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Abstract

This work concerns estimation of multidimensional nonlinear regression
models using multilayer perceptron (MLP). The main problem with such
models is that we have to know the covariance matrix of the noise to get
optimal estimator. however we show that, if we choose as cost function the
determinant of the empirical error covariance matrix, or more precisely the
logarithm of this determinant, we get an asymptotically optimal estimator.

1 Introduction

Consider a sequence (Yt, Zt)t∈N
of i.i.d.1 random vectors (i.e. identically dis-

tributed and independents). So, each couple (Yt, Zt) has the same law that a
generic variable (Y, Z). Moreover assume that the model can be written

Yt = FW 0 (Zt) + εt

where

• FW 0 is a function represented by a MLP with parameters or weights W 0.

• (εt) is an i.i.d. centered noise with unknown invertible covariance matrix
Γ0.

Our goal is to estimate the true parameter by minimizing an appropriate cost
function. This model is called a regression model and a popular choice for the
associated cost function is the mean squares error :

1

n

n
∑

t=1

‖Yt − FW (Zt)‖2

1It is not hard to extend all what we show in this paper for stationary mixing variables and

so for time series
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where ‖.‖ denote the Euclidean norm on R
d. However, it is easy to show that we

get then a suboptimal estimator. An other solution is to use an approximation
of the covariance error matrix to compute generalized least square estimator :

1

n

n
∑

t=1

(Yt − FW (Zt))
T

Γ−1 (Yt − FW (Zt)) ,

where T denotes the transposition of the matrix and assuming that Γ is a good
approximation of the true covariance matrix of the noise Γ0. However it take
time to compute a good the matrix Γ and if we try to compute the best matrix Γ
with the data, it leads asymptotically to the cost function used in this article (see
for example Rynkiewicz [4]). Hence, we propose to minimize the cost function

Un (W ) := log det

(

1

n

n
∑

t=1

(Yt − FW (Zt))(Yt − FW (Zt))
T

)

. (1)

This paper is devoted to the theoretical study of this cost function. We
assume that the true architecture of the MLP is known so that the Hessian
matrix computed in the sequel verifies the assumption to be definite positive
(see Fukumizu [1]).

In this framework, we study the asymptotic behavior Ŵn := argmin Un (W ),
the weights minimizing the cost function Un (W ). We show that under simple
assumptions this estimator is asymptotically optimal in the sense that it has the
same asymptotic behavior than the generalized least square estimator using the
true covariance matrix of the noise.

Numerical procedure to compute this estimator and examples of it behavior
can be found in Rynkiewicz [4].

2 The first and second derivatives of W 7−→ Un (W )

First, we introduce a notation : if FW (X) is a d-dimensional parametric func-

tion depending of a parameter W , write ∂FW (X)
∂Wk

(resp. ∂
2
FW (X)

∂Wk∂Wl

) for the d-

dimensional vector of partial derivative (resp. second order partial derivatives)
of each component of FW (X).

2.1 First derivatives

Now, if Γn(W ) is a matrix depending of the parameter vector W , we get From
Magnus and Neudecker [3]

∂

∂Wk

ln det (Γn(W )) = tr

(

Γ−1
n (W )

∂

∂Wk

Γn(W )

)

here

Γn(W ) =
1

n

n
∑

t=1

(yt − FW (zt))(yt − FW (zt))
T
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so, these matrix Γn(W ) and it inverse are symmetric.
Hence, if we note

An(Wk) =
1

n

n
∑

t=1

(

−∂FW (zt)

∂Wk

(yt − FW (zt))
T

)

using the fact

tr
(

Γ−1
n (W )An(Wk)

)

= tr
(

AT

n (Wk)Γ−1
n (W )

)

= tr
(

Γ−1
n (W )AT

n (Wk)
)

we get
∂

∂Wk

ln det (Γn(W )) = 2tr
(

Γ−1
n (W )An(Wk)

)

(2)

2.2 Second derivatives

We write now

Bn(Wk , Wl) :=
1

n

n
∑

t=1

(

∂FW (zt)

∂Wk

∂FW (zt)

∂Wl

T
)

and

Cn(Wk, Wl) :=
1

n

n
∑

t=1

(

−(yt − FW (zt))
∂2FW (zt)

∂Wk∂Wl

T
)

We get

∂
2
Un(W )

∂Wk∂Wl

= ∂

∂Wl

2tr
(

Γ−1
n (W )An(Wk)

)

=

2tr
(

∂Γ−1

n
(W )

∂Wl

A(Wk)
)

+ 2tr
(

Γ−1
n (W )Bn(Wk, Wl)

)

+ 2tr
(

Γn(W )−1Cn(Wk , Wl)
)

Now, Magnus and Neudecker [3], give an analytic form of the derivative of an
inverse matrix, so we get

∂
2
Un(W )

∂Wk∂Wl

= 2tr
(

Γ−1
n (W )

(

An(Wk) + AT
n (Wk)

)

Γ−1
n (W )An(Wk)

)

+

2tr
(

Γ−1
n (W )Bn(Wk, Wl)

)

+ 2tr
(

Γ−1
n (W )Cn(Wk , Wl)

)

so
∂
2
Un(W )

∂Wk∂Wl

= 4tr
(

Γ−1
n (W )An(Wk)Γ−1

n (W )An(Wk)
)

+2tr
(

Γ−1
n (W )Bn(Wk, Wl)

)

+ 2tr
(

Γ−1
n (W )Cn(Wk , Wl)

) (3)

3 Asymptotic properties of Ŵn

The previous equations allow us to give the asymptotic properties of the estima-
tor minimizing the cost function Un(W ), namely from equation (2) and (3) we
can compute the asymptotic properties of the first and the second derivatives of
Un(W ). Finally, under the assumption that the noise of the model has a moment

of order 2, we know that the estimator is strongly consistent (i.e. Ŵn

a.s.→ W 0)
and, if the noise has a moment of order at least 6 (see the justification in Yao
[5]), we get the following lemma :
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Lemma 1 Write W 0 for the true parameter of the model. We recall that

Γ−1
0 := Γ−1(W 0) is the true covariance matrix of the noise.

Let ∆Un(W 0) be the gradient vector of Un(W ) at W 0, ∆U(W 0) be the gradi-

ent vector of U(W ) := log det(Y −FW (Z)) at W 0 and HUn(W 0) be the Hessian

matrix of Un(W ) at W 0.

Write finally

B(Wk , Wl) :=
∂FW (Z)

∂Wk

∂FW (Z)

∂Wl

T

and

A(Wk) =

(

−∂FW (Z)

∂Wk

(Y − FW (Z))T

)

We get then

1. HUn(W 0)
a.s.→ 2I0

2.
√

n∆Un(W 0)
Law→ N (0, 4I0)

where, the component (k, l) of the matrix I0 is :

tr
(

Γ−1
0 E

(

B(W 0
k , W 0

l )
))

proof To prove the lemma, just note that the component (k, l) of the matrix
4I0 is :

E

(

∂U(W 0)

∂Wk

∂U(W 0)

∂W 0
l

)

= E
(

2tr
(

Γ−1
0 AT (W 0

k )
)

× 2tr
(

Γ−1
0 A(W 0

l )
))

and, since the trace of the product is invariant by circular permutation,

E
(

∂U(W 0)
∂Wk

∂U(W 0)
∂W 0

l

)

=

4E
(

−∂F
W0 (Z)T

∂Wk

Γ−1
0 (Y − FW 0 (Z))(Y − FW 0 (Z))T Γ−1

0

(

−∂F
W0 (Z))

∂Wl

))

= 4E
(

∂F
W0 (Z)T

∂Wk

Γ−1
0

∂F
W0 (Z)

∂Wl

)

= 4tr
(

Γ−1
0 E

(

∂F
W0 (Z)

∂Wk

∂F
W0 (Z)T

∂Wl

))

= 4tr
(

Γ−1
0 E

(

B(W 0
k
, W 0

l
)
))

for the component (k, l) of the expectation of the Hessian matrix, remark first
that

lim
n→∞

tr
(

Γ−1
n (W 0)An(W 0

k )Γ−1
n (W 0)An(W 0

k )
)

= 0

and
lim

n→∞

trΓ−1
n Cn(W 0

k , W 0
l ) = 0

so

limn→∞ Hn(W 0) = limn→∞ 4tr
(

Γ−1
n (W 0)An(W 0

k
)Γ−1

n (W 0)An(W 0
k
)
)

+
2trΓ−1

n (W 0)Bn(W 0
k
, W 0

l
) + 2trΓ−1

n Cn(W 0
k
, W 0

l
) =

= 2tr
(

Γ−1
0 E

(

B(W 0
k
, W 0

l
)
))

�
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From a classical argument of local asymptotic normality (see for example
Yao [5]), we deduce from this lemma the following property for the estimator
Ŵn :

Proposition 1 Let W ∗

n the estimator of the generalized least square :

W ∗

n := argmin
1

n

n
∑

t=1

(Yt − FW (Zt))
T

Γ−1
0 (Yt − FW (Zt))

then we have

lim
n→∞

√
n(W ∗

n − W 0) = lim
n→∞

√
n(Ŵn − W 0) = N (0, I−1

0 )

We can see that Ŵn has the same asymptotic behavior than the estimator
generalized least square estimator with the true covariance matrix Γ−1

0 which is
asymptotically optimal (see for example Ljung [2]), so the proposed estimator is
asymptotically optimal too.

4 Conclusion

In the linear multidimensional regression model the optimal estimator has an
analytic solution (see Magnus and Neudecker [3]), so it doesn’t make sense to
consider minimization of a cost function. However, for the non-linear multidi-
mensional regression model the ordinary least square estimator is sub-optimal if
the covariance matrix of the noise is not the identity matrix. We can overcome
this difficulty by using the cost function Un(W ). The numerical computation and
the empirical properties of these estimator have been studied in a previous arti-
cle (see rynkiewicz [4]). In this paper, we have given a proof of the optimality of
the estimator associated with Un(W ). This is then the best choice for estimating
multidimensional non-linear regression model with multilayer perceptron.
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