH annual number of work hours in extra jobs.
HMJH annual number of work hours (main job).
HWMJH number of hours per week (main job).
NBXJH number of extra jobs.
RSALH hourly wage (without the effect of the inflation).
SENH seniority in the current job.
TAIFAM size of the family in 1984.
VHWMJH variation of the number of work hours per week (main 
job)
VWMJH variation of the number of work weeks (main job).
WMJH number of work weeks (main job).
WOUTH number of weeks out the labor force 
WUNEH number of weeks unemployed (previous year).
Table  : The observed or computed quantitative variables



Kohonen Classification
Kohonen Algorithm ,  (8, 8) grid
2507 heads of households , en 1984, 1988, 1992, without 
missing values
Standardized Data Matrix  with 15 columns and 7521 rows

Profiles of the 64 code-vectors



Interpretation of the Grid Classification

Main diagonal : quality and and quantity of work increasing from
bottom to top)
Secondary diagonal : age and seniority (the age decreases from 
top to bottom), clear opposition between the older workers in the 
upper left and the younger ones in the lower right.

In the lower left corner, classes containing individuals with no
job (out of the labor force or unemployed) most of the year,
In the central region, classes with people exerting more than 
one job at the same time, 
In the upper right corner, job situations with stability and high 
pay. 



Trajectories from 1984 to 1992

Individual staying in good job situation during the whole  period



Trajectories from 1984 to 1992

Individual leaving the more precarious situation, to reach, after one 
year in a good situation, an intermediate position



Clustering into 7 classes

 Population totale Classe 1 Classe 2 Classe 3 Classe 4 Classe 5 Classe 6 Classe 7 
AGEH 40.12 36.4 35.32 59.41 33.18 40.58 52.69 39.46 
ANCH 15.43 10.56 11.26 30.32 8.65 16.18 28.20 14.86 
CRSALH 0.06 -0.18 0.02 0.07 0.06 0.03 0.02 0.19 
HEXJH 60.70 12.98 562.12 56.01 0.25 215.01 7.39 4.74 
HMJH 1974 663 1994 901 2040 2136 2008 2348 
HWMJH 42.18 24.69 41.88 22.95 42.09 44.34 42.09 48.72 
NBXJH 0.18 0.05 1.24 0.28 0 1.03 0.06 0.03 
RSALH 13.35 6.47 10.60 10.95 11.30 14.77 13.88 17.70 
SENH 91.14 19.51 64.02 41.05 58.28 118.81 173.39 93.04 
TAIFAM 3.17 2.92 2.93 2.04 2.67 3.88 2.57 4.08 
VHWMJH 0.59 -6.43 0.06 -17 -0.13 0.23 -0.52 5.23 
VWMJH 0.65 -15.66 2.77 -3.83 3.89 0.17 1.05 2.92 
WMJH 44.61 15.29 47.51 40.81 48.48 48.23 47.60 48.10 
WOUTH 0.69 5.76 0.09 1.37 0.13 0.05 0.06 0.11 
WUNEH 2.09 16.08 0.80 3.29 0.40 0.13 0.41 0.53 
Effectif 7521 772 588 79 1932 416 1495 2240 

 
 

Kohonen String on the 64 code-vectors 7 classes

Table  : General Mean and mean by super-class



Absolute frequencies of the 7 classes 
(Kohonen string)

Effectifs
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Clustering into 7 classes



Description of the 7 classes
Class 1 : young, short seniority, less hours, no extra job, low 
paid, often out of the labor force, negative evolution.
Class 2 : younger than the average, main full-time job, earnings 
severely lower than the average, one or more extra jobs.
Class 3 : old, long seniority, half-time job, low paid, very few 
extra jobs (close to retirement).
Class 4 : young, short seniority, no extra job, wages below the 
average, important augmentation of the number of hours 
worked.
Class 5 : one or more extra jobs, with good wages.
Class 6 : elder, stables, one full time job, earnings close to 
average.
Class 7 : middle age, large family (4 persons, one more than 
average), stables, working a longer duration than the average, 
without extra job, hourly wages above the average. They have 
the best growth of their wages and of the work duration.



Description of the 7 classes
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Transitions between the 7 classes
Position
majoritaire

Effectif Proba
 de 1

Proba
de 2

Proba
de 3

Proba
de 4

Proba
de 5

Proba
de 6

Proba
de 7

1 157 0.75 0.03 0.01 0.11 0.00 0.03 0.08
2 115 0.04 0.70 0.00 0.13 0.07 0.00 0.05
3 10 0.16 0.01 0.64 0.01 0.00 0.16 0.02
4 599 0.07 0.06 0.00 0.77 0.02 0.00 0.08
5 65 0.01 0.11 0.00 0.01 0.70 0.05 0.12
6 498 0.03 0.01 0.02 0.01 0.02 0.86 0.06
7 732 0.03 0.02 0.00 0.07 0.03 0.03 0.82

Probabilities to be one year in a class, 
being most of the time in a given class

P a s de
p osit io n
m a jor ita ire

E ffec t if P rob a
 d e 1

P rob a
d e 2

P rob a
d e 3

P rob a
d e 4

P rob a
d e 5

P rob a
d e 6

P rob a
d e 7

3 3 1 0 .1 4 0 .1 6 0 .0 3 0 .2 2 0 .1 3 0 .0 8 0 .2 3

The same probabilities, when no class has a dominant position



Main result

The individuals stay most of the time in the same class

That means that the structure that appears constituted by 
segments with very different properties with respect to stability, 
existence of a career, seems to present the quality of a 
permanent state over a long period
This will be even clearer with the construction of a Markov 
chain.

Except for this latter small group, the less stable classes, 
relatively, are those corresponding to lower situations, and 
precisely the two classes having extra job(s).



Clustering into 4 levels

Classes 1 and 3 are grouped into class A. It is made of the more
precarious conditions, recurring unemployment, low pay. Class 
3 is not contiguous to class 1 on the string, but it is on the grid. It 
includes only 25 individuals, so it is reasonable to add it to class 
1.

Classes 2, 4, 5 represent intermediate conditions : important 
duration of work and moderate wages, 2 or 3 jobs for some of 
them. They constitute the main class B.

Classes 6 and  7 are still separated and renamed C and D.



Principal Component Analysis
PCA on the 15 variables
5 axes to get 2/3 of the explained variance 

• (22%, 14%, 11%, 9%, 8%)
First axis : defined by the variables of activity: the number of
work hours, the number of weeks, opposed to the number of 
weeks of unemployment and out of the labor force.
Second one opposes age, seniority to the family size (younger 
family are larger).
Third one is only defined with the extra job variables.
The level and the growth of wage and the variables in variation 
appears only as fourth and fifth axes. That means that the 
separation of the different situations is mainly explained by other 
factors than the differentiation of wages. 
Even with this new grouping the main classes are well defined 
using the 15 quantitative variables . The major characteristics 
observed above with the more detailed partition are still visible: 
work duration, seniority, level and growth of real wages, the 
practice of extra jobs.



Description of the 4 classes
Population totale Classe A Classe B Classe C Classe D

AGEH 40.12 38.56 34.66 52.69 39.46
ANCH 15.43 12.39 10.24 28.20 14.86
CRSALH 0.06 -0.15 0.05 0.02 0.19
HEXJH 60.70 16.97 143.25 7.39 4.74
HMJH 1974 685.26 2045.05 2008.23 2348.84
HWMJH 42.18 24.51 42.37 42.09 48.72
NBXJH 0.18 0.07 0.40 0.06 0.03
RSALH 13.35 6.88 11.66 13.88 17.70
SENH 91.14 21.51 67.99 173.39 93.04
TAIFAM 3.17 2.85 2.89 2.57 4.08
VHWMJH 0.59 -7.41 -0.04 -0.52 5.23
VWMJH 0.65 -14.57 3.14 1.06 2.92
WMJH 44.61 17.66 48.25 47.60 48.10
WOUTH 0.69 5.35 0.11 0.06 0.11
WUNEH 2.09 14.89 0.44 0.41 0.53
Effectif 7521 851 2936 1495 2240

Mean of the whole sample and by main class A, B, C, D



Frequencies of the qualitative variables
in 1992 Whole

sample
Class A Class B Class C Class D

RACE
1 Whites
2 Blacks

69.1 %
29.7

51.6
48.0

69.2
29.8

69.5
28.9

74.5
23.8

EDUCATION
1 Primary
2 Secondary
3 Sec. achieved
4 Post-sec.
5 BA & more

0.9
18.9
40.2
28.6
11.3

1.4
32.7
42.7
18.5
4.6

0.2
13.1
44.4
32.7
9.5

2.6
27.8
37.0
20.7
12.0

0.4
15.1
36.9
32.6
15.0

OCCUPATION
0 No
1-2 Managers, professionals
4 Clerks
5 Craftsmen
6 Operatives
7 Others

2.0
36.2
12.0
17.1
15.1
12.6

17.4
15.7
14.2
14.9
14.9
20.6

0
46.7
13.2
17.0
15.1
12.2

0
32.9
14.0
18.5
15.6
15.7

0.1
44.9
8.8
17.1
14.9
8.5

Example of distribution of some qualitative variables



Transitions between the 4 classes
Position
majoritaire

Effectif Proba de se
trouver dans
la classe A

Proba de se
trouver dans
la classe B

Proba de se
trouver dans
la classe C

Proba de se
trouver dans
la classe D

A 179 0.75 0.13 0.06 0.07
B 951 0.07 0.82 0.01 0.10
C 498 0.05 0.04 0.86 0.06
D 732 0.04 0.11 0.03 0.82

Probabilities to be one year in a class, being most 
of the time in a given class

Pas de
position
majoritaire

Effectif Proba de se
trouver dans
la classe A

Proba de se
trouver dans
la classe B

Proba de se
trouver dans
la classe C

Proba de se
trouver dans
la classe D

147 0.34 0.33 0.13 0.29

Probabilities when no class has a dominant position



Transitions

Over the 2 507 individuals, only 1 028 different trajectories are found, to 
be compared to the 49 possible trajectories, it is clear that a trajectory 
cannot be conceived as a random process between the four classes.

Good stability of the situations, the more stable is class C. 

Only transitions A - B, B - D, D - B occur with a significant probability. 

Individuals who do not remain in any class for a long time spend about 
the third of the time in each of the classes  A, B, D,

and belong only exceptionally to class C.



Transitions between the 4 classes
AB AC AD BA BC BD CA CB CD DA DB DC

Eff 554 177 242 492 159 1036 175 150 262 241 871 306
% 0.12 0.04 0.05 0.11 0.03 0.22 0.04 0.03 0.06 0.05 0.19 0.07

The frequencies of the transitions
The transitions occur mainly between classes A, B, D. 
The number of improvements (transitions AB, BD) is close to 
the number of deterioration (BA, DB), 
The moves from and to Class C are very few.
Class C is separated, is not a step towards the best state, Class D.
Class C could be a more traditional segment.
Precarious jobs (or no job) as in Class A do not lead to  the upper segment 
D.
Possibilities of rotations (in both directions) between the intermediate and 
upper segments B and D, but without pass through segment C.



Markov Model
The empirical probabilities (to stay in the same class or to 
move from one class to another) may be used to build a 
Markov transition matrix. 
Let M be this matrix. 
This need some important hypotheses concerning the factors 
influencing the transitions, precisely that the factors which are 
taken into account are stable over a long period.
So we can compute the stationary distribution over the 4 

classes, (solution of X=XM) and compare it to the observed 
distributions over the whole period.

class A class B class C class D
stationary .106 .363 .209 .322
1984 .138 .400 .181 .281
1988 .110 .381 .199 .309
1992 .112 .356 .203 .329



Markov Matrix

A B C D

A 0 .5 7 0 .2 4 0 .0 8 0 .1 1

B 0 .0 6 0 .7 8 0 .0 2 0 .1 4

C 0 .0 4 0 .1 4 0 .8 5 0 .0 6

D 0 .0 4 0 .0 4 0 .0 5 0 .7 7



Conclusions

The observed distributions (for all the years) are very close to the 
theoretical distribution, as computed with the Markov model

They become closer along the time

We get the same conclusions with the (7, 7) transition matrix

The next thing to study is a more precise examination of the duration in 
each state, the influence of the qualitative variables, in particular the 
sector to which belong the jobs for Class C or D,  an exact definition of 
Class C...

The method allows to build simulated trajectories, to define segments 
of the whole population



Ozone pollution (in the region Ile-de-France)

The time series is the maximum level of pollution due to the 
presence of ozone in the air, recorded from 1994 to 1997 in the 
region near Paris

The best model seems to be a two-states Hidden Markov Model

How to interpret these two regimes ?



The variables

- the maximum of the pollution rate on the day before, 
- the global radiation, 
- the mean speed of the wind, 
- the maximal temperature 
- the temperature gradient of the day. 

Two states for the hidden Markov chain, two different auto-regressive 
models 

– one is linear and is associated to the low or medium values,
– the second is a Multilayer Perceptron, specialized in the high values. 

To better understand the nature of both hidden states, the authors 
classify all the observations (that are 5-dimension vectors) in a 7 by 7 
Kohonen map. These 49 classes are grouped into 5 super classes, 
easy to interpret.



The non linear model (for the high values)



The HMM model
It is possible to estimate the parameters of both models

Transition matrix

The standard deviation of both models



Quadratic error in sample and out of sample



Probability to be in the state 2 (high values)



Mean and standard deviation of the variables 
in states 1 and 2

Means Standard deviation



Kohonen map, and the 5 classes



Classes and super-classes, probability to be 
in state 1 or 2 (yellow for 2)



The ozone level 24 hours before (OZ24)



Interpretation

The upper right corner contains the situations with high pollution 
levels, low wind, high temperature and gradient. Almost all the 
observations in this zone were identified by the non linear 
model, that is the state 2 of the HMM. Below, there are classes 
with observations whose values are near the means (except the 
temperature). 

The upper left corner contains the observations with low speed 
of wind and low gradient, etc. We can observe that the
meteorological variables are not very discriminating to separate
the hidden state 1 from the hidden state 2, which occurs in 
almost all the regions on the map, except the upper right corner 
which is specialized in the state 2.



Conclusion

The Kohonen map is used to explain one partition of the data.

We show that the meteorological conditions are not decisive 

In fact, it is necessary to add some components (past values)


