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Abstract

In this paper almost sure convergence and asymptotic normality of

generalized quadratic variation are studied. The main result in this paper

extend classical results from Baxter and Gladyshev so that they can be

applied to fractional Gaussian processes. An application to the estimation

of the true axes of a fractional Brownian sheet is also obtained.

Résumé

On étudie dans ce papier les propriétés de convergence et de normalité asymp-
totique des variations quadratiques généralisées d’un champ brownien fraction-
naire. Le résultat principal est une extension des résultats classiques de Baxter
et Gladyshev au cas de processus gaussiens fractionnaires. Ceci est enfin ap-
pliqué à l’estimation de la direction priprivilégiée de tels processus.
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1 Introduction

Since [2] it is classical to show that quadratic variations of a Gaussian process
converge to an integral of the singularity function if it exists. This result is
extended in [8] to some fractional processes including the well known fractional
Brownian motion. In [8] the mesh of the increments that define the quadratic
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variation is 1/2n and an almost sure convergence result is obtained when n →∞.
Actually it is known (see [12]) that the almost convergence is true when the
mesh is o(1/ log(n)). Nevertheless quadratic variations are not suitable when
one is interested in a central limit theorem for fractional Brownian motion.
Actually it is shown in [9] that for H > 3/4 the central limit theorem is false for
fractional Brownian motion. To overcome this problem the usual increments in
the quadratic variations are replaced by second order increments to yield the
generalized quadratic variations. In this case generalized quadratic variations
have been used in [10] for Gaussian processes with stationary increments and
in [3] for filtered white noise that are fractional processes with non-stationary
increments.

In the first part of the paper the almost sure convergence of the generalized
quadratic variations is obtained under general assumption on the correlation of
the Gaussian process when the mesh is 1/n. When the limit is not vanishing
it leads to a generalization of the singularity function in the spirit of Glady-
shev. Then the asymptotic normality of the generalized quadratic variations
is established in this general setting. In the second part an example of ap-
plication of this theorem to spatial estimation for a Gaussian field is given.
Actually we consider a fractional Brownian sheet which is a centered Gaussian
field (WH1,H2(x, y))(x,y)∈R2 such that the correlation function is :

E[W (x1, y1).W (x2, y2)] =
1

4
(|x1|2H1 + |x2|2H1 − |x1 − x2|2H1)

(|y1|2H2 + |y2|2H2 − |y1 − y2|2H2) (1)

where 0 < H1, H2 < 1.
With no loss of generality one can assume that the Ox axis is the one cor-

responding to the minimum of H1, H2; hence, we denote by H1 this minimum
from now on. This field has been introduced in [11] and studied in [7, 1]. The
estimation of the parameter H1, H2 is done in [13] under the assumption that
the axes of the fractional Brownian sheet are known. We refer to [13] for a
discussion of the application of this estimation to the detection of osteoporosis
with medical X-rays.

In our paper the parameters H1, H2 are identified with the help of gener-
alized quadratic variations of the fractional Brownian sheet restricted to some
segments and we do not assume that the axes of the fractional Brownian sheet
are known as in [13]. Please note that the use of generalized quadratic variations
is quite important because one constructs a confidence interval with the help of
the central limit theorem. Moreover we address the problem of estimating the
rotation between the axes of the fractional Brownian sheet and the axes of the
observations. Please note that a similar problem is solved in [5] for standard
Brownian sheet i.e. H1 = H2 = 1/2, (see [14] for a general reference).

Strongly consistent estimators of H1, H2 and θ the angle between the axes
of observations and the true axes of the fractional Brownian sheet are given.
Moreover a confidence interval is obtained for H1.
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In the second section almost sure convergence of the generalized quadratic
variations is established, a Central Limit Theorem is also obtained. Section 3
is devoted to the application to the fractional Brownian sheet.

2 Singularity functions for fractional processes

In the following theorem the almost sure convergence of the generalized quadratic
variations is proved. Let us stress the fact that this theorem is classical for
quadratic variations (cf. [8]). In [8] a bound for the second derivative of the
correlation function r(s, t) is needed when s 6= t. In the following theorem this
bound is replaced by (3) which is a bound on the fourth derivative of the co-
variance function r(s, t). Moreover the singularity function (See remark 2 for a
precise definition.) is now obtained in (6) as a limit of a fourth order difference
operator applied to r. Those are the key points for describing the limit behavior
of the generalized quadratic variations.

Theorem 1 Let (ξt, t ∈ [0, 1]) be a real process with Gaussian increments such
that

1. mt = E(ξt) exists and has a bounded derivative on the segment [0, 1].

2. There exists a correlation function

r(s, t) = E ((ξ(s)− Eξ(s))(ξ(t) − Eξ(t))) (2)

having the following properties :

(a) r is continuous on [0, 1]2,

(b) There exist two function c1(s), c2(t) such that
∂4(r − c1 − c2)

∂t2∂s2
exists

and is a continuous function on [0, 1]2 \Diag, where Diag = {(u, v) :
such that u = v} and there exists a constant C0 and a real number

γ ∈ (0, 2) such that

∣

∣

∣

∣

∂4(r − c1 − c2)(s, t)

∂t2∂s2

∣

∣

∣

∣

≤ C0

|s− t|γ+2
. (3)

(c) Let us define two order increments :

δh
1 f(s, t) = f(s + h, t) + f(s− h, t)− 2f(s, t) (4)

δh
2 f(s, t) = f(s, t + h) + f(s, t− h)− 2f(s, t) (5)

and let us suppose that there exists a bounded function g defined on
(0, 1) such that :

lim
h→0+

sup
t∈[h,1−h]

∣

∣

∣

∣

(δh
1 ◦ δh

2 r)(t, t)

h2−γ
− g(t)

∣

∣

∣

∣

= 0. (6)
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Then

lim
N→∞

N1−γ
N−1
∑

k=1

[ξ(k+1)/N + ξ(k−1)/N − 2ξk/N ]2 =

∫ 1

0

g(t)dt. (7)

Remark 1 Please remark that g is continuous on (0, 1) because of (6).

Remark 2 If assumption (2b) and assumption (2c) are satisfied for γ0 ∈ (0, 2),
they are also satisfied for γ > γ0 but the corresponding function gγ is vanishing.
When γ0 is the infimum of the real number such that assumptions (2b) and (2c)
are satisfied gγ0 can be viewed as a generalization of the singularity function
introduced in [2].

Remark 3 In assumption (2b) the functions c1(s), c2(t) are introduced so that
theorem 1 can be applied to the fractional Brownian motion with covariance

r(s, t) =
1

2
{|s|2H + |t|2H − |t− s|2H} (8)

where 0 < H < 1. Actually the partial derivatives of the covariance r do not
exist when s = 0 but assumption (2b) still holds. Assumption (2a) is clearly
fulfilled for the fractional Brownian motion. Since

δh
1 ◦ δh

2 r(t, t) = 4r(t, t) + 2r(t− h, t + h)− 4r(t + h, t)− 4r(t− h, t)

+ r(t + h, t + h) + r(t − h, t− h), (9)

we get δh
1 ◦ δh

2 r(t, t) = (4− 22H)h2H . If one makes the choice γ = 2− 2H then
∀t ∈ [h, 1− h] g(t) = (4− 22H), assumption (2c) is fulfilled.

Proof of theorem 1.
One can suppose that m(t) = 0 for t ∈ [0, 1] by considering the process

ξ̃(t) = ξ(t)− Eξ(t). Because of assumption 1, as N →∞

N1−γ
N−1
∑

k=1

[m(k+1)/N + m(k−1)/N − 2mk/N ]2 = O(N−γ), (10)

the existence of the limit (7) yields the result for a non centered ξ(t). We
suppose that m(t) = 0 for t ∈ [0, 1] until the end of the proof.

Let us define ∆ξk = ξ(k+1)/N + ξ(k−1)/N − 2ξk/N , and

ηN = N1−γ
N−1
∑

k=1

(∆ξk)2.

The following notations are introduced :

dj,k = N1−γ
E[∆ξj∆ξk] (11)
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and

dN = 2

N−1
∑

k=1

d2
k,k + 4

∑

1≤k<j≤N−1

d2
j,k. (12)

Let us first prove dN = var(ηN ). Actually

η2
N = N2−2γ





N−1
∑

k=1

(∆ξk)4 + 2
∑

1≤k<j≤N−1

(∆ξk)2(∆ξj)
2



 .

Since (∆ξk, k = 1, · · · , N − 1) is a Gaussian vector

E[(∆ξk)4] = 3(E[(∆ξk)2])2

and
E[(∆ξk)2(∆ξj)

2] = E[(∆ξk)2]E[(∆ξj)
2] + 2(E[∆ξk∆ξj ])

2.

Then

E[η2
N ] = 3

N−1
∑

k=1

d2
k,k + 2

∑

1≤k<j≤N−1

[dk,kdj,j + 2d2
j,k]

that yields

var(ηN ) = 2

N−1
∑

k=1

d2
k,k + 4

∑

1≤k<j≤N−1

d2
j,k = dN .

Moreover we will show that there exists a generic constant C such that

E[(ηN − E(ηN ))4] ≤ Cd2
N . (13)

Let us remark that ηN is the square of the Euclidean norm of the Gaussian

vector N
1−γ
2 (∆ξk, k = 1, · · · , N − 1). The classical Cochran theorem yields

kN ≤ N−1 non-negative real numbers (λ1,N , · · · , λkN ,N ) and a kN -dimensional
Gaussian vector ζ such that its components are independent reduced Gaussian
variables and

ηN =

kN
∑

j=1

λj,N ζ2
j,N .

The components of ζ are obtained by a simple orthogonalization procedure.
Then

E[(ηN − E(ηN ))4] = E[(

kN
∑

j=1

λj,N (ζ2
j,N − 1))4]

= E[(ζ2
1,N − 1)4]

kN
∑

j=1

λ4
j,N

+ 6(E[(ζ2
1,N − 1)2])2

∑

1≥i<j≥kN

λ2
i,Nλ2

j,N

≤ C[

kN
∑

j=1

λ2
j,N ]2.
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Moreover dN = var (ηN ) = E[(ζ2
1,N − 1)2]

∑kN

j=1 λ2
j,N yields the inequal-

ity (13).
Let us remark that

dj,k = N1−γ(δ
1/N
1 ◦ δ

1/N
2 r)(

j

N
,

k

N
) (14)

and that

E(ηN ) =
N−1
∑

k=1

dk,k . (15)

Moreover the limit (6) yields

sup
1≤k≤N−1

|Ndk,k − g(k/N)| → 0 (16)

as N →∞. Hence, for M > supt∈(0,1) |g(t)|

|dk,k | <
M

N
(17)

for N large enough.
Please remark that g is continuous (remark 1) so that

lim
N→∞

1

N

N
∑

k=1

g(k/N) =

∫ 1

0

g(t)dt.

So we get

lim
N→∞

E(ηN ) =

∫ 1

0

g(t)dt. (18)

The next step is to apply Borel-Cantelli lemma. To prove the almost sure
convergence of ηN , an estimate of the asymptotic of dN when N →∞ is needed.
Let us split the study of the asymptotic of (12) in three parts.

• We know that dk,k < M
N (cf. (17)), then

N−1
∑

k=1

d2
k,k <

M2

N
(19)

for M > supt∈(0,1) |g(t)| and N large enough.

• For j = k + 1, k + 2, as |dj,k| ≤
√

dk,kdj,j , we have

|dj,k| ≤
M

N
(20)

for M > supt∈(0,1) |g(t)| and N large enough.
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• A sharper estimate is needed for |j − k| > 2.

Lemma 1 If [s−h, s+h]× [t−h, t+h]∩Diag = ∅, where Diag = {(u, v) :
such that u = v}, and [s− h, s + h]× [t− h, t + h] ⊂ [0, 1]2, then

∣

∣(δh
1 ◦ δh

2 r)(s, t)
∣

∣ ≤ C0h
4

|s− t− 2h|γ+2
(21)

for the constant C0 of (3).

Proof of lemma 1.

One can rewrite

δh
1 ◦δh

2 (r−c1−c2)(s, t) =

∫ s+h

s

du

∫ u

u−h

dx

∫ t+h

t

dv

∫ v

v−h

dy
∂4(r − c1 − c2)

∂s2∂t2
(x, y).

(22)
Because of (3)

∣

∣

∣

∣

∂4(r − c1 − c2)

∂s2∂t2
(x, y)

∣

∣

∣

∣

<
C0

|x− y|γ+2

on the set {s−h ≤ u−h ≤ x ≤ u ≤ s+h ; t−h ≤ v−h ≤ y ≤ v ≤ t+h}
where |x−y| > |s− t−2h|. Last δh

1 ◦ δh
2 (r− c1− c2)(s, t) = (δh

1 ◦ δh
2 r)(s, t).

•
One can deduce from the preceding lemma that for |j − k| > 2

|dj,k| ≤
C0N

−1

|j − k − 2|γ+2
. (23)

Hence for N ≥ 5

∑

1≤k≤j−3≤N−4

d2
j,k ≤ C2

0N−2
∑

1≤k≤j−3≤N−4

|j − k − 2|−2γ−4 (24)

= C2
0N−2

N−4
∑

t=1

N − 3− t

t2γ+4
(25)

≤ C2
0N−1

(

∫ N

1

dt

t2γ+4
+ 1

)

(26)

≤ 4C2
0

3N
. (27)

Since the number of terms that satisfy (20) is bounded by 2N, because
of (12), of (19) and of (27) we get

NdN < 10M2 +
16

3
C2

0 (28)
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for M > supt∈(0,1) |g(t)| and N large enough.
Because of (13), for δ > 0

P{|ηN − E(ηN )| > N
δ−1
4 } ≤ N1−δCd2

N (29)

by Borel-Cantelli lemma for δ ∈ (0, 1), one can deduce

lim
N→∞

(ηN − E(ηN )) = 0 a.s.

and the convergence (7) comes from (18). •
Let us now state some central limit theorems.

Theorem 2 Under the assumptions of theorem 1, if m(t) = 0 ∀t ∈ [0, 1], and
if g(t) is a non-vanishing function

N1−γ
[

∑N−1
k=1 ∆ξ2

k − E
∑N−1

k=1 ∆ξ2
k

]

√
dN

converges to a standard centered Gaussian variable, as N → +∞.

Proof of theorem 2.
Let us recall

ηN =

kN
∑

j=1

λj,N ζ2
j,N ,

the central limit theorem with Lindeberg condition is applied to

SN =

kN
∑

j=1

λj,N (ζ2
j,N − 1).

Hence we have to check that max1≤j≤kN
λj,N = o(

√

var (SN )). This last con-
dition is a consequence of an elementary result in linear algebra:

max
1≤j≤kN

λj,N ≤ max
1≤j≤N−1

N−1
∑

i=1

N1−γ |E(∆ξi∆ξj)|.

We already know estimates on the upper bound :

N1−γ max
1≤j≤N−1

N−1
∑

i=1

|E(∆ξi∆ξj)| = max
1≤j≤N−1

N−1
∑

i=1

|di,j |

≤ [O(N−1) +

max
1≤j≤N−1

∑

|i−j|>2

C0N
−1(i− j − 2)−γ−2]

= O(N−1).
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A lower bound is needed for var (SN ) = var (ηN ) = dN . Because of (16) and
the assumption that g is non-vanishing function

dN ≥ 2

N−1
∑

k=1

d2
k,k

≥ 1/N2
N−1
∑

k=1

g2(k/N) + o(1/N)

≥ 1/N

∫ 1

0

g2(t)dt + o(1/N).

Hence varSN = dN > C/N for a generic positive constant C. The convergence

in distribution to a standard Gaussian variable of
N1−γ [

∑N−1
k=1 ∆ξ2

k−E
∑N−1

k=1 ∆ξ2
k]√

dN

is proved. •

Remark 4 If γ > 1/2 theorem 2 is still true even if the process ξ is not centered.
It is a consequence of (10) and of dN > C/N.

Let us now see when the bias term E[ηN ]−
∫ 1

0 g(t)dt is negligible. Assump-
tions (2b’) and (32) are introduced below to ensure the convergence of NdN .
One can check that there are fulfilled for the fractional Brownian motion, frac-
tional Brownian sheet is another instance where the following theorem can be
applied.

Theorem 3 Let ξ be a centered Gaussian process such that assumptions (2a)
is fulfilled.

Assumption (2b) is replaced by

(2b’) There exist two functions c1(s), c2(t) such that ∂4(r−c1−c2)
∂s2∂t2 exists on

[0, 1]2 \ {(u, u) : 0 ≤ u ≤ 1}. Let T + = {(s, t) : 0 ≤ s ≤ t ≤ 1} be the upper
triangle in [0, 1]2 (respectively T− = {(s, t) : 0 ≤ t ≤ s ≤ 1} be the lower
triangle) and we assume the existence of a continuous function C+ on T+ (resp
C− on T− ) such that

|s− t|γ+2 ∂4(r − c1 − c2)

∂s2∂t2
(s, t) = C+(s, t) s, t ∈ {(s, t) : 0 ≤ s < t ≤ 1} (30)

(Resp. C− on {(s, t) : 0 ≤ t < s ≤ 1}.)
The assumption (2c) is replaced by:
let us suppose that there exists a function g such that

sup
t∈[h,1−h]

∣

∣

∣

∣

δh
1 ◦ δh

2 r(t, t)

|h|2−γ
− g(t)

∣

∣

∣

∣

< Chε+1/2 (31)

where ε > 0, h → 0, C is a generic constant. Let us assume that g is a 1/2 + ε
Hölder continuous non-vanishing function.
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Moreover we assume that there exists a function g̃

lim
h→0+

sup
t∈[h,1−2h]

∣

∣

∣

∣

δh
1 ◦ δh

2 r(t + h, t)

|h|2−γ
− g̃(t)

∣

∣

∣

∣

= 0. (32)

Then
√

N

(

N1−γ
N−1
∑

k=1

∆ξ2
k −

∫ 1

0

g(t)dt

)

converges to a centered Gaussian random variable.

Proof of theorem 3
The bound (31) and (15) yield for h = 1

N :

|E[ηN ]− 1

N

N−1
∑

k=1

g(k/N)| < C/N ε+1/2.

Since g is Hölder continuous

| 1

N

N−1
∑

k=1

g(k/N)−
∫ 1

0

g(t)dt| < C/N ε+1/2.

Let us show that limN→∞ NdN exists. Recall (12)

dN = 2

N−1
∑

k=1

d2
k,k + 4

∑

1≤k<j≤N−1

d2
j,k.

Because of (16)

lim
N→∞

N
N−1
∑

k=1

d2
k,k =

∫ 1

0

g2(t)dt.

Let us now consider the case when j − k ≥ 3. In this case because of (14)
and (22)

Ndj,k = N2−γ

∫ j+1/N

j/N

du

∫ u

u−1/N

dx

∫ k+1/N

k/N

dv

∫ v

v−1/N

dy
C+(x, y)

(x− y)γ+2
. (33)

Then
∣

∣

∣

∣

∣

Ndj,k −N2−γ

∫ j+1/N

j/N

du

∫ u

u−1/N

dx

∫ k+1/N

k/N

dv

∫ v

v−1/N

dy
C+(j/N, k/N)

(x− y)γ+2

∣

∣

∣

∣

∣

≤ εN

(j − k − 2)γ+2

with εN → 0 when N → ∞. Actually we use |C+(x, y) − C+(j/N, k/N)| → 0
uniformly with respect to j, k when N →∞. Moreover

N2−γ

∫ j+1/N

j/N

du

∫ u

u−1/N

dx

∫ k+1/N

k/N

dv

∫ v

v−1/N

dy
1

(x− y)γ+2
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is a function of j − k that will be denoted by f(j − k) such that

|f(j − k)| ≤ M

(j − k − 2)γ+2

for M a generic constant. Then

N
∑

1≤k<j−2≤N−4

d2
j,k = 1/N

∑

1≤k<j−2≤N−4

C2
+(j/N, k/N)f2(j − k)

=
N−3
∑

l=3

f2(l)

(

1/N
N−1−l
∑

k=1

C2
+(l + k/N, k/N)

)

.

When l is fixed one can show that

lim
N→∞

1/N
N−1−l
∑

k=1

C2
+(l + k/N, k/N) =

∫ 1

0

C2
+(x, x)dx

and since
∑N−3

l=3 f2(l) < +∞, the limit of N
∑

1≤k<j−2≤N−4 d2
j,k exists. At

this point we are reduced to prove the convergence N
∑

1≤k≤N−2 d2
k+2,k and

N
∑

1≤k≤N−1 d2
k+1,k . For the first limit one uses a perturbation argument that

can be found in [8], and (32) yields the existence of the second limit. Similar
arguments hold when k > j and we skip the technical details.

•

3 Application to fractional Brownian sheet

3.1 Application of theorem 1

In this part, theorems of the sections 2 are applied to the identification of the
axes of the fractional Brownian sheet. They are identified with the help of
generalized quadratic variations of the fractional Brownian sheet restricted to
some segments. The geometry of the problem is described in figure 1.

In this paper radial segments [A, B] with length L are considered. The
distance of the segment to the origin O is Lε > 0 (see section 3.2 when ε =
0). The angle of [A, B] with respect to the axes of observations Oxy is β a
parameter under our control. The oriented angle θ between Oxy and Ox′y′

the true axes of the fractional Brownian sheet, is the parameter we want to
estimate. Let us recall the correlation function of the fractional Brownian sheet
(WH1,H2(x

′, y′))(x′,y′)∈R2 :

E[W (x′1, y
′
1).W (x′2, y

′
2)] =

1

4
(|x′1|2H1 + |x′2|2H1 − |x′1 − x′2|2H1)

(|y′1|2H2 + |y′2|2H2 − |y′1 − y′2|2H2) (34)

where 0 < H1, H2 < 1.
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y’
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Figure 1: Geometry of the observations.

Let us discuss why we consider θ as an oriented angle and what is the range of
θ. It is obvious that the distribution of the fractional Brownian sheet is invariant
with respect to the transformation y′ 7→ −y′. Hence, one can always assume that
the orthonormal frames Oxy and Ox′y′, have the same orientation. Moreover,
since the distribution of the fractional Brownian sheet is invariant with respect
to the transformation x′ 7→ −x′ we are actually interested in the angle between
the two lines Ox and Ox′ with no privileged sense x′ > 0. Since we are working
with oriented frames, it means that one can always assume that θ ∈ (− π

2 , π
2 ].

Let us denote the oriented angles β and θ as shown in figure 1. Then,
α = θ − β is the angle of [A, B] with respect to the true axes of Ox′y′ of the
fractional Brownian sheet.

Let us call (Zt, t ∈ [0, 1]) the restriction of the fractional Brownian sheet to
segment [A, B], which can be parameterized as follows :

x′t = L(t + ε) cosα,

y′t = L(t + ε) sinα,

Zt = W (x′t, y
′
t) for t ∈ [0, 1]. Then the covariance of Z, r(s, t) = E(ZsZt), is

r(s, t) =
1

4
L2(H1+H2)| cosα|2H1 | sinα|2H2 (|t + ε|2H1 + |s + ε|2H1 − |t− s|2H1)

(|t + ε|2H2 + |s + ε|2H2 − |t− s|2H2). (35)
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By applying theorem 1 we will prove the following result.

Proposition 1

lim
N→∞

N2H1−1
N−1
∑

k=1

(Z(k+1)/N − 2Zk/N + Z(k−1)/N )2 =

∫ 1

0

g(t)dt

almost surely where :

g(t) = (4− 22H1)L2(H1+H2)| cosα|2H1 | sinα|2H2 (t + ε)2H2

when H1 < H2 and

g(t) = 2(4− 22H1)L4H1 | cosα|2H1 | sinα|2H1 (t + ε)2H1

when H1 = H2.

Proof of the proposition 1
We have to check assumptions of theorem 1. First Z is a centered Gaussian

process and clearly the covariance function is continuous on [0, 1]2.
Concerning assumption (2b), the partial derivatives of r exist in [0, 1]2 \{(u, u) :
0 ≤ u ≤ 1}, let us now check (3) for γ = 2(1−H1) and c1 = c2 = 0. Since r is
up to a multiplicative constant the product of fi(t, s) = (|t+ε|2Hi + |s+ε|2Hi −
|t− s|2Hi), for i = 1, 2, by Leibnitz rule it is enough to have bounds on partial
derivatives of the fi’s. Elementary computations postponed to the appendix 4
yields the bound for C0:

C0(ε) ≤
1

4
L2(H1+H2)| cosα|2H1 | sin α|2H2 [4(1 + ε)2H2+

8
2

3
√

3
(1 + max(ε2H1−1, (1 + ε)2H1−1, ε2H2−1, (1 + ε)2H2−1)

+ 8
2

3
√

3
max(1, (1 + ε)2H1−1, (1 + ε)2H2−1)

+ 8 max(1, ε2H2−2, ε2H1−2) + 16]. (36)

Let us denote

C(α, H1, H2, L) =
1

4
L2(H1+H2)| cosα|2H1 | sinα|2H2 .

Thus we have in case ε = 1 :

C0(1) ≤ C(α, H1, H2, L)(40 +
80

3
√

3
) (37)

where C0(1) is a constant for inequality (3).
Let us now check assumption (2c) for t + ε ≥ h ≥ 0

(t + ε + δjh)2Hi = (t + ε)2Hi + 2Hi(t + ε)2Hi−1δjh + O((t + ε)2Hi−2h2) (38)
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for i = 1, 2; j = 1, 2, 3, δj = +1, −1, 0. Moreover

fi(t + δjh, t+ δkh) = 2(t+ ε)2Hi +2Hi(δj + δk)(t + ε)2Hi−1h− (|δj − δk|h)2Hi

+ Hi(2Hi − 1)(t + ε)2Hi−2(δ2
j + δ2

k)h2 + O(h3)(t + ε)2Hi−3. (39)

This yields an asymptotic expansion for r(t + δjh, t + δkh) and because of (9)
one gets for h > 0

δh
2 ◦ δh

1 r(t, t) = 4C(α, H1, H2, L)h2H1(t + ε)2H2(4− 22H1)

[1 + O(h2(H2−H1)) + O(h2(1−H1)) + O(h)] (40)

if H1 < H2. Then, if we set

g(t) = (4− 22H1)L2H | cosα|2H1 | sin α|2H2(t + ε)2H2 ,

∣

∣

∣

∣

δh
1 ◦ δh

2 r(t, t)

h2−γ
− g(t)

∣

∣

∣

∣

= O(h2(H2−H1)(t + ε)2H1), (41)

which establishes (6).
Whereas when H1 = H2,

δh
2 ◦ δh

1 r(t, t) = 8C(α, H1, H1, L)h2H1(t + ε)2H1(4− 22H1)[1

+ O(h2(1−H1)) + O(h)] (42)

and

g(t) = 2(4− 22H1)L2H | cosα|2H1 | sinα|2H1 (t + ε)2H1

and
∣

∣

∣

∣

δh
1 ◦ δh

2 r(t, t)

h2−γ
− g(t)

∣

∣

∣

∣

= O(h2−2H1 (t + ε)4H1−2). (43)

•
Let us denote by

VN (β, L, ε) =

N−1
∑

k=1

(Z(k+1)/N − 2Zk/N + Z(k−1)/N )2 (44)

and state a central limit theorem for VN (β, L, ε).

Proposition 2 If H1 + 1/4 < H2 then

D(H1, H2, α, L, ε) = (4− 22H1)L2(H1+H2)| cosα|2H1 | sin α|2H2

(1 + ε)2H2+1 − ε2H2+1

2H2 + 1

then √
N
(

N2H1−1VN (β, L, ε)−D(H1, H2, θ − β, L, ε)
)

(45)

14



converges to a standard centered Gaussian random variable.
If H1 = H2, H1 < 3/4 then

D̃(H1, α, L, ε) = 2(4− 22H1)L4H1 | cosα|2H1 | sinα|2H1
(1 + ε)2H1+1 − ε2H1+1

2H1 + 1

√
N
(

N2H1−1VN (β, L, ε)− D̃(H1, θ − β, L, ε)
)

(46)

converges to a centered Gaussian random variable.

Proof of the proposition 2
When H1 + 1/4 < H2, (31) is satisfied because 2(H2 − H1) > 1/2 and we

have (41). Moreover g is continuously differentiable. Since g is non-vanishing
and since

∫ 1

0

g(t)dt = (4− 22H1)L2(H1+H2)| cosα|2H1 | sin α|2H2
(1 + ε)2H2+1 − ε2H2+1

2H2 + 1
,

one can check (32) with an asymptotic developpement of δh
2 ◦δh

1 r(t+h, t) similar
to (40). The existence of C+ and C− is a consequence of the computation of

∂4r
∂s2∂t2 (s, t) done in the appendix. One can apply theorem 3. The first part of
the proposition is proved.

When H1 = H2, 2 − 2H1 > 1/2 and equation (43) allow application of
theorem 3 with the same arguments as in the previous case.

•

Remark 5 Let us define XN = N2H1−1VN (β, L, ε). Note that with the same
arguments, we prove the asymptotic normality of a pair (XN , X2N ) of rescaled
quadratic variations since the central limit theorem can be proved for every linear
combination λXN + µX2N which is still a rescaled quadratic variation.

3.2 Case where ε = 0

In the previous section, the fractional Brownian sheet is restricted to a segment
that does not intersect the origin. Technically it yields ε > 0. One may wonder
what happens when ε = 0. Although this choice is in some sense more natural
the application of the theorems of the section 2 is more difficult when ε = 0.
For instance the covariance of Z is no longer differentiable when t = 0.

In this section one extend the result of proposition 1 when ε = 0. Let us now
consider the restriction of the fractional Brownian sheet to [O, B] parameterized
by

x′t = Lt cosα,

y′t = Lt sinα,

Z̃t = W (x′t, y
′
t) for t ∈ [0, 1],

15



Proposition 3 If H2 > H1 > 3/4, then

limN→∞N2H1−1
∑N−1

k=1 (Z̃(k+1)/N − 2Z̃k/N + Z̃(k−1)/N )2 =

(4− 22H1)L2(H1+H2)| cosα|2H1 | sin α|2H2

2H2 + 1
(47)

If H2 = H1 > 3/4, then

limN→∞N2H1−1
∑N−1

k=1 (Z̃(k+1)/N − 2Z̃k/N + Z̃(k−1)/N )2 =

2(4− 22H1)L4H1 | cosα|2H1 | sin α|2H1

2H1 + 1
. (48)

Proof of the proposition 3
The assumption (2b) is not satisfied for Z̃. More precisely, the bound ob-

tained in (36) shows that the covariance r of Z̃ satisfies for 1 > ε > 0 and
s, t ∈ [ε, 1]2 \ {(u, u) : ε ≤ u ≤ 1},

∣

∣

∣

∣

∂4r(s, t)

∂t2∂s2

∣

∣

∣

∣

≤ C2ε
2H1−2

|s− t|γ+2

for some positive constant C2. Let εN → +∞ be such that εN

N → 0 when
N → +∞. This yields

|dj,k| ≤
C2N

−1

|j − k − 2|γ+2

(εN

N

)2H1−2

.

One can show as in (24) that

∑

εN≤k≤j−3≤N−4

d2
j,k ≤ C2

2N−2
(εN

N

)4H1−4 ∑

εN≤k≤j−3≤N−4

|j − k − 2|−2γ−4

= O

(

ε4H1−4
N

N4H1−3

)

,

and that

∑

1≤k≤j−3≤N−4;k<εN

d2
j,k ≤ C

εN

N
,

for a generic constant C, because dj,k = O( 1
N ). Let us choose εN = N

4−4H1
5−4H1 ,

then dN = O(N
1

4H1−5 ). Because of (29) we get the almost sure convergence if

1/2 <
1

5− 4H1

which leads to H1 > 3/4. The same arguments hold for H1 = H2 > 3/4. •
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3.3 Estimators of the parameters H1, H2 and θ

Let us recall that H1 ≤ H2 where H1 is attached to axe Ox′ of the fractional
Brownian sheet. In this part, we use previous results to construct consistent
estimators of H1, H2 and θ = (Ox, Ox′), the angle between the Ox′ axis of the
fractional Brownian sheet with the observation axis Ox. Estimators of H1 , H2

are studied in propositions 4 and 5, while proposition 6 gives an estimator of θ.
In the following propositions we assume that the segment is not contained

in one of the axes of the fractional Brownian sheet i.e. β 6= θ + kπ
2 , ∀k ∈ Z.

Proposition 4 If β 6= θ + kπ
2 , ∀k ∈ Z, and if VN is defined by (44)

Ĥ1N =
1 + log(VN (β, L, ε)/V2N (β, L, ε))/ log 2

2
(49)

and

Ĥ2N =
1

2 log 2
log

[

VN (β, 2L, ε)

VN (β, L, ε)

]

− Ĥ1N (50)

are respectively strongly consistent estimators of H1 and H2.

Proof of the proposition 4
Because of proposition 1,

lim
N→+∞

VN (β, L, ε)

N1−2H1
=

∫ 1

0

g(t)dt.

When β 6= θ + kπ
2 , ∀k ∈ Z,

∫ 1

0

g(t)dt 6= 0

and (49) is established.
To prove (50) let us remark that

VN (β, 2L, ε)

VN (β, L, ε)
→ 22(H1+H2)

when N → +∞. •
Then we can give a confidence interval for the estimation of H1.

Proposition 5 Let H1 + 1/4 < H2, and let α 6= kπ
2 , ∀k ∈ Z.

Let m = D(H1, H2, α, L, ε) defined in proposition 2. If Γ denotes limN→∞NE(X2N−
XN)2, then Γ > 0 and

P{2mΓ−1/2 log 2
√

N |H1N −H1| ≤ 1.96} → 0.95

when N → +∞.
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Proof of the proposition 5
Because of remark 5 (XN , X2N) is asymptotically normal and the limit

limN→∞NE(X2N−XN )2 exists. Then NE(X2N−XN)2 ≤ ( 3
2−
√

2) limN→+∞NdN .
Hence, Γ > 0 and because of Slutsky theorem :

√
N log(XN/X2N) → N (0, σ2) (51)

when N →∞, where the convergence is in distribution, and where

σ2 = lim
N→∞

NE(X2N −XN )2

m2
.

Since
log(XN/X2N) = 2 log 2(Ĥ1N −H1),

and σ2 = Γ/m2, the proposition is proved. •
Please note that the rate of convergence O(1/

√
N) is known to be of the

same order as the one given by the Cramér-Rao bound (cf. [6] and [4] when
the Hurst exponent of a fractional Brownian Motion is identified). In our case,
since the process Z is not with stationary increments, the Cramér-Rao bound
seems difficult to estimate.

Let us give a numerical application of the previous proposition. In practice
we have to compute m−2Γ. Actually the computation of Γ seems delicate but
NE(X2N −XN)2 ≤ 3NE(XN −m)2 = 3NdN with dN defined by (12) with Z
in place of ξ. And we have an upper bound for NdN . More precisely, because
of (28)

NdN ≤ 10M2 +
16

3
C2

0 (ε).

Moreover g(1) is the supremum of g and we can take

M > 4(4− 22H1)C(α, H1, H2, L)(1 + ε)2H2

(for instance M = 4(4 − 22H1)C(α, H1, H2, L)(1 + ε)2). Let us assume ε = 1
and recall that

C0(1) ≤ (40 +
80

3
√

3
)C(α, H1, H2, L)

then

NdN ≤ C2(α, H1, H2, L)[160(4− 22H1)24 +
16

3
(40 +

80

3
√

3
)2].

Moreover m = 4(4−22H1 )(22H2+1−1)C(α,H1,H2,L)
2H2+1 for ε = 1 and

Γ

m2
≤

3[160(4− 22H1)24 + 16
3 (40 + 80

3
√

3
)2](2H2 + 1)2

16(4− 22H1)2(22H2+1 − 1)2

= 3[40 +
16

3(4− 22H1)2
(10 +

20

3
√

3
)2](

2H2 + 1

22H2+1 − 1
)2.
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Let us assume H1 < 1
2 < H2 as an example to have an order of how big shall

be N to have a meaningful interval. Then, 2H2+1
22H2+1−1

≤ 1 and 4− 22H1 > 2.

1.96
√

Γ

m
< 58.39

and the confidence interval length is bounded with 58.39√
N

.

In practical situations, we may assume H1 6= H2. In this case we can de-
tect the anisotropy of the fractional Brownian sheet, which means than we can
estimate θ.

Proposition 6 If H1 6= H2, θ ∈ (−π
2 , 0)∪ (0, π

2 ), and β 6= θ + kπ
2 , ∀k ∈ Z, set

fN (β) = arctan

(

(

VN (β + π/2, L, ε)

VN (β, L, ε)

)
1

2( ˆH1N− ˆH2N )

)

then

θ̂N = sign(fN(
−π

4
)− fN (

π

4
))fN (0) (52)

is a strongly consistent estimator of θ, where sign(x) = 1 if x ≥ 0 and sign(x) =
−1 if x < 0.

Proof of the proposition 6
Because of proposition 1

VN (β + π/2, L, ε)

VN (β, L, ε)
→ | tan(θ − β)|2(H1−H2)

when N → +∞. Hence, with our assumptions,

fN (β) → arctan(| tan(θ − β)|,

when N → +∞. Since θ ∈ (−π
2 , 0)∪ (0, π

2 ), fN(0) → |θ| when N → +∞. Please
note that the last assumption is not a real loss of generality since in general we
may choose θ ∈ [−π

2 , π
2 ]. Elementary computations show that

arctan(| tan(θ +
π

4
)|)− arctan(| tan(θ − π

4
)| > 0

if and only if θ ∈ (0, π
2 ). Since

fN (
−π

4
)− fN(

π

4
) → arctan(| tan(θ +

π

4
)|)− arctan(| tan(θ − π

4
)|

when N → +∞, the proof is complete.
•
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Please remark that we do not use all the information available to construct
our estimators. This might be an advantage if the parameters are actually
functions of the position, which means that the fractional Brownian sheet is
actually a first order simplification. To better use the available information we
could consider K generalized quadratic variations for different βj , j = 1, . . . , K

we get estimators Ĥj
1N , Ĥj

2N ,; θ̂
j
n. Thus, we could propose a more robust version

of the estimators as the empirical means of these estimators. Other problems
may also be addressed in the future such as estimation of the variance of the
estimators proposed above.

4 Appendix

Let us prove the upper bound (36). For 1 ≥ s > t ≥ 0,

∂fi

∂t
(t, s) = 2Hi((t + ε)2Hi−1 + (s− t)2Hi−1) (53)

∂fi

∂s
(t, s) = 2Hi((s + ε)2Hi−1 − (s− t)2Hi−1) (54)

∂2fi

∂t2
(t, s) = 2Hi(2Hi − 1)[(t + ε)2Hi−2 − (s− t)2Hi−2] (55)

∂2fi

∂s2
(t, s) = 2Hi(2Hi − 1)[(s + ε)2Hi−2 − (s− t)2Hi−2] (56)

∂2fi

∂s∂t
(t, s) = 2Hi(2Hi − 1)(s− t)2Hi−2 (57)

∂3fi

∂s2∂t
(t, s) = 2Hi(2Hi − 1)(2Hi − 2)(s− t)2Hi−3 (58)

∂4fi

∂s2∂t2
(t, s) = −2Hi(2Hi − 1)(2Hi − 2)(2Hi − 3)(s− t)2Hi−4 (59)

for i = 1, 2. Hence :

(s− t)γ+2 ∂4f1

∂s2∂t2
f2 = −2H1(2H1 − 1)(2H1 − 2)(2H1 − 3)f2 (60)

(s− t)γ+2 ∂3f1

∂s2∂t

∂f2

∂t
= 2H1(2H1 − 1)(2H1 − 2)(s− t) (61)

2H2[((t + ε)2H2−1 + (s− t)2H2−1)]

(s− t)γ+2 ∂3f1

∂t2∂s

∂f2

∂t
= −2H1(2H1 − 1)(2H1 − 2)(s− t) (62)

2H2[((s + ε)2H2−1 − (s− t)2H2−1)]
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(s− t)γ+2 ∂2f1

∂s2

∂2f2

∂t2
= 4

∏

i=1,2

Hi(2Hi − 1)

. [(s + ε)2H1−2(s− t)2−H1 − (s− t)H1 ] (63)

. [(t + ε)2H2−2(s− t)2−H1 − (s− t)2H2−H1 ]

(s− t)γ+2 ∂2f1

∂s∂t

∂2f2

∂s∂t
= 4

∏

i=1,2

Hi(2Hi − 1)(s− t)2H2 (64)

are bounded on [0, 1]2, and consequently assumption (2b) is fulfilled. More
precisely, since Hi ∈]0, 1[, for i = 1, 2 :

|2Hi| ≤ 2,

|2Hi(2Hi − 1)| ≤ 2,

|2Hi(2Hi − 1)(2Hi − 2)| ≤ 2

3
√

3

|2Hi(2Hi − 1)(2Hi − 2)(2Hi − 3)| ≤ 1

and

sup
0≤t<s≤1

|(t + ε)2Hi + (s + ε)2Hi − (s− t)2Hi | = 2(1 + ε)2Hi ,

sup
0≤t<s≤1

|((s− t)(t + ε)2Hi−1 + (s− t)2Hi)| ≤

(1 + max(ε2Hi−1, (1 + ε)2Hi−1)),

sup
0≤t<s≤1

|((s− t)(t + ε)2Hi−1 − (s− t)2Hi)| ≤

max(1, (1 + ε)2Hi−1)),

sup
0≤t<s≤1

|(s + ε)2Hi−2(s− t)2−Hi − (s− t)Hi | = sup
0≤t<s≤1

∣

∣(s− t)Hi

[1− (
s− t

s + ε
)2−2Hi ]

∣

∣

∣

∣

≤ 1,

sup
0≤s<t≤1

|(s + ε)2H1−2(s− t)2−H1 − (s− t)H1 | ≤ max(1, ε2H1−2),

sup
0≤t<s≤1

|(t + ε)2H2−2(s− t)2−H1 − (s− t)2H2−H1 | = sup
0≤t<s≤1

∣

∣(s− t)2H2−H1

[1− (
s− t

t + ε
)2−2H2 ]

∣

∣

∣

∣

≤ max(1, ε2H2−2),

sup
0≤t<s≤1

(s− t)2Hi = 1.

The fourth derivative of r is the sum of terms of the following form:

(s− t)γ+2( ∂4

∂s2∂t2 f1.f2 + ∂4

∂s2∂t2 f2.f1) ≤ 4(1 + ε)2H2 ,
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(s − t)γ+2 ∂3

∂s2∂tf1.
∂
∂tf2 ≤ 4

3
√

3
(1 + max(ε2H1−1, (1 + ε)2H1−1)) two of them are

in this form,

similarly (s− t)γ+2 ∂3

∂s2∂tf2.
∂
∂tf1 ≤ 4

3
√

3
(1 + max(ε2H2−1, (1 + ε)2H2−1))

(s− t)γ+2 ∂3

∂t2∂sf1.
∂
∂sf2 ≤ 4

3
√

3
max(1, (1+ ε)2H2−1) two of them are in this form,

similar terms exist when we interchange f1 and f2,

(s − t)γ+2 ∂2

∂s2 f1.
∂2

∂t2 f2 ≤ 4 max(1, ε2H2−2, ε2H1−2) and two of them are in this
form, so they add 8 max(1, ε2H2−2, ε2H1−2),

(s− t)γ+2 ∂2

∂s∂tf1.
∂2

∂s∂tf2 ≤ 4 and four of them are in this form, so they add 16.
This sum of terms has to be multiplied by the coefficient

1

4
L2(H1+H2)| cosα|2H1 | sinα|2H2 ,

and

C0(ε) ≤
1

4
L2(H1+H2)| cosα|2H1 | sin α|2H2 [4(1 + ε)2H2+

8
2

3
√

3
(1 + max(ε2H1−1, (1 + ε)2H1−1, ε2H2−1, (1 + ε)2H2−1)

+ 8
2

3
√

3
max(1, (1 + ε)2H1−1, (1 + ε)2H2−1)

+ 8 max(1, ε2H2−2, ε2H1−2) + 16].
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