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Centre Pierre Mendès France, 90 rue de Tolbiac, F-75634 Paris Cedex 13.
France. olivier.wintenberger@univ-paris1.fr

Assuming that (Xn)n∈Z is a vector valued time series with a common mar-
ginal distribution admitting a density f , our aim is to provide a wide range
of consistent estimators of f . We consider different methods of estimation as
kernel, projection or wavelets ones. Various cases of weakly dependent series
are investigated including the Doukhan & Louhichi’s η-weak dependence con-
dition (see [DL99]) and the φ̃-dependence of Dedecker & Prieur (see [DP04]).
We thus obtain results for Markov chains, dynamical systems, bilinear mod-
els, non causal Moving Average. . . ¿From a moment inequality of Doukhan
& Louhichi, we provide convergence rates of the term of Lq-error or for the
uniform bounds on compact sets, in mean or almost surely.

1 Introduction

Assume that (Xn)n∈Z is a Rd valued random process such that each marginal
Xi has the same distribution with a density f with respect to (w.r.t. in the se-
quel) Lebesgue measure. Note that stationarity is not required so that case of
a sampled process {Xi,n = xhn(i)}1≤i≤n for any sequence of monotonic func-
tions (hn(.))n∈Z and any stationary process (xn)n∈Z that admits a marginal
density is included. This paper gives convergence rates for density estimation
in very different cases. First, we shall consider two different frames of weak
dependence:

• Non-causal η-dependence introduced in [DL99] by Doukhan & Louhichi,
• Dedecker & Prieur’s φ̃-dependence (see [DP04]).

Note that these two frames of dependence are associated with a large number
of examples of time series (see section § 3). Secondly, following Doukhan (see
[DO90]) we propose an unified study of linear density estimators f̂n of the
form
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f̂n(x) =
1
n

n∑
i=1

Kmn(x,Xi) , (1)

where {Kmn
} is a sequence of kernels. Under classical assumptions on {Kmn

}
(see section § 2.2), the results in the case of independent and identically dis-
tributed (i.i.d. in short) observations Xi are well known (see for instance
[TS04]). At a fixed point x ∈ Rd:

‖f̂n(x)− f(x)‖q = O
(
n−

ρ
2ρ+d

)
. (2)

The coefficient ρ > 0 corresponds to the regularity of f (see section § 2.2 for
the definition of the notion of regularity). The same convergence rates also
hold for the Mean Integrated Square Error (MISE, which writes as

∫
‖f̂n(x)−

f(x)‖22p(x)dx for some nonnegative and integrable function p). Uniformly on
a compact set, a logarithmic loss appears. For all M > 0:

E sup
‖x‖≤M

|f̂n(x)− f(x)|q = O
(

log n

n

)qρ/(d+2ρ)

, (3)

and

sup
‖x‖≤M

|f̂n(x)− f(x)| =a.s. O
(

log n

n

)ρ/(d+2ρ)

. (4)

Those rates are optimal in the minimax sense, we thus have no hope to improve
on them in the dependent setting. Relaxing the condition of independence,
the optimal previous decay rates are still achieved for mixing coefficients
(see [DO94]). A vast literature deals with density estimation for absolutely
regular (or β-)dependent processes Xn. For instance, under the assumption
βr = o

(
r−3−2d/ρ

)
, Ango Nze & Doukhan prove in [AD98] that (2), (3) and

(4) still hold. A sharper condition
∑

r |βr| < ∞ entails the optimal decay for
the MISE (see [VI97]). Results on the MISE have been extended to the more
general φ̃- and η-dependence contexts by Dedecker & Prieur ([DP04]) and
Doukhan & Louhichi in [DL01]. In this paper, our aim is to extend in the η-
and φ̃-weak dependence contexts the equations (2), (3) and (4) .

We use the same method as in [DL99] based on the following moment in-
equality for weakly dependent and centered sequences (Zn)n∈Z. For each even
integer q and for each integer n ≥ 2:∥∥∥∥∥

n∑
i=1

Zi

∥∥∥∥∥
q

q

≤ (2q − 2)!
(q − 1)!

{
V

q/2
2,n ∨ Vq,n

}
, (5)

where ‖X‖q
q = E|X|q and for k integer such that 2 ≤ k ≤ q,

Ck(r) := sup{|cov(Zt1 · · ·Ztp
, Ztp+1 · · ·Ztk

)|} , (6)
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if t1 ≤ · · · ≤ tk are such that tp+1 − tp = sup
1≤i≤k−1

ti+1 − ti = r, and

Vk,n = n
n−1∑
r=0

(r + 1)k−2Ck(r) for 2 ≤ k ≤ q .

In our framework, Zi is defined such that
∑n

i=1 Zi is proportional to the fluc-
tuation term f̂n(x)−Ef̂n(x). The inequality (5) gives a bound of this part of
the error depending on the covariances Ck(r). The other part of the error, the
bias, is treated in a deterministic way. In order to obtain suitable controls of
the fluctuation term, we need two different bounds for Ck(r). Conditions on
the decay of the weak dependence coefficients give a first bound. Another type
of condition is also required to bound Ck(r) for the smaller values of r ; this
is classically achieved with a regularity condition on the joint law of the cou-
ple (Xj , Xk). In Doukhan & Louhichi (see [DL01]), rates are obtained when
the coefficient η decays geometrically and the joint densities are bounded. We
relax those conditions for cases of degenerated joint distributions and with
η and φ̃ decreasing more slowly (sub-geometric and Riemannian decays are
considered).

We prove that (2) still holds (see Theorem 1). Unfortunately, additional
losses appear for the uniform bounds. For the decays ηr or φ̃r = O

(
e−arb

)
with a > 0 and b > 0, we prove in Theorem 2 that (3) and (4) hold re-
placing the logarithmic factor log n by the worse one log2 b+1

b (n). If now
either ηr or φ̃ = O(r−a) with a > 1, Theorem 3 gives bounds for (3)
and (4) where the right hand side now write as O

(
n−qρq0/(2ρq0+d(q0+2))

)
and O

((
log2+4/(q0−2) n/n

) ρ(q0−2)
2ρq0+d(q0+2)

)
, for q0 = 2

⌈
a−1
2

⌉
(by definition

dxe = −[−x]). As already noticed in [DL01], the loss w.r.t the i.i.d. case
highly depends on the decay of the coefficients. In geometric cases, the loss is
logarithmic while it is polynomial in the Riemannian cases.

The paper is organized as follows. In section § 2.1 we introduce the notions
of η-dependence and φ̃ dependence. We give the notation and hypothesis in
§ 2.2. The main results are presented at the section § 2.3. We then apply
those results on special weak dependence processes in section § 3. Section § 4
contains the proofs of the theorems with three important lemmas.

2 Main results.

We first describe the notions of dependence considered here, then we introduce
our assumptions and we formulate the main results of the paper (convergence
rates).
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2.1 Weak dependences.

We consider a sequence (Xi)i∈Z with values in Rd, and we fix a norm ‖ · ‖ on
Rd. Moreover, if h : Rdu → R for some u ≥ 1, we set

Lip (h) = sup
(a1,...,au) 6=(b1,...,bu)

|h(a1, . . . , au)− h(b1, . . . , bu)|
‖a1 − b1‖+ · · ·+ ‖au − bu‖

.

The η-dependence.

Definition 1 (Doukhan & Louhichi (1999)). The process (Xi)i∈Z is η-
weakly dependent if there exists a sequence of non-negative real numbers
(ηr)r≥0 verifying ηr → 0 when r →∞ and such that:∣∣Cov

(
h (Xi1 , . . . Xiu

) , k
(
Xiu+1 , . . . , Xiu+v

))∣∣ ≤ (uLip(h) + vLip(k))ηr ,

for all (u+ v)-tuples, (i1, . . . , iu+v) with i1 ≤ · · · ≤ iu ≤ iu + r ≤ iu+1 ≤ · · · ≤
iu+v, for h, k ∈ Λ(1) where

Λ(1) =
{

h : ∃u ≥ 0, h : Rdu → R,Lip (h) < ∞, ‖h‖∞ = sup
x∈Rdu

|h(x)| ≤ 1
}

.

Remark: The η-dependence refers to non-causal situations because informa-
tion ’from the future’ (i.e. on the right of the covariance) contributes as much
as information ’from the past’ (i.e. on the left) in the dependence scheme. It
is the non-causal alternative to the θ condition in [DD03] and [DL99].

The φ̃-dependence. This condition is a causal one:

Definition 2 (Dedecker & Prieur (2004)). Let (Ω,A, P) be a probability
space and M a σ-algebra of A. For any l ∈ N∗, any random variable X ∈ Rdl

we define:

φ̃(M, X) = sup{‖E(g(X)|M)− E(g(X))‖∞, g ∈ Λ1,l} ,

where Λ1,l = {h : Rdl 7→ R/Lip (h) < 1}. The sequence of coefficients φ̃k(r) is
then defined by

φ̃k(r) = max
l≤k

1
l

sup
i+r≤j1<j2<···<jl

φ̃(σ({Xj/j ≤ i}), (Xj1 , . . . , Xjl
)) .

The process is φ̃-dependent when φ̃(r) = sup
k>0

φ̃k(r) tends to 0 with r.

Remarks. As in the previous case, we control the covariance of such processes.
For a Lipschitz function k and for an integrable function h:∣∣Cov

(
h (Xi1 , . . . , Xiu) , k

(
Xiu+1 , . . . , Xiu+v

))∣∣ ≤
vE |h (Xi1 , . . . , Xiu

)| Lip (k)φ̃(r) . (7)

Furthermore, the coefficient φ̃(r) reaches the least upper bound in (7).



Convergence rates for density estimators of weakly dependent time series 5

2.2 Notations and settings.

Assume that (Xn)n∈Z is a η- or φ̃-weakly dependent time series of Rd. We
consider two types of decays for the coefficients. The geometric cases is referred
to as one of the assumptions [H1] or [H1’]:

[H1]: ηr = O
(
e−arb

)
with a > 0 and b > 0,

[H1’]: φ̃(r) = O
(
e−arb

)
with a > 0 and b > 0.

We refer to the Riemannian cases if assumption [H2] or [H2’] holds:

[H2]: ηr = O(r−a) with a > 1,
[H2’]: φ̃(r) = O(r−a) with a > 1.

As it classically appears in density estimation, we shall assume:

[H3]: All Xn, n ∈ Z have a common marginal distribution admitting
a bounded density f . Furthermore, f is ρ-regular (noted f ∈ Cρ): for
ρ = dρe + b (then 0 < b ≤ 1 by defintion), f is dρe-times continu-
ously differentiable and |f (dρe)(x) − f (dρe)(y)| ≤ A|x − y|b with A ≥ 0,
∀(x, y) ∈ Rd × Rd.

One technical assumption relies on the joint distributions (when their exist):

[H4]: the joint distributions fj,k of the couples (Xj , Xk) are uniformly
bounded for j 6= k.

Unfortunately, for some processes, the joint distributions may even not exist.
For example, the joint distributions of Markov chains Xn = G(Xn−1, εn) may
be degenerated. One of the simplest examples is:

Xk =
1
2

(Xk−1 + εk) , (8)

where the εk follows a binomial law and X0 is uniformly distributed on [0, 1].
The process Xn is strictly stationary but the joint laws of couples (X0, Xk)
are degenerated. The Markov chain can also be represented (through an in-
version of the time) as a dynamical system (T−n, . . . , T−1, T0) which has the
same law than (X0, X1, . . . , Xn) (T0 and X0 are random variables distributed
according to the invariant measure, see [BG00] for more details). Let us recall
the definition of a dynamical system:

Definition 3 (dynamical system). A one-dimensional dynamical system is
described by:

∀k ∈ N , Tk := F k(T0) , (9)

where F : I → I for I a compact of R. F is a transformation admitting an
invariant probability measure µ0, that we assume to be Lebesgue dominated,
and T0 is a random variable distributed according to µ0.
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We restrict ourselves to one-dimensional dynamical systems Tk ∈ F where the
class F is defined under assumptions on the transformation F (see [PR01]):

• ∀k ∈ N, ∀x ∈ int(I), lim
t→0+

F k(x + t) = F k(x+) and lim
t→0−

F k(x + t) =

F k(x−) exist;
• ∀k ∈ N∗, denoting Dk

+ = {x ∈ int(I), F k(x+) = x} and Dk
− = {x ∈

int(I), F k(x−) = x}, we assume λ

( ⋃
k∈N∗

(
Dk

+

⋃
Dk
−

))
= 0, where λ is

the Lebesgue measure.

According to this discussion, when the joint laws are degenerated (and then
[H4] is not satisfied), we shall assume:

[H5]: (Xn)n∈Z is a dynamical system belonging to F .

We consider in this paper linear estimator as in (1). Kernel, projections and
wavelets estimators are written in such a linear form in section § 4.2. The
kernels Kmn have to satisfy the assumptions:

(a) They are supported on a compact of diameter O(1/mn),
(b) x 7→ Kmn(x, y) and x 7→ Kmn(y, x) for all y are Lipschitz functions with

constant O
(
m

1/d
n

)
,

(c)
∫

Kmn
(x, y)dy = 1,

(d) Kmn is uniformly bounded in n.

2.3 Results.

We now present three Theorems followed by some remarks:

Theorem 1 (Lq-convergence).

Geometric cases. Under the assumptions [H4] or [H5] and [H1] or [H1’],
then inequality (2) holds for all 0 < q < +∞.

Riemannian cases. Under the assumptions [H4] or [H5] if additionally

• η-dependence holds with [H2], a > max
(

1 +
2
d

+
d + 1

ρ
, 2 +

1
d

)
, or

• φ̃-dependence holds with [H2’] and a > 1 +
2
d

+
1
ρ
,

then inequality (2) holds for all 0 < q ≤ q0 = 2
⌈

a−1
2

⌉
.

Theorem 2 (Uniform rates, geometric decays). For any M > 0 under
the assumptions [H4] or [H5] and [H1] or [H1’] we have for all 0 < q < +∞:
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E sup
‖x‖≤M

|f̂n(x)− f(x)|q = O

( log2 b+1
b (n)
n

)qρ/(d+2ρ)
 , and

sup
‖x‖≤M

|f̂n(x)− f(x)| =a.s. O

( log2 b+1
b (n)
n

)ρ/(d+2ρ)
 .

Theorem 3 (Uniform rates, Riemannian decays). For any M > 0 under
the assumptions [H4] or [H5], with additionally [H2] or [H2’], a ≥ 4 and
ρ > 2d, then, for q0 = 2

⌈
a−1
2

⌉
and q ≤ q0:

E sup
‖x‖≤M

|f̂n(x)− f(x)|q = O
(
n
− qρq0

2ρq0+d(q0+2)

)
, and

sup
‖x‖≤M

|f̂n(x)− f(x)| =a.s. O

( log2+4/(q0−2) n

n

) ρ(q0−2)
2ρq0+d(q0+2)

 .

Remarks.

• In Theorem 1, the optimal convergence rate of equation (2) still hold in
our weak dependence context. In the Riemannian case, when a ≥ 4, the
conditions are always satisfied by assuming a sufficient regularity on the
density f , i.e. ρ > d + 1.

• Losses appearing when we consider uniform convergence rates (Theorem
2 & 3) are due to the fact that the probability inequalities we obtain for
dependent observations are not as good as the Bernstein one (Bernstein
inequalities in weak dependence context are proved in [KN05]). Unlike in
the independent case, the convergence decays are not the same according
to the decays of the weak dependence coefficients.

• In Theorem 2 the loss is a logarithmic power. Let us remark that this loss
disappears when b tends to infinity, or equivalently when we tends to the
independent case. In the case of η-dependence and geometric decreasing,
the same result is in [DL99] for the special case b = 1. In the case of
φ̃-dependence, we have for the first time uniform rates of convergence for
density estimators.

• In Theorem 3, better is the mean-rate than the almost sure rate for techni-
cal raisons. Instead in the geometric case, our loss is no longer logarithmic
but a power of n. We obtain asymptotically the optimal rate when q0 →∞,
or equivalently a →∞.

• We investigate for the first time convergence rates for Riemannian decay
of those weak dependence coefficients. The condition we obtain on a is
similar to the condition on β in [AD03]. Even if our rates are better than
in [DL01], we have a huge loss comparatively with the mixing case. It
would be interesting to have minimax results in this framework to know
if we can achieve better convergence rates.
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3 Models, applications and extensions.

The class of weak dependent processes is very large. We apply our results
on three special examples: two-sided moving averages, bilinear models
and expanding maps. The first two will be treated with the help of the
coefficients η, the third one with the coefficients φ̃.

3.1 Examples η-dependent time series.

η-dependent random fields may also be defined (see [DD04] for further details),
for simplicity, here the index set is always Z.

Definition 4 (Bernoulli shifts). Let H : RZ → R be a measurable function.
A Bernoulli shift is defined as Xn = H(ξn−i, i ∈ Z) where (ξi)i∈Z is a sequence
of i.i.d variables called the innovation process.

Thanks to the following regularity condition on H:

sup
i∈Z

E
∣∣H (ξi−j , j ∈ Z)−H

(
ξi−j1|j|<r, j ∈ Z

)∣∣ ≤ δr ,

the real sequence {δr}r∈N gives an expression of the ηr: Bernoulli shifts are
η-dependent with ηr = 2δr/2 (see [DL99]). In the following, we consider two
special cases of Bernoulli shifts.

1. Non causal linear processes. For a real sequence (ai)i∈Z, Xn =∑+∞
−∞ aiξn−i is a real (d = 1) non-causal linear process. If we control

a moment of the innovations, the linear process (Xn) is η-dependent.
The sequence {ηr}r∈N is directly linked to the coefficients {ai}i∈Z and
various types of decay may occur. We restrict to Riemannian decays
ai = O

(
i−A

)
with A ≥ 5 since geometric decays yield already known

results. Here ηr = O
(∑

|i|>r/2 ai

)
= O(r1−A) and [H2] holds. Further-

more, we assume that the sequence (ξi)i∈Z is i.i.d. satisfying the condition
|Eeiuξ0 | ≤ C(1 + |u|)−δ, for all u ∈ R and for some δ > 0 and C < ∞.
Then, both densities f and fj,k exist for j 6= k and they are uniformly
bounded (see the proof in the causal case in lemma 1 and lemma 2 in
[GK96]) ; hence [H4] holds. If the density f of X0 is ρ-regular with ρ > 2,
our estimators converge to the density with the rates:
• n−

ρ
2ρ+1 in Lq-norm (q ≤ 4) at each point x,

• n−
ρ

2ρ+3/2 in Lq-norm (q ≤ 4) uniformly on an interval,

•
(
log4 n/n

) ρ
4ρ+3 almost surely on an interval.

In the first case, the rate we obtain is the same as in the i.i.d. case. For
such linear models, the density estimator also satisfies Central Limit The-
orems (see [HL01] and [DE98]).
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2. Bilinear model. The process Xt follows a bilinear model if and only
if there exist two sequences (ai)i∈N∗ and (bi)i∈N∗ of real numbers, and a
and b two non-negative numbers such that:

Xt = ξt

a +
∞∑

j=1

ajXt−j

+ b +
∞∑

j=1

bjXt−j . (10)

Real ARCH(∞) and GARCH(p,q) are the most famous bilinear
models. Assuming λ = ‖ξ0‖Lp‖a‖1 + ‖b‖1 < 1, then the equation (10)
has a strictly stationary solution in Lp (see [DM05]). This solution is a
special Bernoulli shift for which we have the behavior of the coefficient
η:
• ηr = O

(
e−λr

)
, λ > 0 when there exists an integer N such that ai =

bi = 0 for i ≥ N .
• ηr = O

(
(r/ log r)−λ

)
, λ > 0 under Riemannian decay, i.e. we have

ai = O(i−A) and bi = O(i−B) with A > 1 and B > 1.
• ηr = O

(
e−λ

√
r
)

under geometric decay, i.e. we have A > 0 and B > 0

such that ai = O(e−Ai) and bi = O(e−Bi).
Let us furthermore assume that the independent innovations ξt have the
same marginal density fξ ∈ Cρ, for ρ > 2. The density of Xt conditionally
to the past write simply as a function of fξ. We then verify recursively
that the common density of Xt for all t, f , is also Cρ. Furthermore, the
regularity on ξ ensures that f and the joint densities fj,k for all j 6= k are
bounded (see [DM05]) and [H4] holds. Theorem 1 implies the minimax
bound (2) if either:
• There exists an integer N such that ai = bi = 0 for i ≥ N (we are in

fact in the case of ARCH(p) models).
• We have A and B such that ai = O(e−Ai) and bi = O(e−Bi) with

A > 0 and B > 0 (which includes GARCH(p, q) models and certain
ARCH(∞) models).

• We have A ≥ 4 and B ≥ 5 such that ai = O(i−A) and bi = O(i−B).
Then, this optimal bound holds only for 2 ≤ q < q(A,B) where
q(A,B) = 2[((B − 1) ∧A)/2].

Furthermore, the uniform convergence is ensured in each cases by Theo-
rems 2 and 3 but with sub-optimal convergence rates.

3.2 Examples of φ̃-dependent time series.

Let us introduce an important class of dynamical systems:

Example 1. (Ti = F i(T0))i∈N is an expanding map (or equivalently F is a
Lasota-Yorke function) if it satisfies the three following criteria.

• (regularity) There exists a grid 0 = a0 ≤ a1 · · · ≤ an = 1 such as F ∈ C1

and |F ′(x)| > 0 on ]ai−1, ai[ for each i = 1, . . . , n.
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• (expansivity) Let In be the set on which (Fn)′ is defined. There exists
a > 0 and s > 1 such as infx∈In

|(Fn)′| > asn.
• (Topological mixing) For any nonempty open sets U , V , there exists n0 ≥ 1

such as F−n(U) ∩ V 6= ∅ for all n ≥ n0.

Examples of Markov chains Xn = G(Xn+1, εn) associated to an expanding
map Tn belonging to F are given in [BG00] and [DP04]. The simplest one is
Xk = (Xk−1 + εk) /2 where the εk follows a binomial law and X0 is uniformly
distributed on [0, 1]. We easily check that F (x) = 2x mod1, the transforma-
tion of the associated dynamical system Tn, satisfies all the assumptions
such as Tn is an expanding map belonging to F .

Let us consider one such Markov chain. We then control the coefficient φ̃
of the associated Markov chain: φ̃(r) = O(e−ar) where a > 0 (see [DP04]).
Theorems 1 and 2 give us the Lq rate n−

ρ
2ρ+1 , the uniform Lq rate and almost

sure rate
(

log4 n

n

) ρ
2ρ+1

of the approximation of the density of µ0. This density

estimator also satisfies a Central Limit Theorem is given in [PR01].

3.3 Extensions.

Let us recall that the stationarity is not required here so that case of a sam-
pled process {Xi,n = xhn(i)}1≤i≤n for any sequence of monotonic functions
(hn(·))n∈Z and any stationary process (xn)n∈Z that admits a marginal density
is included.

We have seen that results in geometric cases are better than in Riemannian
cases. Choosing hn(i) equals to i2n is then a way to transform the Riemannian
weak dependent process (xn)n∈Z into a geometric one. Then, if we consider

the linear estimator f̃n(x) =
1
n

n∑
i=1

Kmn
(x, Xi,n) , we have constructed an es-

timator with at worst a logarithmic loss.

We may consider other sequences of functions (hn(·))n∈Z in order to in-
crease the rate of the decay of the weak dependence coefficients. In the
geometric cases [H1] or [H1’] for (xn)n∈Z, with dependent coefficients =
O
(
e−arb

)
, (Xi,n) with hn(i) = ic has dependent coefficients = O

(
e−arcb

)
.

When c is large, we approach the independent case where weak depen-
dence coefficients vanish. The estimator f̃n has a uniform convergence rate

= O
((

log2 cb+1
cb (n)/n

)ρ/(d+2ρ)
)

better than the one of f̂n. Unfortunately,

the minimax rate is never obtained, even asymptotically (c → +∞), and we
have to observe the process (xn)n∈Z during a long period in order to apply
those methods.
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4 Proofs.

We observe the process (Xn)n∈Z with Xi ∈ Rd. The sequence mn is called
the window parameter. We assume that 1/mn + mn/n → 0 as n → ∞. The
asymptotic behavior of density estimators (1) is based on the decomposition:

f̂n(x)− f(x) = f̂n(x)− E
(
f̂n(x)

)
︸ ︷︷ ︸

FLn(x)=fluctuation

+ E
(
f̂n(x)

)
− f(x)︸ ︷︷ ︸

Rn(x)=bias

. (11)

In the following section § 4.1, we carefully choose the kernels Kmn such that
assumptions (a), (b), (c) and (d) of subsection § 2.2 are satisfied. We will see
in that framework that we can also ensure the classical rate m

−ρ/d
n for the

bias Rn(x). This work on bias is totally disconnected from the dependence
properties of the observations and only depends on the technique of estima-
tion. In subsection § 4.2, we derive from three lemmas the decay rate for the
fluctuation in those weak dependence context. Finally, in subsection § 4.3,
we choose the optimal window parameter m∗

n, the one that equalize bias and
variance.

4.1 Density estimates and bias.

Kernel density estimation. The kernel estimators associated to the window
parameter mn is defined by:

f̂n(x) =
mn

n

n∑
i=1

K
(
m1/d

n (x−Xi)
)

.

We briefly recall the classical analysis for the deterministic part Rn in this case
(see [TS04]). Using only the equality of the marginal law, we have E(f̂n(x)) =
fn(x) with fn(x) =

∫
D

K(s)f
(
x− s/m

1/d
n

)
ds. Let us assume that K is a

Lipschitz function compactly supported on D ⊂ Rd. Then, if f ∈ Cρ for
ρ > 0, one can always choose a kernel function K of order dρe, i.e. for all
j = j1 + · · ·+ jd with (j1, . . . , jd) ∈ Nd:

∫
xj1

1 · · ·xjd

d K(x1, . . . , xd)dx1 · · · dxd =


1 if j = 0,
0 for j ∈ {1, . . . , dρe − 1},
6= 0 if j = dρe.

Then the kernels Kmn
(x, y) = mnK

(
m

1/d
n (x− y)

)
satisfy (a), (b), (c) and

(d) and we ensure that Rn(x) = O
(
m
−ρ/d
n

)
.

Projection estimation. Let us restrict in this section to the case d = 1. Un-
der the assumption that the family {1, x, x2, . . . } belongs to L2(I, µ) (where
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I is a bounded interval of R and µ is a measure on I), the orthonormal poly-
nomials family {P0, P1, P2, . . . } is a basis of L2(I, µ). Then, the fact that I is
compact and the Christoffel-Darboux formula and its corollary (see [SZ33])
ensures properties (a), (b) and (d) for the elements of the basis. We assume
a ρ-regularity assumption on f denoted C′ρ (a bit more restrictive than Cρ

introduced in [H3], see Theorem 6.23 p.218 in [DS01] for details). Then for
any f ∈ L2(I, µ) ∩ C′ρ it always exists a function πf,mn

∈ Vmn
verifying

supx∈I |f(x)−πf,mn
(x)| = O(m−ρ

n ) (the optimal rate). Now consider the pro-
jection πmnf of f on the subspace Vmn =Vect{P0, P1, . . . , Pmn}. The classical

decomposition holds πmn
f(x) =

mn∑
j=0

∫
I

Pj(s)f(s)dµ(s)Pj(x). A projection es-

timator of the common density f of the real variables {Xi}1≤i≤n, naturally
arises:

f̂n(x) =
1
n

n∑
i=1

Kmn
(x,Xi) =

1
n

n∑
i=1

mn∑
j=0

Pj(Xi)Pj(x) .

Then Ef̂n(x) = πmn
f(x) is an approximation of f(x) belonging to Vmn

. We
easily check that properties (a), (b), (c) and (d) hold for the kernels Kmn .
Unfortunately, the optimal rate (m−ρ

n ) does not necessarily hold. We then
have to consider the weighted kernels Ka

m(x, y) defined by:

Ka
m(x, y) =

m∑
j=0

am,j

j∑
k=0

Pk(x)Pk(y) ,

where {am,j ; m ∈ N, 0 ≤ j ≤ m} is a weight sequence satisfying
∑m

j=0 am,j =
1 and for all j: am,j →m→∞ 0. If the sequence {am,j} is such that Ka

m is
a nonnegative kernel then ‖Ka

m‖1 =
∫

I
Ka

m(x, s)dµ(s) = 1. Remarking that
Ef̂n(x) =

∫
I
Ka

mn
(x, s)f(s)dµ(s) = Ka

mn
∗ f(x) is the functional operator

f 7→ Ka
m ∗ f(x) with uniform norm sup

‖f‖∞=1

‖Ka
m ∗ f‖∞ = ‖Ka

m‖1 = 1. The

associated linear estimator:

f̂a
n(x) =

1
n

n∑
i=1

mn∑
j=0

amn,j

j∑
k=0

Pk(Xi)Pk(x) ,

satisfies (a), (b), (c), (d) and its bias has the optimal rate:

|Ef̂a
n(x)− f(x)| = |Ka

mn
∗ f(x)− πf,mn

f(x) + πf,mn
f(x)− f(x)| ,

≤ |Ka
mn

∗ (f(x)− πf,mn
f(x)) + πf,mn

f(x)− f(x)| ,
≤ (‖Ka

mn
‖1 + 1)m−ρ

n = O(m−ρ
n ) .

Example 2 (Fejer’s kernel). For the trigonometric basis {cos(nx), sin(nx)}n∈N,
we can find a 2π-periodic function f ∈ C′1 such that supx∈[−π;π] |f(x) −
πmf(x)| = O(m−1 log m). The associated estimator writes:



Convergence rates for density estimators of weakly dependent time series 13

f̂n(x) =
1
2π

+
1

nπ

n∑
i=1

mn∑
k=1

cos kXi cos kx + sin kXi sin kx .

We remark that Ef̂n is the classical Fourier series of f truncated at order mn:

Dmn
f(x) =

1
2π

∫ 2π

0

f(t)Dmn
(x− t)dt ,

where Dm(x) =
m∑

k=−m

eikx =
sin 2m+1

2 x

sin 1
2x

is the Dirichlet’s kernel. We derive

from this kernel the nonnegative Fejer’s kernel:

Fm(x) =
1
m

m−1∑
k=0

Dk(x) =
m−1∑

k=−(m−1)

(
1− |k|

m

)
eikx =

1
m

(
sin m

2 x

sin 1
2x

)2

.

The kernels Fm is the weighted kernel Ka
m(x, y) corresponding to the sequence

am,j = 1/m. Then, if the common density f of {Xi}1≤i≤n belongs in C′1 and
is 2π-periodic, the associated estimator of the Fejer’s kernels:

f̂ ′n(x) =
1
2π

+
1

nπ

n∑
i=1

mn∑
j=1

1
mn

j∑
k=1

cos kXi cos kx + sin kXi sin kx ,

satisfies (a), (b), (c) and (d) and reaches the optimal rate m−1
n for its bias.

Using other Jackson’s kernels (see [DS01]), we can find an estimator such that
Rn = O

(
m
−ρ/d
n

)
for other values of ρ, but the weight sequence am,j highly

depends of the value of ρ.

Wavelets estimation. Wavelets estimation is an important case of projec-
tion estimation. For the sake of simplicity, we restrict to d = 1.

Definition 5 (Scaling function (see [DO88])). A function φ ∈ L2(R) is
called scaling function if the family {φ(x− k) ; k ∈ Z} is orthonormal.

We traditionally choose the window parameter mn = 2j(n) and we defined the
Vj ⊂ L2(R) as Vect{φj,k, k ∈ Z}, where φj,k = 2j/2φ(2j(x − k)). Under the
assumption that φ is compactly supported, we define (the sum on k is in fact
finite):

f̂n(x) =
1
n

∞∑
k=−∞

n∑
i=1

φj(n),k(Xi)φj(n),k(x) .

We check that the wavelets estimator could be seen as a linear one of the form

of (1) where K(x, y) =
∞∑

k=−∞

φ(y− k)φ(x− k) and Km(x, y) = mK(mx,my).
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Under the assumption of concentration
∑
k∈Z

φ(x− k) = 1 for almost all x, we

can write:∣∣∣E(f̂n(x)− f(x))
∣∣∣ ≤ ∣∣∣∣∫ Kmn

(y, x)f(y)dy − f(x)
∣∣∣∣ ,

=
∣∣∣∣∫ mnK(mny, mnx)(f(y)− f(x))dy

∣∣∣∣ ,

=
∣∣∣∣∫ mnK(mnx + t, mnx)(f(x +

t

mn
)− f(x))dt

∣∣∣∣ .

One considers now that the scaling function φ is a Lipschitz function with
regularity dρe, i.e.,

∫
φ(x)xjdx = 0 if 0 < j < dρe and

∫
φ(x)xdρedx 6= 0.

Then the taylor expansion of f leads to determine the order of the bias
Rn(x) = O(m−ρ

n ). Furthermore, we easily check that the kernel Km also
satisfy properties (a), (b), (c) and (d).

4.2 Fluctuations.

In the previous section, we have clearly defined our estimator f̂n(x) and then
fixed the rate of decay for the bias. The error term depends now only on the
fluctuation by the equation (11). In order to precise the decay of the window
parameter, we define a new assumption:

[H6]: mn = m(n) with m ∈ RV (δ) for 0 < δ < 1, where RV (δ) is the
set of regularly varying function. By definition, a continuous function u :
R+ 7→ R+ is regularly varying at the order δ if there exists β ≥ 0 such
that u(x) = xδ/ logβ(x) for all x > 0.

Lemmas.

We now present three lemmas useful to derive the rate of the fluctuation term:

Lemma 1 (Moment’s inequalities). For each even integer q, under the
assumption [H4] or [H5] and:

• in the geometric cases we furthermore assume either [H1] or [H1’],
• in the Riemannian cases we furthermore assume [H6] and:

– under η-dependence, [H2] with

a > max
(

q − 1,
(q − 1)δ(4 + 2/d)
q − 2 + δ(4− q)

, 2 +
1
d

)
,

– under φ̃-dependence, [H2’] with

a > max
(

q − 1,
(q − 1)δ(2 + 2/d)
q − 2 + δ(4− q)

, 1 +
1
d

)
,
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then we have at each point x ∈ Rd:

lim
n→∞

sup
(

n

mn

)q/2

‖FLn(x)‖q
q < +∞ .

Lemma 2 (Probability inequalities).

• Geometric cases. Under the assumptions [H4] or [H5] and [H1] or [H1’]
there exists a constant C such that:

P
(
|FLn(x)| ≥ ε

√
mn

n

)
� exp

(
−Cε

b
b+1

)
.

• Riemannian cases. Under the assumptions [H4] or [H5], [H6], with addi-
tionally

– η-dependence, [H2] and a > max
(

1 + 2
δ + 1/d

1− δ
, 2 +

1
d

)
,

– φ̃-dependence, [H2’] and a > max
(

1 + 2
1/d

1− δ
, 1 +

1
d

)
,

for q0 = 2
⌈

a−1
2

⌉
, we have:

P
(
|FLn(x)| ≥ ε

√
mn

n

)
� ε−q0 .

Lemma 3 (Fluctuation’s rates). Under the assumptions of lemma 2, we
have for any M > 0:

• Geometric cases. sup
‖x‖≤M

|FLn(x)| =a.s. O
(√

mn

n
log

b+1
b n

)
.

• Riemannian cases. With q0 = 2
⌈

a−1
2

⌉
:

sup
‖x‖≤M

|FLn(x)| =a.s. O

√m
1+2/q0
n

n1−2/q0
log n

 .

Remarks.

• In lemma 1, we improve the moments inequality of [DL01], where the
condition in the case of coefficient η is a > 3(q − 1), which is always
stronger than our condition.

• In lemma 2, we give exponential inequalities similar to the Bernstein in-
equality available in the i.i.d. case:

P
(
|FLn(x)| ≥ ε

√
m

n

)
� exp

(
−Cε2

)
,

where C is a constant. Unfortunately, for dependent sequences, we do
not achieve such good rates. Other probability inequalities in dependence
framework are presented in [DP04] and [KN05].

• The lemma 3 gives the almost sure bounds for the fluctuation. It derives
directly from the two precedent lemmas.
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Proofs of the lemmas.

Proof of lemma 1. Let x be a fixed point in Rd. We note Zi = un(Xi) −
Eun(Xi) where un(.) = Kmn(., x)/

√
mn, then we have the identities:

n∑
i=1

Zi =
n∑

i=1

un(Xi)− Eun(Xi) =
n

√
mn

(f̂n(x)− Ef̂n(x)) =
n

√
mn

FLn(x) .

(12)
We derive the rate of the fluctuation of the estimator f̂n(x) applying the
inequality (5) at the centered sequence {Zi}1≤i≤n defined above. We then
control the normalized fluctuation of (12) with the covariance terms Ck(r)
defined in equation (6). Firstly, we bound those covariance terms:

• Case r = 0. Here t1 = · · · = tk = i. Then we get:

Ck(r) =
∣∣cov (Zt1 · · ·Ztp

, Ztp+1 · · ·Ztk

)∣∣ ≤ 2E|Zi|k .

By definition of Zi:

E|Zi|k ≤ 2kE|un(Xi)|k ≤ 2k‖un‖k−1
∞ E|un(X0)| . (13)

• Case r > 0. Ck(r) =
∣∣cov (Zt1 · · ·Ztp

, Ztp+1 · · ·Ztk

)∣∣ is bounded in differ-
ent ways, either using weak-dependence property or by direct bound.
– Weak-dependence bounds:

· η-dependence: Consider the following application:

φp : (x1, . . . , xp) 7→ (un(x1) · · ·un(xp)) .

Then ‖φp‖∞ ≤ 2p‖un‖p
∞ and Lipφp ≤ 2p‖un‖p−1

∞ Lipun. Thus by
η-dependence, for all k ≥ 2 we have:

Ck(r) ≤
(
p2p‖un‖p−1

∞ + (k − p)2p−k‖un‖p−k−1
∞

)
Lipunηr ,

≤ k2k‖un‖k−1
∞ Lipunηr . (14)

· φ̃-dependence: We use the inequality (7). Using the bound

E|φp(X1, . . . , Xp)| ≤ ‖un‖p−1
∞ E|un(X0)| ,

we derive a bound for the covariance terms:

Ck(r) ≤ k2k‖un‖k−2
∞ E|un(X0)|Lipunφ̃(r) . (15)

– Direct bound: Triangular inequality implies for Ck(r):

∣∣cov (Zt1 · · ·Ztp
, Ztp+1 · · ·Ztk

)∣∣ ≤ ∣∣∣∣∣E
k∏

i=1

Zti

∣∣∣∣∣︸ ︷︷ ︸
A

+

∣∣∣∣∣E
p∏

i=1

Zti

∣∣∣∣∣︸ ︷︷ ︸
Bp

∣∣∣∣∣∣E
k∏

i=p+1

Zti

∣∣∣∣∣∣︸ ︷︷ ︸
Bk−p

,
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A = |E (un(Xt1)− Eun(Xt1)) · · · (un(Xtk
)− Eun(Xtk

))| ,

= |Eun(X0)|k + |E (un(Xt1) · · ·un(Xtk
))|

+
k−1∑
s=1

|Eun(X0)|k−s
∑

ti1≤···≤tis

∣∣E (un(Xti1
) · · ·un(Xtis

)
)∣∣ .

Firstly, with k ≥ 2:

|Eun(X0)|k ≤ ‖un‖k−2
∞ (E|un(X0)|)2 .

Secondly, if 1 ≤ s ≤ k − 1:∣∣E (un(Xti1
) · · ·un(Xtis

)
)∣∣ ≤ E|un(Xti1

) · · ·un(Xtis
)| ,

≤ ‖un‖s−1
∞ E|un(X0)| , and

|Eun(X0)|k−s ≤ ‖un‖k−s−1
∞ E|un(X0)| .

Thirdly there is at least two different observations with a gap of r > 0
among Xt1 , . . . , Xtk

so for any integer k ≥ 2 :

|E (un(Xt1) · · ·un(Xtk
))| ≤ ‖un‖k−2

∞ E|un(X0)un(Xr)| .

Then, collecting the last four inequations yields:

A ≤ ‖un‖k−2
∞ (E|un(X0)|)2

+(E|un(X0)|)2
k−1∑
s=1

Ck
s ‖un(X0)‖k−2

∞ + ‖un‖k−2
∞ E|un(X0)un(Xr)| .

So:

A ≤ ‖un‖k−2
∞

(
(2k − 1)(E|un(X0)|)2 + E|un(X0)un(Xr)|

)
. (16)

Now, we bound Bi with i < k. As before:

Bi = |E (un(Xt1)− Eun(Xt1)) · · · (un(Xti)− Eun(Xti))| ,

=
i∑

s=0

|E(un(X0)|i−s
∑

tj1≤···≤tjs

∣∣E (un(Xtj1
) · · ·un(Xtjs

)
)∣∣ ,

≤ 2i‖un‖i−2
∞ (E|un(X0)|)2 .

Then:

Bp ×Bk−p ≤ 2k‖un‖k−4
∞ (E|un(X0)|)4 ≤ 2k‖un‖k−2

∞ (E|un(X0)|)2 .
(17)

Follow another interesting bound for r > 0, because according to in-
equalities (16) and (17) we have:

Ck(r) ≤ ‖un‖k−2
∞

(
(2k+1 − 1)(E|un(X0)|)2 + E|un(X0)un(Xr)|

)
.

Noting γn(r) = E|un(X0)un(Xr)| ∨ (E|un(X0)|)2, we have:

Ck(r) ≤ 2k+1‖un‖k−2
∞ γn(r) . (18)
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We now use the different values of the bounds in inequalities (13), (14), (15)
and (18). If we define the sequence (wr)0≤r≤n−1 as:

• w0 = 1,
• wr = γn(r) ∧ ‖un‖∞Lipunηr ∧ E|un(X0)|Lipunφ̃(r),

then, for all r such that 0 ≤ r ≤ n− 1 and for all k ≥ 2:

Ck(r) ≤ k2k‖un‖k−2
∞ wr .

We derive from this inequality and from (5):∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
q

q

≤ (2q − 2)!
(q − 1)!


(

n
n−1∑
r=0

C2(r)

)q/2

∨ n
n−1∑
r=0

(r + 1)q−2Cq(r)

 ,

�
(
q
√

n
)q

(
n−1∑
r=0

wr

)q/2

∨
(
‖un‖∞√

n

)q−2 n−1∑
r=0

(r + 1)q−2wr

 .

The symbol � means ≤ up to an universal constant. In order to control wr,
we give bounds for the terms γn(r) = E|un(X0)un(Xr)| ∨ (E|un(X0)|)2:

• In the case of [H4], we have:

E|un(X0)un(Xr)| ≤ supj,k ‖fj,k‖∞‖un‖21 ,

(E|un(X0)|)2 ≤ ‖f‖2∞‖un‖21 .

• In the case of [H5], the lemma 2.3 of [PR01] proves that E|un(X0)un(Xr)| ≤
(E|un(X0)|)2 for n sufficiently large and the same bound as above remains
true for the last term.

In both cases, we conclude that γn(r) � ‖un‖21. The properties (a), (b), (c)

and (d) of section 2.2 ensures that ‖un‖21 �
1

mn
, ‖un‖∞Lipun � m1+1/d

n and

E|un(X0)|Lipun � m1/d
n . We then have for r ≥ 1:

wr �
1

mn
∧m1+1/d

n ηr ∧m1/d
n φ̃r . (19)

In order to obtain the lemma 1, it remains to control the sums(
‖un‖∞√

n

)k−2 n−1∑
r=0

(r + 1)k−2wr , (20)

for k = 2 and k = q in both cases of Riemannian and geometric cases.

• Geometric cases.
Under [H1] or [H1’]: We remark that a ∧ b ≤ aαb1−α for all α ∈ [0; 1].
Using (19), we obtain first that wr � (ηr ∧ φ̃r)αm

α(1+1/d)−(1−α)
n for n
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sufficiently large. Then for 0 < α ≤ d
2d+1 we bound wr independently of

mn: wr � (ηr ∧ φ̃r)α. For all even integer k ≥ 2 we derive from the form
of ηr ∧ φ̃r that (in the third inequality u = arb):

n−1∑
r=1

(r + 1)k−2wr �
n−1∑
r=0

(r + 1)k−2 exp(−αarb) ,

�
∫ ∞

0

rk−2 exp(−αarb)dr ,

� 1

ba
k−1

b

∫ ∞

1

u
k−1

b −1 exp(−u)du ,

� 1

ba
k−1

b

Γ

(
k − 1

b

)
.

Using the Stirling formula, we can find a constant B such that, for the
both special cases k = 2 and k = q:

n−1∑
r=1

(r + 1)k−2wr �
1

ba
k−1

b

Γ

(
k − 1

b

)
� (Bk)

k
b .

• Riemannian cases.
Under [H6] and [H2]: Let us recall that [H6] implies that mn ≤ nδ for
n sufficiently large and 0 < δ < 1 and that the assumption of lemma 1
implies that:

a > max
(

q − 1,
δ(q − 1)(4 + 2/d)
q − 2 + δ(4− q)

, 2 +
1
d

)
.

Then, we have a > max
(

k − 1,
δ(k − 1)(4 + 2/d)
k − 2 + δ(4− k)

)
for both cases k = q

or k = 2. This assumption on a implies that:

(k + 2/d)δ + 2− k

2(a− k + 1)
<

(4− k)δ + k − 2
2(k − 1)

.

Furthermore, reminding that 0 < δ < 1:

0 <
(4− k)δ + k − 2

2(k − 1)
= 1− k(1 + δ)− 4δ

2(k − 1)
≤ 1 .

We derive from the two previous inequalities that there exists ζk ∈]0, 1[

verifying
(k + 2/d)δ + 2− k

2(a− k + 1)
< ζk <

(4− k)δ + k − 2
2(k − 1)

.

For k = q or k = 2, we now use the Tran’s technique as in [AB02]. We
divide the sum (20) in two parts in order to bound it by sequences tending
to 0, due to the choice of ζk:
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(√
mn

n

)k−2 [nζk ]−1∑
r=0

(r + 1)k−2wr �
(√

mn

n

)k−2
[nζk ]k−1

mn
,

� n(2ζk(k−1)−((4−k)δ+k−2))/2 ,

= O(1) ,(√
mn

n

)k−2 n−1∑
r=[nζk ]

(r + 1)k−2wr ≤
(√

mn

n

)k−2

m1+1/d
n [nζk ]k−1−a ,

≤ n(−2ζk(a−k−1)+((k+2/d)δ+2−k))/2 ,

= O(1) .

Under [H6] and [H2’]: Under the assumption of lemma 1:

a > max
(

q − 1,
δ(q − 1)(2 + 2/d)
q − 2 + δ(4− q)

, 1 +
1
d

)
,

we derive exactly as in the previous case that there exists ζk ∈]0; 1[ for
k = q or k = 2 such that

(k − 2 + 2/d)δ + 2− k

2(a− k + 1)
< ζk <

(4− k)δ + k − 2
2(k − 1)

.

We then apply again the Tran’s technique that bound the sum (20) in that
case.

The results of the lemma 1 directly follow from the equalities (12).�

Remarks. We have in fact proved the following sharper result. There exists
a universally constant C such that:(

n

mn

)q/2

‖FLn(x)‖q
q ≤ (Cq)q in the Riemaniann cases,

≤ (Cq1+1/b
√

n)q in the geometric cases. (21)

Proof of lemma 2. The two cases of Riemannian or geometric decays of the
weak dependence coefficients are considered separately.

• Geometric decays. We present a technical lemma useful to deduce
exponential probabilities from moment inequalities at any even order.

Lemma 4. If the variables {Vn}n∈Z satisfies, for all k ∈ N∗

‖Vn‖2k ≤ φ(2k) , (22)

where φ is an increasing function with φ(0) = 0. Then:

P(|Vn| ≥ ε) ≤ e2 exp
(
−φ−1(ε/e)

)
.
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Proof: By Markov at the order 2k and using the assumption (22):

P (|Vn| ≥ ε) ≤
(

φ(2k)
ε

)2k

.

With the convention 00 = 1, the inequality is true for all k ∈ N. Reminding
that φ(0) = 0, there exists an integer k0 such that φ(2k0) ≤ ε/e < φ(2(k0+
1)). Noting φ−1 the general inverse of φ, we have:

P (|Vn| ≥ ε) ≤
(

φ(2k0)
ε

)2k0

≤ e−2k0 = e2e−2(k0+1) ,

≤ e2 exp
(
−φ−1(ε/e)

)
. �

We rewrite the inequality (21):
∥∥∥√ n

mn
FLn

∥∥∥
2k
≤ φ(2k) with φ(x) = Cx

b+1
b

for a convenient constant C. Applying the lemma 4 to Vn =
√

n
mn

FLn we

obtain:

P
(
|FLn| ≥ ε

√
mn

n

)
≤ e2 exp

(
−φ−1(ε/e)

)
,

and we obtain the result of the lemma 2.
• Riemannian decays. In this case, the result of lemma 1 is obtained only

for some values of q depending of the value of the parameter a:
– In the case of η-dependence:

a > max
(

q − 1,
1 + δ + 2/d

1− δ
, 2 +

1
d

)
.

– In the case of φ̃-dependence:

a > max
(

q − 1, 1 +
2

d(1− δ)
, 1 +

1
d

)
.

We consider that the assumptions of the lemma 2 on a are satisfied in
both cases of dependence. Then q0 = 2

⌈
a−1
2

⌉
is the even integer such that

a − 1 < q0 ≤ a + 1. It is the largest order such that the assumptions
of lemma 1 (recalled above) are verified and then the lemma 1 gives us

directly the rate of the moment: lim
n→∞

sup
(

n

mn

)q0/2

‖FLn(x)‖q0
q0

< +∞.

We apply Markov to obtain the result of lemma 2:

P
(
|FLn(x)| ≥ ε

√
mn

n

)
≤

(√
n

mn
‖FLn(x)‖q0

)q0

εq0
. �

Proof of lemma 3. We follow here the Liebscher’s strategy as in [AD03].
We recover B := B(0,M), the ball of center 0 and radius M , by at least
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(4Mµ+1)d balls Bj = B(xj , 1/µ). Then, under the assumption that Km(., y)
is supported on a compact of diameter proportional to 1/m, we have, for all
j:

sup
x∈Bj

|FLn(x)| ≤ |f̂(xj)− Ef̂(xj)|+ C
mn

1/d

µ
(|f̃(xj)− Ef̃(xj)|+ 2|Ef̃(xj)|) ,

(23)
with C a constant and f̃ = mn

n

∑n
i=1 K̃mn(x, Xi) where K̃mn is a kernel of

type K̃mn(x, y) = Kmn(xj , y)1|x−xj |≤ 1
mn

satisfying properties (a), (b), (c)
and (d) of section 2.2. Then using (23) and with obvious short notation:

P

(
sup

‖x‖≤M

|FLn(x)| > ε

√
mn

n

)
≤

(4Mµ+1)d∑
j=1

P

(
sup
x∈Bj

|FLn(x)| > ε

√
mn

n

)
,

≤ (4Mµ + 1)d

[
sup

j
P
(
|FLn(xj)| > ε

√
mn

n

)
+P

(
C

m
1/d
n

µ
|F̃Ln(x)| > ε

√
mn

n

)

+P

(
2C

m
1/d
n

µ
|Ef̃n(x)| > ε

√
mn

n

)]
.

Using the fact that f is bounded, Ef̃n =
∫

K̃mn
(s)f(x − hs)ds is bounded

independently of n. We deduce that the last probability term of the sum tends
to 0 with n.

With the choice µ = m
1/d
n , we apply the lemma 2 on f and f̃ . We have then

the same rate (uniform in x) for both terms P

(
C

m
1/d
n

µ
|F̃Ln(x)| > ε

√
mn

n

)
and P

(
|FLn(x)| > ε

√
mn

n

)
. Then replacing µd by mn, we obtain uniform

probability inequalities in both cases of geometric or Riemannian decays:

P

(
sup

‖x‖≤M

|FLn(x)| ≥ εn

√
mn

n

)
� mn exp

(
−Cε

b
b+1
n

)
, (24)

P

(
sup

‖x‖≤M

|FLn(x)| ≥ εn

√
mn

n

)
� mnε−q0

n . (25)

In the geometric case, we take εn with the form G(log n)
b+1

b such that the
bound in the inequality (24) becomes mnn−GC . Reminding that mn ≤ n, the
sequence mnn−GC bounded by n1−GC is integrable in n for a conveniently
chosen constant G and the lemma of Borel-Cantelli leads to the result of the
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lemma 3.

In the Riemannian case, we take εn = (mnn)
1

q0 log n such that the bound
in the inequality (25) becomes n−1 log−q0 n. Reminding that q0 ≥ 2, this
sequence is integrable in n and the lemma of Borel-Cantelli leads to the result
of the lemma 3.�

4.3 Proof of the theorems.

The rate of the bias is given in the section 4.1 and the rate of the fluctuation
in the section 4.2. We now determine the optimal window parameter mn in
each cases.
Proof of Theorem 1. Lemma 1 bounds the normalized fluctuation. The
result is optimal (i.e. we obtain the same normalization as in the independent
case) when q is an even integer. We extend directly the results in the cases
where q is real using Jensen’s inequalities and the result of lemma 1 at the
order 2(d q

2e+ 1) ≥ 2:(
n

mn

)q/2

E|FLn(x)|q =
(

n

mn

)q/2

E
(
FLn(x)2(dq/2e+1)

)q/2(dq/2e+1)

,

≤

((
n

mn

)dq/2e+1

EFLn(x)2(dq/2e+1)

)q/2(dq/2e+1)

.

With the control of the bias, we arise a natural bound for the Lq-error of
estimation:

‖f̂n(x)− f(x)‖q ≤ ‖FLn(x)‖q + |Rn(x)| = O
(√

mn

n
+ m−ρ/d

n

)
.

We now have to equalize the two terms of the sum. The optimal window
m∗

n = n
d

2ρ+d is the usual one (i.e. the same as for the i.i.d. case). We then
assume that [H6] holds with δ = d

2ρ+d . We rewrite with this value of δ the
conditions on the parameter a of the lemma 2 and then we obtain theorem 1.�

Proof of Theorem 2. With the probability inequality (24) of the proof of
the lemma 3 (see section 4.2) and using E|Y |q =

∫ +∞
0

P
(
|Y | ≥ t1/q

)
dt, we

are able to obtain the rate of the uniform bounds mean:

E sup
‖x‖≤M

|f̂n(x)− f(x)|q = O

((√
mn

n
log

b+1
b n

)q

+ m−qρ/d
n

)
.

Lemma 3 gives exactly the same rate almost surely:

sup
‖x‖≤M

|f̂n(x)− f(x)| =a.s. O
(√

mn

n
log

b+1
b n + m−ρ/d

n

)
.
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In both cases, the optimal window parameter is m∗
n =

(
n/ log2 b+1

b n
) d

2ρ+d

. It
leads to the rate of the error of estimation of Theorem 2.�

Proof of Theorem 3. For the mean of the uniform bounds, we use again
a probability inequality (inequality (25) of the section 4.2) and the classical
identity linking moment and probability (see the proof of Theorem 2). We
obtain:

E sup
‖x‖≤M

|f̂n(x)− f(x)|q = O

((√
mn

n
m1/q0

n

)q

+ m−qρ/d
n

)
,

where q0 = 2
⌈

a−1
2

⌉
. The optimal window parameter m∗

n = ndq0/(d(q0+2)+2ρq0)

implies [H6] with δ = dq0/(2ρq0+d(q0+2)). For this value of δ, the conditions
on a of lemma 2 are satisfied as soon as a ≥ 4 and ρ > 2d.

The lemma 3 gives another rate for the fluctuation in the almost sure case.

This leads to another optimal window m∗
n =

(
n/ log2+4/(q0−2) n

) d(q0−2)
2ρq0+d(q0+2)

.

We then deduce the two different rates of Theorem 3 either we are in the
almost sure or in the Lq framework.�
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