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Abstract

We apply the techniques of stochastic integration with respect to the fractional Brownian motion and

the Gaussian theory of regularity and supremum estimation to study the maximum likelihood estimator

(MLE) for the drift parameter of stochastic processes satisfying stochastic equations driven by fractional

Brownian motion with any level of Hölder-regularity (any Hurst parameter). We prove existence and

strong consistency of the MLE for linear and nonlinear equations. We also prove that a basic discretized

version of the MLE, is still a strongly consistent estimator.

Key Words and Phrases: maximum likelihood estimator, fractional Brownian motion, strong consistency,
stochastic differential equation, Gaussian regularity theory, Malliavin calculus, Hurst parameter.

1 Introduction

Stochastic calculus with respect to fractional Brownian motion (fBm) has recently known an intensive de-
velopment, motivated by the wide array of applications of this family of stochastic processes. For example,
fBm is used as a model in network traffic analysis; recent work and empirical studies have shown that traffic
in modern packet-based high-speed networks frequently exhibits fractal behavior over a wide range of time
scales; this has major implications for the statistical study of such traffic. An other example of applications
is in quantitative finance and econometrics: the fractional Black-Scholes model has been recently introduced
(see e.g. [10], [8]) and this motivates the statistical study of stochastic differential equations governed by
fBm. We also note the use of the fBm in other branches of science and engineering such as hydrology or
biophysics.

The topic of parameter estimation for stochastic differential equations driven by standard Brownian
motion is not new. Of particular contemporary interest are works in which an approximate estimator, using
only information gleaned from the underlying process in discrete time, is able to do as well as an estimator
that uses continuously gathered information. We mention the fundamental seminal works of [17], [11], or
the book [13]. More recently the topic was taken up again in [23], and most recently, with the comparison of
a number of different techniques in [6], or some sharp probabilistic bounds on the convergence of estimators
in [3].
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Parameter estimation questions for stochastic differential equations driven by fBm are, in contrast, in their
infancy. Some of the main contributions include [15], [14], [25] or [16]. Our purpose is to contribute further
to the study of the statistical aspects of the fractional stochastic calculus, by introducing the systematic use
of efficient tools from stochastic analysis. We consider the following stochastic equation

Xt = θ

∫ t

0

b(Xs)ds + BH
t , X0 = 0

where BH is a fBm with Hurst parameter H ∈ (0, 1) and the nonlinear function b satisfies some regularity
conditions. We estimate the parameter θ on the basis of the observation of the whole trajectory of the
process X. The parameter H, which is assumed to be known, characterizes the local behavior of the process,
with Hölder-regularity increasing with H; if H = 1/2, fBm is standard Brownian motion (BM), and thus
has independent increments; if H > 1/2, the increments of fBm are positively correlated, and the process is
more regular than BM; if H < 1/2, the increments are negatively correlated, and the process is less regular
than BM. H also characterizes the speed of decay of the correlation between distant increments.

The results we prove in this paper are as follows:

• for every H ∈ (0, 1), we give concrete assumptions on the nonlinear coefficient b to ensure the existence
of the maximum likelihood estimator (MLE) for the parameter θ;

• for every H ∈ (0, 1) and under certain hypothesis on b (which include non-linear examples) we prove
the strong consistency of the MLE; note that for H > 1

2 and b linear, this has also been proved in [14];

• for every H ∈ (0, 1), a strategy is established in view of proving that a discrete, Riemann-sum-based
version of the MLE also is a strongly consistent estimator of θ; this strategy is successfully implemented
in the linear case.

To establish these results, we use the techniques of the Malliavin calculus and the so-called Dudley-
Fernique theory of regularity and supremum estimation for Gaussian and/or sub-Gaussian processes. To
our knowledge, our paper is the first instance where the Malliavin derivative of a stochastic process is
used to provide specific information about the process’s pathwise regularity; it is given here mainly in the
sub-Gaussian context (see Lemmas 1 and 2), although some hint at the fact that the method should be
applicable beyond the Gaussian realm can be found here as well (Lemma 6). This new technique should
have applications and implications in statistics and probability reaching far beyond the question of MLE for
fBm.

For example, apart from providing the first proof of strong consistency of the MLE for an fBm-driven
differential equation with non-linear drift or with H < 1/2, some of the broader implications of our Gaussian
and sub-Gaussian methods should include possible applications to classical situations. That is, in general,
in (Itô-) diffusion models, the strong consistency of an estimator follows if one can prove that an expression
of the type It :=

∫ t

0
f2(Xs)ds tends to ∞ as t → ∞ almost surely. To our knowledge, a limited number of

methods has been employed to deal with this kind of problem: for example, if X is Gaussian the Laplace
transform can be computed explicitly to show that limt→∞ It = ∞ a.s.; also, if X is an ergodic diffusion,
a local time argument can be used to show the above convergence. Particular situations have also been
considered in [11], [12]. We believe that our (sub-)Gaussian tools constitute a new possibility, judging by the
fact that the case of H < 1/2 is well within reach of our tools, in contrast with the other above-mentioned
methods, as employed in particular in [14] (see however a general Bayesian-type problem discussed in [15]).

Our goal here is not to present a practical implementation of the MLE studied herein; such an additional
development should be highly non-trivial, and will be the subject of a separate article. We wish nevertheless
to give evidence that it should be possible to provide a version of the MLE which can be understood using
only discrete observations of the solution X of equation (1). To illustrate this idea, we show in the last
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section of this article that the natural discrete-time Riemann-sum approximation of the MLE is still a
strongly consistent estimator of θ. This is achieved by using more Gaussian and sub-Gaussian tools. Our
main concrete result, which holds in the linear case, shows that the discretization time-step can be fixed
while still allowing for a strongly consistent estimator in large time. This is a good indication that a true
discrete-observation-based strongly consistent estimator should be available.

The organization of our paper is as follows. Section 2 contains preliminaries on the fBm and basic
elements of the fractional calculus. In Section 3 we show the existence of the maximum likelihood estimator
for the parameter θ in (6) and in Section 4 we study its asymptotic behavior. Section 5 contains some
additional results in the case when the drift function is linear, which is pursued further in Section 6, where
a discretized version of the MLE is studied.

2 Preliminaries on the fractional Brownian motion and fractional

calculus

We consider (BH
t )t∈[0,T ], BH

0 = 0 a fractional Brownian motion with Hurst parameter H ∈ (0, 1). This is a
centered Gaussian process with covariance function R given by

R(t, s) =
1
2

(
t2H + s2H − |t− s|2H

)
s, t ∈ [0, T ].

Let us denote by K the kernel of the fBm such that (see e.g. [20])

BH
t =

∫ t

0

K(t, s)dWs

where W is a Wiener process (standard Brownian motion). Denote by EH the set of step functions on [0, T ]
and let H be the canonical Hilbert space of the fBm; that is, H is the closure of E with respect to the scalar
product

〈1[0,t], 1[0,s]〉H = R(t, s).

The mapping 1[0,t] → BH
t can be extended to a isometry between H and the Gaussian space generated by

BH and we denote by BH(ϕ) the image of ϕ ∈ H by this isometry.
We also introduce the operator K∗ from EH to L2([0, T ]) defined by

(K∗ϕ)(s) = K(T, s)ϕ(s) +
∫ T

s

(ϕ(r)− ϕ(s))
∂K

∂r
(r, s)dr. (1)

With this notation we have (K∗1[0,t])(s) = K(t, s) and hence the process

Wt =
∫ t

0

(K∗,−11[0,t])(s)dBH
s

is a Wiener process (see [2]); in fact, it is the Wiener process referred to in formula (2), and for any non-
random ϕ ∈ H, we have

BH (ϕ) =
∫ T

0

(K∗ϕ)(s)dW (s) ,

where the latter is a standard Wiener integral with respect to W .
We also need some elements of the fractional calculus. Let f be a function over the interval [0, T ] and

α > 0. Then

Iα
0+f(t) =

1
Γ(α)

∫ T

0

f(s)
(t− s)1−α

ds
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are the Riemann-Liouville fractional integrals of order α. For α ∈ (0, 1),

Dα
0+f(t) =

1
Γ(1− α)

d

dt

∫ T

0

f(s)
(t− s)α

ds

are the Riemann-Liouville fractional derivatives of order α. These derivative admits the following Weil
representation

Dα
0+f(t) =

1
Γ(1− α)

(
f(t)
tα

+ α

∫ t

0

f(t)− f(y)
(t− y)α+1

dy

)

where the convergence of the integrals at t = y holds in the Lp-sense.
We can formally define, for negative orders (−α < 0), the fractional integral operators as

I−α
± = Dα

±.

If KH is the linear operator (isomorphism) from L2([0, T ]) onto I
H+ 1

2
+ (L2([0, T ])) whose kernel is K(t, s),

then it can be expressed by fractional integrals as (see e.g. [7])

KHf(t) = I2H
0+

(
t

1
2−HI

1
2−H
0+

(
sH− 1

2 f(s)
)

(t)
)

(t), H ≤ 1
2

(2)

and
KHf(t) = I1

0+

(
tH−

1
2 IH− 1

2

(
s

1
2−Hf(s)

)
(t)

)
(t), H ≥ 1

2
. (3)

We recall the expressions, for h differentiable, of the inverse operator of KH in terms of fractional integrals

(
K−1

H h
)
(s) = sH− 1

2 I
1
2−H
0+ (s

1
2−Hh′(s))(s), H ≤ 1

2
(4)

and (
K−1

H h
)
(s) = sH− 1

2 D
H− 1

2
0+ (s

1
2−Hh′(s))(s), H ≥ 1

2
. (5)

3 The maximum likelihood estimator for fBm-driven stochastic

differential equations

We will analyze the estimation of the parameter θ ∈ Θ ⊂ R based on the observation of the solution X of
the stochastic differential equation

Xt = θ

∫ t

0

b(Xs)ds + BH
t , X0 = 0 (6)

where BH is a fBm with H ∈ (0, 1) and b : R → R is a measurable function. Let us recall some known
results concerning equation (6):

• In [22] the authors proved the existence and uniqueness of a strong solution to equation (6) under the
following assumptions on the coefficient b:

– if H < 1
2 , b satisfies the linear growth condition

|b(x)| ≤ C(1 + |x|). (7)

– if H > 1
2 , b is Hölder-continuous of order α ∈ (1− 1

2H , 1).
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• In [4] an existence and uniqueness result for (6) is given when H > 1
2 under the hypothesis b(x) =

b1(x) + b2(x), b1 satisfying the above conditions and b2 being a bounded nondecreasing left (or right)
continuous function.

Remark 1 The case of the Hölder-continuous drift is elementary: it is not difficult to show that the usual
Picard iteration method can be used to prove the existence and uniqueness of a strong solution.

Throughout the paper, from now on, we will avoid the use of the H-dependent constants appearing in
the definitions of the operator kernels related to this calculus, since our main interest consists asymptotic
properties on the different estimators. In consequence, we will use the notation C(H), c(H), ... for generic
constants depending on H, which may change from line to line.

Our construction is based on the following observation (see [22]). Consider the process

B̃H
t = BH

t +
∫ t

0

usds

where the process u is adapted and with integrable paths. Then we can write

B̃H
t =

∫ t

0

K(t, s)dZs (8)

where

Zt = Wt +
∫ t

0

K−1
H

(∫ .

0

urdr

)
(s)ds. (9)

We have the following Girsanov theorem.

Theorem 1 i) Assume that u is an adapted process with integrable paths such that

t →
∫ t

0

usds ∈ IH+ 1
2

(
L2([0, T ])

)
a.s.

ii) Suppose that E(VT ) = 1 where

VT = exp

(
−

∫ T

0

K−1
H

(∫ .

0

urdr

)
(s)dWs − 1

2

∫ T

0

(
K−1

H

(∫ .

0

urdr

)
(s)

)2

ds

)
. (10)

Then under the probability measure P̃ defined by dP̃ /dP = VT it holds that the process Z defined in (9) is a
Brownian motion and the process B̃H (8) is a fractional Brownian motion on [0, T ].

Hypothesis. We need to make, at this stage and throughout the remainder of the paper, the following
assumption on the drift: b is differentiable with bounded derivative b′ and the affine growth condition
(7) holds.

As a consequence of the Girsanov theorem, we obtain the following expression of the MLE.

Proposition 1 Denote, for every t ∈ [0, T ], by

Qt = Qt (X) = K−1
H

(∫ .

0

b(Xr)dr

)
(t). (11)

Then Q ∈ L2([0, T ]) almost surely and the MLE is given by

θt = −
∫ t

0
QsdWs∫ t

0
Q2

sds
. (12)
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In order to prove this proposition, we need to establish a quadratic exponential moment inequality. We
begin with an estimation of some relevant Malliavin derivatives. For our purposes, it is sufficient to recall
the following two facts from the Malliavin calculus (see [21]) with respect to W , where W is the underlying
standard Brownian motion we have been working with, i.e. the one found for example in formula (2).

• The Malliavin derivative DrF at time r of a random variable of the form F =
∫ T

0
f (s) dWs where f is

a non-random function in L2 ([0, T ]), is equal to f (r).

• Let F be a random variable with Malliavin derivative DrF at time r. The random variable G = Φ(F ),
where Φ is a differentiable function such that both G and Φ′ (F ) are members of L2 (Ω), has a Malliavin
derivative satisfying DrG = Φ′ (F ) DrF .

• Note that the letter D for the Malliavin derivative of a random variable should not be confused with
the notation used for the fractional derivative of a non-random function.

Lemma 1 Let X be the unique solution to the Langevin equation (6). Let r ∈ [0, T ] and 0 ≤ t ≤ t′ ≤ T .
Let

Ar (t, t′) = Dr (Xt′ −Xt) .

Then the following estimates hold: there exists a constant K = K (T,H, b) depending only on T,H, and
‖b′‖∞, such that for all t ≤ t′ ≤ T

‖A· (0, t)‖2L2(dr) ≤ K;

‖A· (t, t′)‖2L2(dr) ≤ K |t′ − t|2H
.

Proof: Since we are required to estimate Malliavin derivatives with respect to W rather than BH , it is
most convenient to first convert all expressions to formulas involving W . This is of course trivial using (2).
We thus have

Xt′ −Xt =
∫ t′

t

b (Xs) ds +
∫ T

0

(
1[0,t′] (s) K (t′, s)− 1[0,t] (s) K (t, s)

)
dWs

and using the above rules for Malliavin differentiation, which commutes with Riemann integration w.r.t. ds,

Ar (t, t′) = 1[0,t] (r)
∫ t′

t

b′ (Xs) Ar (0, s) ds + 1[t,t′] (r)
∫ t′

r

b′ (Xs) Ar (0, s) ds

+ 1[0,t′] (r) K (t′, r)− 1[0,t] (r) K (t, r) . (13)

In particular we get Ar (0, t) = 0 for r 6∈ [0, t], while for r ∈ [0, t] we have

Ar (0, t) =
∫ t

r

b′ (Xs) Ar(0, s)ds + K(t, r).

Therefore

‖A· (0, t)‖2L2(dr) =
∫ t

0

∣∣∣∣
∫ t

r

b′ (Xs) Ar (0, s) ds + K (t, r)
∣∣∣∣
2

dr

≤ 2 ‖b′‖2∞
∫ t

0

dr

∣∣∣∣
∫ t

r

Ar (0, s) ds

∣∣∣∣
2

+ 2
∫ t

0

K (t, r)2 dr

= 2 ‖b′‖2∞
∫ t

0

dr

∣∣∣∣
∫ t

r

Ar (0, s) ds

∣∣∣∣
2

+ 2t2H

≤ 2 ‖b′‖2∞
∫ t

0

(t− r)
∫ t

r

|Ar (0, s)|2 dsdr + 2t2H

≤ 2 ‖b′‖2∞ t

∫ t

0

ds

∫ s

0

|Ar (0, s)|2 dr + 2t2H ,
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where we made use of Jensen’s inequality and Fubini’s lemma. Since the last expression above is equal to

2 ‖b′‖2∞ t

∫ t

0

‖A· (0, s)‖2L2(dr) ds + 2t2H

from the standard Gronwall lemma, we obtain immediately

‖A· (0, t)‖2L2(dr) ≤ 2t2H exp
(
2 ‖b′‖2∞ t2

)
,

which proves the first statement of the Lemma.
For the second statement, we may now use what we have just proved together with equality (13). Since

E
[(

BH
t −BH (t′)

)2
]

= |t− t′|2H , we obtain directly

‖A· (t, t′)‖2L2(dr) ≤ 2 ‖b′‖2∞
∫ t

0

∣∣∣∣∣
∫ t′

t

Ar (0, s) ds

∣∣∣∣∣
2

dr

+ 2 ‖b′‖2∞
∫ t′

t

∣∣∣∣∣
∫ t′

r

Ar (0, s) ds

∣∣∣∣∣
2

dr + 2 |t− t′|2H
.

We evaluate the first term on the right-hand side using Jensen’s inequality:

∫ t

0

∣∣∣∣∣
∫ t′

t

Ar (0, s) ds

∣∣∣∣∣
2

dr ≤ (t′ − t)
∫ t

0

∫ t′

t

|Ar (0, s)|2 dsdr

≤ (t′ − t)2 sup
s≤t

‖A· (0, s)‖2L2(dr)

= K |t− t′|2 .

For the second term on the right-hand side, we have

∫ t′

t

∣∣∣∣∣
∫ t′

r

Ar (0, s) ds

∣∣∣∣∣
2

dr ≤
∫ t′

t

(t′ − r)
∫ t′

r

|Ar (0, s)|2 dsdr

=
∫ t′

t

ds

∫ s

t

|Ar (0, s)|2 (t′ − r) dr

≤ (t′ − t)2
∫ t′

t

ds sup
s≤t

‖A· (0, s)‖2L2(dr)

= K |t− t′|2 .

Since 2H < 2, the conclusion of the lemma follows.

We now use the lemma we have just proved together with a so-called Poincaré inequality on Wiener space.
We have the following, which states that X is a sub-Gaussian process relative to the metric K |t− t′|H .

Lemma 2 Let X be the solution of (6). There exists a constant K depending only on T,H, and ‖b′‖∞ such
that for any λ ∈ R,

E [exp λ (Xt′ −Xt)] ≤ exp
(

λ2

2
K |t− t′|2H

)
.

Proof. This is a trivial application of the result of the previous lemma to the Poincaré inequality [26,
Theorem 3 (i) page 76] which states that for any centered random variable F in L2 (Ω),

E [exp (F )] ≤ E
[
exp

(
π2

8
|D·F |2L2(dr)

)]
.
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This lemma can be invoked in the context of sub-Gaussian processes: since X is now proved to be a
sub-Gaussian process with “canonical metric” bounded above by K |t− t′|H , this means that the variations
of X are bounded above, in distribution, by those of a corresponding centered Gaussian process Y satisfying
E

[
(Y (t)− Y (t′))2

]
= |t− t′|H . Of course, this process is none other than fractional Brownian motion with

parameter H. One can consult [18, Chapter 12] for details on the relation between the regularity of Gaussian
and sub-Gaussian processes, and [1] for a more self-contained account of Gaussian supremum estimates. In
particular we have the following results.

Lemma 3 There exists a constant K depending only on H and ‖b′‖∞ such that for all t > 0

µt := E

[
sup

s∈[0,t]

|Xs|
]

< KtH . (14)

Also let σ2
t := sups∈[0,t] var (X (s)). Then for any x > 0,

P

[∣∣∣∣∣ sup
s∈[0,t]

|Xs| − µt

∣∣∣∣∣ > x

]
≤ 4 exp

(
− x2

2σ2
t

)
. (15)

As a consequence, we have that for every positive constant α < 1/
(
2σ2

T

)
,

E

[
exp

(
α sup

s∈[0,T ]

|Xs|2
)]

< ∞. (16)

Proof. Inequality (15) is exactly the so-called Borell-Sudakov inequality, which holds for any separable
centered Gaussian or sub-Gaussian process, so there is nothing to prove: see [1] and [18, Chapter 12]. It is
useful only if a sharp estimation of µt can be obtained. The last result (16) in this lemma is an application
of what is often known as Fernique’s theorem in the Gaussian context, but we establish the result in our
sub-Gaussian context using (15), as follows. Note that we always have µT > 0. Also note that σ2

T is finite,
as can trivially be inferred from Lemma 2 for example. Let Z = sups∈[0,T ] |Xs|. Then

E
[
exp

(
αZ2

)]
=

∫ ∞

0

P
[
exp

(
αZ2

)
> x

]
dx

= 1 +
∫ ∞

1

P
[
|Z| >

√
α−1 log x

]
dx

= 1 +
∫ ∞

0

P [|Z| > y] 2αyeαy2
dy

≤ 1 + 2α
∫ µT

0

yeαy2
dy

+ 2α
∫ ∞

µT

P [Z − µT > y − µT ] yeαy2
dy

+ 2α
∫ ∞

µT

P [Z − µT < − (y + µT )] yeαy2
dy

≤ 1 + µ2
T eαµ2

T + 2α
∫ ∞

µT

8e−(y−µT )2/(2σ2
T )yeαy2

dy

where the last line comes from two applications of inequality (15) since 0 < y − µT < y + µT . It is now
evident that the last integral above is convergent as soon as µT is finite and α < 1/

(
2σ2

T

)
, so α can indeed be
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chosen positive, finishing the proof of (16), assuming µT is indeed finite. This last issue follows immediately
from (14), which we now prove.

Establishing (14) follows a somewhat classical argument, using the so-called Dudley-Fernique theorem (see
[1]), valid also in the sub-Gaussian context (see [18, Chapter 12]). We now provide the details. According
to Lemma 2, as mentioned before, X is sub-Gaussian with respect to the canonical metric δ2 (s, s′) :=
K |s− s′|2H . Let now N (ε) be the smallest number of balls of radius no more than ε in this canonical
metric that are needed to cover the interval [0, t]. Here we clearly see that

N (ε) ≤ 1 + 2−1tK1/(2H)ε−1/H .

It holds that there exists a universal constant Ku such that

µt := E

[
sup

s∈[0,t]

|Xs|
]
≤ Ku

∫ D

0

√
log N (ε)dε

where D is the diameter of [0, t] in the metric δ, i.e. D =
√

KtH . It follows that

µt ≤ Ku

∫ √
KtH

0

√
log

(
1 + 2−1tK1/(2H)ε−1/H

)
dε

≤ H−1/2Ku

∫ √
KtH

0

√
log

(
1 + 2−1tH

√
Kε−1

)
dε

= KuH−1/2
√

KtH
∫ 1

0

√
log (1 + 2−1η)dη,

which is the statement (14), finishing the proof of the lemma.

Remark 2 The reader of [22] will notice some similarities between our development and that article, in
particular the use of the Girsanov theorem. One technical task we have which cannot be found in [22] stems
from our need to establish and study the sub-Gaussian property of X. We take this route because it is a
natural and direct way to obtain the estimates we need to study the MLE as the quantity dP̃ /dP under
P ; quantities of the form b (Xs) – as opposed to b

(
BH

s

)
– appear, making it necessary to look at X as a

sub-Gaussian process under P , as opposed to being able to exploit the Gaussian property of BH or B̃H under
P̃ .

A more explicit, and more immediately obtained, estimate on the expected value of X is the following.
It refers only to the constant C in hypothesis (7).

Lemma 4 We have for all t ≥ 0,

E [|Xt|] ≤
(

Ct +

√
2
π

tH

)
eCt.

Proof. Let M (t) := E [|Xt|]. We have from the definition (6) of X that

M (t) = E
∣∣∣∣
∫ t

0

b (Xs) ds + BH
t

∣∣∣∣
≤

√
2
π

tH + C

∫ t

0

(1 + E |Xs|) ds

= Ct +

√
2
π

tH + C

∫ t

0

M (s) ds,
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from which Gronwall’s lemma implies

M (t) ≤
(

Ct +

√
2
π

tH

)
eCt,

proving the lemma.

Proof of Proposition 1. Let

h (t) =
∫ t

0

b (Xs) ds.

We prove that the process h satisfies i) and ii) of Theorem 1. Note first that the application of the
operator K−1

H preserves the adaptability. We treat separately the cases when H is bigger or less than one
half.

The case H < 1/2. To prove i), we only need to show that Q ∈ L2 ([0, T ]) P-a.s. Indeed i) is equivalent
to the following, almost-surely:

h ∈ I
H+1/2
+

(
L2 ([0, T ])

)
⇐⇒ K−1

H h ∈ K−1
H

(
I

H+1/2
+

(
L2 ([0, T ])

))
.

Then using the isomorphism property of KH we see that i) is equivalent to K−1
H h ∈ L2 ([0, T ]), which means

Q ∈ L2 ([0, T ]) a.s. by definition. Now using relation (4) we thus have, for some constant C (H) which may
change from line to line, using the hypothesis |b (x)| ≤ C (1 + |x|), for all s ≤ T ,

|Qs| ≤ C(H)sH−1/2

∣∣∣∣
∫ s

0

(s− u)−1/2−H
u1/2−Hb (Xu) du

∣∣∣∣
≤ C(H)

(
1 + sup

u≤s
E |Xu|

)
, (17)

which we can rewrite, thanks to Lemma 4, as

sup
s≤T

|Qs| ≤ C (H,T )
(

1 + sup
s≤T

|X (s)|
)

,

which, thanks to inequality (14), is of course much stronger than Q ∈ L2 ([0, T ]) a.s., since sups≤T |X (s)|
has moments of all orders.

To prove ii) it suffices to show that there exists a constant α > 0 such that

sup
s≤T

E
(
exp(αQ2

s)
)

< ∞.

Indeed, one can invoke an argument used by Friedman in [9], Theorem 1.1, page 152, showing that this
condition implies the so-called Novikov condition (see [24]), itself implying ii). Since Q satisfies (17), the
above exponential moment is a trivial consequence of inequality (16).

The case H > 1/2. Using formula (5) we have in this case that

Qs = c(H)

[
s

1
2−Hb(Xs) +

(
H − 1

2

)
sH− 1

2

∫ s

0

b(Xs)s
1
2−H − b(Xu)u

1
2−H

(s− u)H+ 1
2

du

]

= c(H)

[
s

1
2−Hb(Xs) +

(
H − 1

2

)
sH− 1

2 b(Xs)
∫ s

0

s
1
2−H − u

1
2−H

(s− u)H+ 1
2

du

+
(

H − 1
2

)
sH− 1

2

∫ s

0

b(Xs)− b(Xu)
(s− u)H+ 1

2
u

1
2−Hdu

]

10



and using the fact that ∫ s

0

(
s

1
2−H − u

1
2−H

)
(s− u)−H− 1

2 du = c(H)s1−2H

we get

|Qs| ≤ c(H)
(

s
1
2−H |b(Xs)|+ sH− 1

2

∫ s

0

b(Xs)− b(Xu)
(s− u)H+ 1

2
u

1
2−Hdu

)

:= A(s) + B(s).

The first term A(s) above can be treated as in [22], proof of Theorem 3, due to our Lipschitz assumption
on b. We will obtain that for every λ > 1,

E
(

exp(λ
∫ t

0

A2
sds)

)
< ∞. (18)

To obtain the same conclusion for the second summand B(s) we can still use the argument in [22] and our
Lemma 3. We only need to point out the fact that, since the process X has obviously Hölder-continuous
paths of order δ > H, the random variable G = sup0≤u<s≤T |Xs −Xu|/|u− s|H−ε is almost surely finite for
every ε > 0. Moreover, since the process X is sub-Gaussian, it follows from a Fernique-type theorem (see the
comments in [18], pag. 321-323, but a direct proof, as in Lemma 3 is not difficult) that G has a quadratic
exponential moment E

(
exp(cG2)

)
< ∞. Since for every fixed λ > 1 and for α < 1, there exists a constant

K = K(c, λ) such that
exp(λG2α) ≤ K exp(cG2).

combining the above comments with the calculations contained in [22], we obtain a similar inequality to (18)
for the term B(s). Now ii) is a consequence of the Novikov criterion (see [24]).

The properties i) and ii) are established for both cases, and we may use Theorem 1. The obtention of
expression (12) for the MLE follows a standard calculation, since (recall that Pθ is the probability measure
induced by (Xs)0≤s≤t),

F (θ) := log
dPθ

dP0
= −θ

∫ t

0

QsdWs − θ2

2

∫ t

0

Q2
sds. (19)

We finish this section with some remarks that will relate our construction to previous works ([15], [14],
[25]). More details about these links are given in Section 5.

Alternative form of the MLE. By (6) we can write, by integrating the quantity K∗,−11[0,t](s) for s

between 0 and t, ∫ t

0

(
K∗,−11[0,t](·)

)
(s)dXs = θ

∫ t

0

(
K∗,−11[0,t](·)

)
(s)b(Xs)ds + Wt. (20)

On the other hand, by (6) again,

Xt =
∫ t

0

K(t, s)dZs (21)

where Z is given by (9). Therefore, we have the equality∫ t

0

(
K∗,−11[0,t](·)

)
(s)dXs = Zt. (22)

By combining (20) and (22) we obtain∫ t

0

K−1
H

(∫ .

0

b(Xr)dr

)
(s)ds =

∫ t

0

(
K∗,−11[0,t](·)

)
(s)b(Xs)ds

11



and thus the function

t →
∫ t

0

(
K∗,−11[0,t](·)

)
(s)b(Xs)ds

is absolutely continuous with respect to the Lebesgue measure and

Qt =
d

dt

∫ t

0

(
K∗,−11[0,t](·)

)
(s)b(Xs)ds. (23)

By (9) we get that the function (19) can be written as

F (θ) = −θ

∫ t

0

QsdZs +
θ2

2

∫ t

0

Q2
sds.

As a consequence, the maximum likelihood estimator θt has the equivalent form

θt =

∫ t

0
QsdZs∫ t

0
Q2

sds
. (24)

4 Asymptotic behavior of the maximum likelihood estimator

This section is devoted to studying the strong consistency of the MLE (12). A similar result has been proven
in the case b(x) ≡ x and H > 1

2 in [14]. We propose here a proof of strong consistency for a class of functions
b which contains significant non-linear examples. By replacing (9) in (24), we obtain that

θt − θ =

∫ t

0
QsdWs∫ t

0
Q2

sds

with Q given by (11) or (23). To prove that θt → θ almost surely as t →∞ (which means by definition that
the estimator θt is strongly consistent), by the strong law of large numbers we need only show that

lim
t→∞

∫ t

0

Q2
sds = ∞ a.s. . (25)

To prove that limt→∞
∫ t

0
Q2

sds = ∞ in a non-linear case, it is necessary to make some assumption of non-
degeneracy on the behavior of b. In order to illustrate our method using the least amount of technicalities,
we will restrict our study to the case where the function |b| satisfies a simple probabilistic estimate with
respect to fractional Brownian motion.

(C) There exist positive constants t0 and Kb, both depending only on H and the function b, such that for
all t ≥ t0 and all ε > 0, we have P̃

[|Qt (ω̃)| /√t < ε
] ≤ εKb, where under P̃, ω̃ has the law of fractional

Brownian motion with parameter H.

4.1 The case H < 1
2

In this paragraph we prove the following result.

Theorem 2 Assume that H < 1/2 and that Condition (C) holds. Then the estimator θt is strongly consis-
tent, that is,

lim
t→∞ θt = θ almost surely.

12



Before proving this theorem, we discuss Condition (C). To understand this condition, we first note that
with µt

H the positive measure on [0, t] defined by µt
H (dr) = (r/t)1/2−H (t− r)−1/2−H

dr, according to the
representation (4), we have

Qt =
∫ t

0

µt
H (ds) b(ω̃s)

and therefore, by the change of variables r = s/t,

Qt√
t

=
∫ 1

0

µ1
H (dr)

b (ω̃tr)
tH

(26)

D=
∫ 1

0

µ1
H (dr)

b
(
tH ω̃r

)
tH

,

where the last inequality is in distribution under P̃. Now if b has somewhat of a linear behavior, we can easily
imagine that b

(
tH ω̃r

)
/tH will be of the same order as b (ω̃r). Therefore Qt/

√
t should behave, in distribution

for fixed t, similarly to the universal random variable
∫ 1

0
µ1

H (dr) b (ω̃r) (whose distribution depends only on
b and H). Generally speaking, if this random variable has a bounded density, condition (C) will follow.
However, thinking again of the case where b increases roughly linearly, this random variable will be similar
to the one where b is replaced by the identity function, for which it is known, by the Arcsine law, that the
random variable has indeed a bounded density.

Leaving aside these vague considerations, let us now give some specific examples of situations where (C)
holds. Note that none of the examples in the “non-linear class” defined below (see Condition (28)) imply
any sort of local regularity for b.

• Linear case. If b (x) = cx for some constant c, we do indeed get

Qt√
t

D= c

∫ 1

0

µ1
H (dr) ω̃r. (27)

This random variable is centered and Gaussian, with a positive finite variance, and therefore its density
near the origin is bounded above. Property (C) follows trivially.

• A nonlinear class of examples. Assume xb(x) has a constant sign for all x ∈ R+ and a constant
sign for all x ∈ R−. Assume

|b (x) /x| = c + h (x) (28)

for all x, where c is a fixed positive constant, and limx→∞ h (x) = 0. ∗

Lemma 5 The second class of nonlinear examples above (condition (28)) satisfies condition (C).

Proof. Define

Vt := t−H

∫ 1

0

µ1
H (dr) b

(
tH ω̃r

) D=
Qt√

t
,

Our assumption implies four different scenarios in terms of the constant sign of b on R+ or R−. We will
limit this proof to the situation where b (x) has the same sign as x. The other three cases are either similar
or easier. Thus we have b (x) = cx + xh (x). Also define

V∗ =
∫ 1

0

µ1
H (dr) cω̃r,

Et = Vt − V∗,

∗Note that this condition is less restrictive than saying b is asymptotically linear, since it covers the family b (x) = cx +

(|x| ∧ 1)α for any α ∈ (0, 1).
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so that Vt = Et + V∗. Now

Et =
∫ 1

0

µ1
H (dr)

(
b
(
tH ω̃r

)
t−H − cω̃r

)
= t−H

∫ 1

0

µ1
H (dr)

(
b
(
tH ω̃r

)− ctH ω̃r

)
=

∫ 1

0

µ1
H (dr) ω̃rh

(
tH ω̃r

)
.

For P̃-almost every ω̃, the function ω̃ is continuous, and thus bounded on [0, 1]. Therefore, P̃-almost surely,
uniformly for every r ∈ [0, 1], limt→∞ h

(
tH ω̃r

)
= 0. Thus the limit is preserved after integration against µ1

H ,
which means that P̃-almost surely, limt→∞Et = 0. Now fix ε > 0. There exists t0 (ω̃) finite P̃-almost surely
such that for any t > t0 (ω̃), |Et| ≤ ε. Thus if |Vt| < ε, we must have |V∗| = |V∗ + Et − Et| = |Vt − Et| ≤
|Vt|+ |Et| ≤ 2ε. This proves that P̃-almost surely,

lim sup
t→∞

{|Vt| < ε} ≤ {|V∗| < 2ε}

and therefore,

lim sup
t→∞

P̃ [|Vt| < ε]

≤ P̃
[
lim sup

t→∞
{|Vt| < ε}

]
≤ P̃ [|V∗| < 2ε] .

Now we invoke the fact that V∗ is precisely the random variable studied in the first, linear, example, so that
P̃ [|V∗| < 2ε] ≤ 2Kε for some constant K depending only on c and H, finishing the proof of the lemma.

Here are some additional examples.

• Additive constant drift. If we replace b in the previous example by b (x)+C where C is an arbitrary
constant, then Condition (C) still holds. Indeed, in the proof of the lemma, this only adds a term to
Et which converges to 0 deterministically.

• It would be satisfying to be able to prove Condition (C) for b’s satisfying a cone condition, such as:
b (x) /x bounded above and below by constants of the same sign for all x ∈ R+, and of the same sign
for all x ∈ R−. Although we believe this fact, we have not yet been able to prove it.

• The most interesting subcase of the examples above is that in which b (x) has the opposite sign of x.
It is also the case for which statement (25) might be most likely to fail for physical reasons. In this
case the solution X of the non-linear Langevin equation (6) should have a similar behavior to that of
the stable fBm-OU process, i.e. θ < 0 and b (x) = x.

Proof of Theorem 2. Since we only want to show that (25) holds, and since
∫ t

0
|Qs|2 ds is increasing, it

is sufficient to satisfy condition (25) for t tending to infinity along a sequence (tn)n∈N. We write, according
to the representation (4), for each fixed t ≥ 0,

It = It (X) :=
∫ t

0

|Qs (X)|2 ds =
∫ t

0

∣∣∣∣
∫ s

0

µs
H (dr) b(Xr)

∣∣∣∣
2

ds

where X is the solution of the Langevin equation (6) and the positive measure µs
H is defined by µs

H (dr) =
(r/s)1/2−H (s− r)−1/2−H

dr. Recall from the Girsanov Theorem 1 applied to X, that with

ηT = exp

(
−

∫ T

0

Qs (X) dWs − 1
2

∫ T

0

|Qs (X)|2 ds

)
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where W is standard Brownian motion under P, we have that under the probability measure P̃ defined by
its Radon-Nikodym derivative

dP̃
dP

∣∣∣∣∣
FX

T

= ηT

for all T ≥ 0, X is a fractional Brownian motion with parameter H. Moreover, since ηT is a true martingale,
this Girsanov transformation can be reversed. See [24, Theorem VIII.1.7]: with Lt =

∫ T

0
Qs (X) dWs, we

can write that
dP

dP̃

∣∣∣∣
FX

T

= η̃T ,

where under P̃, η̃ can be written as the exponential martingale

η̃t = exp
(

L̃t − 1
2

〈
L̃

〉
t

)

for some martingale L̃ under P̃ satisfying

〈
L̃

〉
t
= 〈L〉t = It (X) =

∫ t

0

|Qs (X)|2 ds.

Here, since X is still a fractional Brownian motion with parameter H under P̃, we will use the notation ω̃

for X, to signify that X does not have the law of X under P.
Thence consider a sequence of constants (βn)∞n=0 which will be chosen later. Using the trivial fact that

1(−∞,a] (x) ≤ exp (−λx) exp (λa), and Hölder’s inequality, we can write

P [It (X) < βt] = Ẽ
[
1It(ω̃)<βt

η̃t (ω̃)
]

≤ exp (λβt) Ẽ
[
exp

(
−λIt (ω̃) + L̃t − 2−1It (ω̃)

)]
= exp (λβt) Ẽ

[
exp

(
− (λ− ν) It (ω̃) + L̃t −

(
ν + 2−1

)
It (ω̃)

)]
≤ exp (λβt) Ẽ [exp (−p (λ− ν) It (ω̃))]1/p

× Ẽ
[
exp

(
qL̃t − q

(
ν + 2−1

)
It (ω̃)

)]1/q

. (29)

where 0 < ν < λ are arbitrary fixed positive constants. We may now choose the conjugate Hölder exponents
p−1 + q−1 = 1. It will be convenient to allow p > 1 to be as close to 1 as possible, hence q will be very large.
We also want q2/2 = q

(
ν + 2−1

)
. This forces us to take ν = 2−1 (q − 1), which will also be very large. We

then take λ to be a fixed value > ν. The choice on q means that the last term in (29) above is equal to 1.
Hence, letting

y := p (λ− ν)

we have
P [It (X) < βt] ≤ exp (λβt) Ẽ [exp (−yIt (ω̃))]1/p

.

To evaluate the above expectation, since It (ω̃) is a random variable in the interval (0, 1), we first write

Ẽ [exp (−yIt (ω̃))] =
∫ 1

0

P̃ [exp (−yIt) > x] dx

=
∫ ∞

0

e−zP̃
[
It <

z

y

]
dz.
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Now let t = tn = nk for some fixed k ≥ 1, and for all n ∈ N. We also introduce a positive sequence bn whose
definition will be motivated below. We write

Itn
=

∫ tn

0

|Qs (ω̃)|2 ds

≥
∫ tn

tn−bn

|Qs (ω̃)|2 ds

≥ 2bn |Qtn
(ω̃)|2 − 2

∫ tn

tn−bn

|Qtn
(ω̃)−Qs (ω̃)|2 ds

≥ 2bn

(
|Qtn

(ω̃)|2 − sup
s∈[tn−bn,tn]

|Qtn
(ω̃)−Qs (ω̃)|2

)
. (30)

We will need the result of the next lemma in order to control the variations of Q on the interval [tn− bn, tn].
It can be considered as a consequence of the fact that Vt := t−1/2Qt is an asymptotically sub-stationary
process in the second Gaussian chaos, although the proof we present below only requires the use of moments
of V via the Kolmogorov continuity lemma, because of the fact that we are working in the Hölder scale of
fractional Brownian regularity.

Lemma 6 Let Vt (ω̃) := t−1/2Qt (ω̃). The process V is P̃-almost surely continuous. Moreover, if bn ≥ 1
and bn ¿ tn, then for any m > 2, there exists a constant Cm,H such that

Ẽ

[
sup

s,t∈[tn−bn,tn]

|Vt − Vs|m
]
≤ Cm,H,b

(
bn

tn

)Hm

.

The proof of this lemma will be given further below. We now use it as follows. Let x = z/(2y). Let
Z2

n = sups∈[tn−bn,tn] |Qtn
(ω̃)−Qs (ω̃)|2 /tn. We also introduce another positive sequence an. From (30),

and from Condition (C), we have

P̃
[
Itn

<
z

y

]

≤ P̃
[
|Qtn

(ω̃)|2 /tn − |Zn|2 <
x

bn

]

= P̃
[
|Qtn

(ω̃)|2 /tn − n1/2 |Zn|2 <
x

bn
; |Zn|2 ≥ an

]

+ P̃
[
|Qtn

(ω̃)|2 /tn − |Zn|2 <
x

bn
; |Zn|2 < an

]

≤ P̃
[
|Zn|2 ≥ an

]
+ P̃

[
|Qtn

(ω̃)|2 /tn <
x

bn
+ an

]

≤ Cm

(
bn

tn

)Hm

(an)−m + Kb

√
x

bn
+ an.

We now let N > 1, and choose tn = nk, bn = n2N , an = n−2N , k > 2N(1 + H)/H and m large enough so
that we can write, for some other constant Cm,

P̃
[
Itn

<
z

y

]
≤ CmKb

√
x + 1

1
nN

.
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Hence we finally obtain

P [Itn
(X) < βtn

] ≤ exp (λβtn
)
[∫ ∞

0

e−zP̃ [It < 2x] dz

]1/p

≤ (CmKb)
1/p 1

npN
exp (λβt)

(∫ ∞

0

e−z

√
1 +

z

2p (λ− ν)

)1/p

= C (m, p, b)
1

npN
exp (λβt)

where the constant C (m, p, b) can be chosen as depending only on m, p, and the function b (·) via the
constant Kb in condition (C). Note that N can be made arbitrarily large by taking m large enough, but
there is little to gain by assuming that pN is much greater than 1.

In order for the above bound to be summable in n, it is sufficient to choose βtn
= (pN/2λ) log n. Therefore,

by the Borel-Cantelli lemma, there exists a random integer n0 (ω̃) depending on the function b (·) via the
constant Kb, and depending on the constants p, λ, and N , such that for all n > n0 (ω̃),

Ink (ω̃) ≥ pN

2λ
log n,

where the constants p and λ are chosen as described in the lines following inequality (29), and N can be
chosen arbitrarily large, implying the result (25) and the Theorem.

Proof of Lemma 6. To apply the Kolmogorov continuity lemma (see [24, Theorem I.2.1]), we must
evaluate the moments of the increments of V : let m > 2 and s < t with s, t ∈ [tn − bn, tn]; abbreviate
µ := µ1

H ; let cH denote the mass of µ, or other constants depending only on H. We have

Ẽ [|Vt − Vs|m]

= Ẽ

[∣∣∣∣
∫ 1

0

µ (dr)
(

b (ω̃tr)
tH

− b (ω̃sr)
sH

)∣∣∣∣
m

]

≤ (cH)m
∫ 1

0

µ (dr) Ẽ
[∣∣∣∣b (ω̃tr)

tH
− b (ω̃sr)

sH

∣∣∣∣
m]

≤ (cH)m
∫ 1

0

µ (dr)
{

t−HmẼ [|b (ω̃tr)− b (ω̃sr)|m] +
( |t− s|

s1+H

)m

Ẽ [|b (ω̃sr)|m]
}

.

Now we use the fact that b is Lipshitz, so for some constant b0, |b (x)− b (y)| ≤ b0 |x− y| and |b (x)| ≤
b0 (1 + |x|); and we use the Gaussian law of ω̃. For some constant Cm,H,b which may change from line to
line,

Ẽ [|Vt − Vs|m] ≤ Cm,H,b

∫ 1

0

µ (dr)
{

t−Hmbm
0 |t− s|mH +

( |t− s|
s1+H

)m

smHbm
0

}

= Cm,H,b

∫ 1

0

µ (dr)

{∣∣∣∣ t− s

t

∣∣∣∣
mH

+
(∣∣∣∣ t− s

s

∣∣∣∣
)m

}
.

Now since we assume that bn ¿ tn, it follows that (t− s) /s ≤ 2 (t− s) /t for n large enough. Hence we have
proved that

Ẽ [|Vt − Vs|m] ≤ Cm,H,b

∫ 1

0

µ (dr)
∣∣∣∣ t− s

tn

∣∣∣∣
mH

= Cm,H,b
|t− s|mH

tmH
n

.
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If we now define U on the interval [0, 1] by Uu = Vtn−bn+ubn
, we see that U satisfies

Ẽ [|Uu − Uv|m] ≤ Cm,H,b (bn/tn)mH |u− v|Hm
.

Temporarily normalizing U by the constant Cm,H,b (bn/tn)mH , and applying [24, Theorem I.2.1], we finally
get that the unnormalized U has a continuous version, and for any α < H − 1/m and a universal constant
K

Ẽ

[
sup

u,v∈[0,1]

( |Uu − Uv|
|u− v|α

)m
]
≤ KCm,H,b (bn/tn)mH

.

Since 1 ≤ |u− v|−α, the statement of the Lemma follows.

4.2 The case H > 1
2

Due to the fact that the function Q is less regular in this case, we need to consider a more restrictive situation.
We look specifically only at the nonlinear class of examples given in (28).

Theorem 3 Assume that H > 1
2 and b is of the form (28) with h Lipshitz. Then the maximum likelihood

estimator θt is strongly consistent.

Proof: Recall from the proof of Proposition 1 that we can write

Qt = c(H)t
1
2−Hb(Xt) + c′(H)

∫ t

0

µt
H(dr) (b(Xt)− b(Xr)) . (31)

We note that in this case the expression µt
H(dr) does not determine a measure, but we still use this notation

to simplify the presentation; the Lipschitz assumption on b and the Hölder property of X do ensure the
existence of the integral.

One can actually follow the proof in the case H < 1
2 line by line. All we have to do here is to prove an

equivalent of Lemma 6 on the variations of Q, this being the only point where the form of Q, which differs
depending on whether H is bigger or less than 1/2, is used. We will illustrate how the second summand of
Q in (31) (which is the most difficult to handle) can be treated.

Denoting by Q′t =
∫ t

0
µt

H(dr) (b(Xt)− b(Xr)), it holds

Q′tt
− 1

2 = t−
1
2

∫ t

0

µt
H(dr) (b(Xt)− b(Xr))

D=
∫ 1

0

µ1
H(dr)

b(tH ω̃1)− b(tH ω̃r)
tH

.

where again D= denotes equality in distribution. Now, if V ′
t := t−

1
2 Q′t, we have

V ′
t − V ′

s =
∫ 1

0

µ1
H(dr)t−H

(
b(tH ω̃1)− b(tH ω̃r)− b(sH ω̃1) + b(sH ω̃r)

)
+ (t−H − s−H)

∫ 1

0

µ1
H(dr)

(
b(sH ω̃1)− b(sH ω̃r)

)
:= J1 + J2

and it holds that

Ẽ |J2|m ≤ |t−H − s−H |mbm
0 sHmẼ

(∫ 1

0

µ1
H(dr) |ω̃r − ω̃1|

)m

≤ Cm,H,b

( |t− s|
s1+H

)m

sHm
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and it has been already proved that this is bounded by Cm,H,b (|t− s|/tn)mH . For the term denoted by J1

one can obtain the same bound by observing that if b has the form (28) with h Lipshitz, then, for every a, b,∣∣b(tHa)− b(tHb)− b(sHa) + b(sHb)
∣∣ ≤ c|tH − sH ||a− b|,

and thus

Ẽ |J1|m ≤ Cm,b,H

( |tH − sH |
tH

)m

Ẽ
(∫ 1

0

µ1
H(dr) |ω̃r − ω̃1|

)m

≤ Cm.H,b

( |t− s|
tn

)mH

.

5 The linear case

In this section we present some comments in the case when the drift b is linear. We will assume that b(x) ≡ x

to simplify the presentation. In this case, the solution X to equation (6) is the fractional Ornstein-Uhlenbeck
process and it is possible to prove more precise results concerning the asymptotic behavior of the maximum
likelihood estimator.

Remark 3 In [5], it is shown that there exists an unique almost surely continuous process X that satisfies
the Langevin equation (6) for any H ∈ (0, 1). Moreover the process X can be represented as

Xt =
∫ t

0

eθ(t−u)dBH
u , t ∈ [0, T ] (32)

where the above integral is a Wiener integral with respect with BH (which exists also as a pathwise Riemann-
Stieltjes integral). It follows from the stationarity of the increments of BH that X is stationary and the
decay of its auto-covariance function is like a power function. The process X is ergodic, and for H > 1

2 , it
exhibits a long-range dependence.

Let us briefly recall the method employed in [14] to estimate the drift parameter of the fractional OU
process. Let us consider the function , for 0 < s < t ≤ 1,

k(t, s) = c−1
H s

1
2−H(t− s)

1
2−H with cH = 2HΓ(

3
2
−H)Γ(H +

1
2
) (33)

and let us denote its Wiener integral with respect to BH by

MH
t =

∫ t

0

k(t, s)dBH
s . (34)

It has been proved in [20] that MH is a Gaussian martingale with bracket

〈MH〉t := ωH
t = λ−1

H t2−2H with λH =
2HΓ(3− 2H)Γ(H + 1

2 )
Γ( 3

2 −H)
. (35)

The authors called MH the fundamental martingale associated to fBm. Therefore, observing the process X

given by (6) is the same thing as observing the process

ZKB
t =

∫ t

0

k(t, s)dXs
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which is actually a semimartingale with the decomposition

ZKB
t = θ

∫ t

0

QKB
s dωH

s + MH
t (36)

where

QKB
t =

d

dωH

∫ t

0

k(t, s)Xsds, t ∈ [0, T ]. (37)

By using Girsanov’s theorem (see [20] and [14]) we obtain that the MLE is given by

θt := θKB
t =

∫ t

0
QKB

s dZKB
s∫ t

0
(QKB

s )2dωH
s

. (38)

Remark 4 We can observe that our operator (12) or (24) coincides (possibly up to a multiplicative constant)
with the one used in [14] and given by (38). Assume that H < 1

2 ; the case H > 1
2 is just a little more technical.

Proof. Using relations (11) and (33) we can write

Qt = C(H)tH−
1
2

∫ t

0

s
1
2−H(t− s)−

1
2−Hb(Xs)ds

= C(H)tH−
1
2

∫ t

0

d

dt
k(t, s)b(Xs)ds

= C(H)tH−
1
2

d

dt

∫ t

0

k(t, s)b(Xs)ds.

It is not difficult to see that d
dt

∫ t

0
k(t, s)b(Xs)ds = C(H)t1−2HQKB

t and therefore

Qt = C(H)t1/2−HQKB
t . (39)

On the other hand, it can be similarly seen that

ZKB
t = C(H)

∫ t

0

s
1
2−HdZs. (40)

and the estimation given by (38) and (24) coincide up to a constant.

To compute the expression of the bias and of the mean square error and to prove the strong consistency
of the estimator, one has the option, in this explicit linear situation, to compute the Laplace transform of
the quantity

∫ t

0
(QKB

s )2dωH
s . This is done for H > 1/2 in [14], Section 3.2, and the following properties are

obtained:

• the estimator θt is strongly consistent, that is,

θt → θ almost surely when t →∞,

• the bias and the mean square error are given by

– If θ < 0, when t →∞, then

E(θt − θ) v 2
t

, E(θt − θ)2 v 2
t
|θ|, (41)
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– If θ > 0, when t →∞, then

E(θt − θ) v −2
√

π sin πHθ
3
2 e−θt

√
t (42)

E(θt − θ)2 v 2
√

π sin πHθ
5
2 e−θt

√
t. (43)

Remark 5 It is very interesting to realize that the rate of convergence of the bias and of the mean square
error does not depends on H. In fact the only difference between the classical case (see [19]) and the fractional
case is the presence of the constant

√
πH in (41), (42), and (43). It is natural to expect the same results if

H < 1
2 . We prove it below.

Proposition 2 If H < 1
2 , then (41), (42), and (43) hold.

Proof: To avoid tedious calculations with fractional integrals and derivatives, we will take advantage of
the calculations performed in [14] when H > 1

2 ; nevertheless we believe that a direct proof is also possible.
Actually the only moment when the authors of [14] use the fact that H is bigger than 1

2 is the computation
of the process Q. By relations (21) and (23) we can write

Qt =
d

dt

∫ t

0

(
K∗,−11[0,t](·)

)
(s)Xsds

=
d

dt

∫ t

0

(
K∗,−11[0,t](·)

)
(s)

(∫ s

0

K(s, v)dZv

)
ds

=
d

dt

∫ t

0

∫ t

v

(
K∗,−11[0,t](·)

)
(s)K(s, v)dsdZv

Note that from the formulas presented in Section 2, we have

(
K∗,−11[0,t](·)

)
(s) = c(H)s

1
2−H

∫ t

s

u
1
2−H(u− s)−H− 1

2 , H <
1
2
,

(
K∗,−11[0,t](·)

)
(s) = c(H)s

1
2−H d

ds

∫ t

s

u
1
2−H(u− s)−H+ 1

2 , H >
1
2

To unify the notation, we write

(
K∗,−11[0,t](·)

)
(s) = c(H)s

1
2−H d

ds

∫ t

s

u
1
2−H(u− s)−H+ 1

2 , H ∈ (0, 1)

and we just observe that the constant c(H) above is analytic with respect to H. Let us consider, for v ≤ t

a function A(v, t) such that ∫ t

v

A(v, s)ds =
∫ t

v

(
K∗,−11[0,t](·)

)
(s)K(s, v)ds.

Then, obviously,

Qt =
∫ t

0

A(t, v)dZv.

On the other hand, it has been proved in [14] (see relations (3.4) and (3.5) therein) that for H > 1
2 ,

QKB
t =

∫ t

0

AKB(t, v)dZKB
v

with
AKB(t, s) = c(H)(t2H−1 + s2H−1).
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Using the relations between Q and QKB and between Z and ZKB (see Remark 4), it follows that, for every
H > 1

2 , and s < t,

A(s, t) = c(H)

[(s

t

) 1
2−H

+
(

t

s

) 1
2−H

]
. (44)

We show that the above relation (44) is true for H < 1
2 as well. We use an argument inspired by [7], proof

of Theorem 3.1. We observe that the functions

H ∈ (0, 1) → A(s, t) and H ∈ (0, 1) → c(H)

[(s

t

) 1
2−H

+
(

t

s

) 1
2−H

]

are analytic with respect to H and coincide on (1/2, 1). Moreover, both are well-defined for every H ∈ (0, 1)
(in fact it follows from [14] that A is well-defined for H > 1

2 and it is more regular for H ≤ 1
2 ). To conclude

(44) for every H ∈ (0, 1), we invoke the fact that if f, g : (a, b) → R are two analytic functions and the set
{x ∈ (a, b); f(x) = g(x)} has an accumulation point in (a, b), then f = g.

As a consequence, (44) holds for every H and this shows that

∫ t

0

QsdZs =
∫ t

0

QKB
s dZKB

s = c(H)
(

ZKB
t

∫ t

0

r2H−1dZKB
r − t

)

and all the calculations contained in [14], Sections 3.2, 4 and 5 hold for every H ∈ (0, 1).

6 Discretization

In this last section we present a discretization result which represents an important step towards a full
understanding of how to implement the calculation of an MLE for an fBm-driven stochastic differential
equation. As noted in the introduction, fully addressing this implementation issue is beyond the scope of
the present article; it will be the subject of a separate paper.

For practical aspects, even if continuous information is available, to compute the MLE θt given by (12),
the integrals appearing in it expression have to be approximated by Riemann sums. In [17] the folowing
estimator is introduced in the case H = 1/2

θN,T = −
∑N−1

i=0 Qti
(Wti+1 −Wti

)∑N−1
i=0 |Qti

|2 (ti+1 − ti)

based on the discrete observations t0, ...., tN . It has been proved in [17] that if δN maxi=1,..,N |ti−ti−1| tends
to zero, then θN,T → θT in probability as N →∞ and δ

−1/2
N (θN,T − θT ) is bounded in probability. We also

choose to work with the formula (12) by replacing the stochastic integral in the numerator and the Riemann
integral in the denominator by their corresponding approximate Riemann sums, using discrete integer time.
Specifically we define for any integer n ≥ 1,

θ̄n := −
∑n

m=0 Qm (Wm+1 −Wm)∑n
m=0 |Qm|2

. (45)

Our goal in this section is to prove that θ̄n is actually a consistent estimator for θ. One could also consider
the question of the discretization of θt using a fine time mesh for fixed t, and showing that this discretization
converges almost surely to θt; by time-scaling such a goal is actually equivalent to our own, and both are
therefore stronger than the convergence in [17].

22



Let 〈M〉n denote the quadratic variation at time n of a square-integrable martingale M . We introduce
the following two martingales:

At :=
∫ t

0

QsdWs

Bt :=
∫ t

0

Q[s]dWs

where [s] denotes the integer part of s. We clearly have Bn =
∑n−1

m=0 Qm (Wm+1 −Wm) and

θn =
An

〈A〉n
and θ̄n =

Bn

〈B〉n
.

The following proposition defines a strategy for proving that θ̄n is a consistent estimator for θ.

Proposition 3 Let H ∈ (0, 1). If there exists a constant α > 0 such that

• nα 〈A−B〉n / 〈B〉n is bounded almost surely for n large enough,

• for all k ≥ 1, for some constant K > 0, almost surely, for large n, 〈B〉kn ≥ KE
[
〈B〉kn

]
,

• and for all k > 1, E
[
|〈A−B〉n|k

]
≤ n−kαE

[
|〈B〉n|k

]
,

then almost surely limn→∞ θ̄n = θ.

Proof. By our Theorems 2 and 3, it is of course sufficient to prove that

lim
n→∞

(
θ̄n − θn

)
= 0.

In preparation for this, we first note that by classical properties for quadratic variations, and using our
hypothesis, for large enough n, we have

|〈B〉n − 〈A〉n| = |〈(B −A) , (B + A)〉n|
≤ |〈B + A〉n|1/2 |〈B −A〉n|1/2

≤
√

2n−α |〈B〉n|1/2 |〈A〉n + 〈B〉n|1/2
. (46)

Now we prove that (46) implies almost surely,

lim
n→∞

〈A〉n
〈B〉n

= 1. (47)

Indeed let xn = 〈A〉n / 〈B〉n. Then we can write

|xn − 1| = |〈B〉n − 〈A〉n|
〈B〉n

≤
√

2n−α |〈B〉n|−1/2 |〈A〉n + 〈B〉n|1/2

=
√

2n−α |1 + xn|1/2
.

Let ε > 0 be given; it is elementary to check that the inequality (x− 1)2 ≤ 2ε (x + 1) is equivalent to

|x− (1 + ε)| ≤
√

4ε + ε2.
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For us this implies immediately |xn − 1| ≤ 6n−α, proving the claim (47).
Now we have

θn − θ̄n =
An

〈A〉n
− Bn

〈B〉n
=

An −Bn

〈B〉n
+ An

〈B〉n − 〈A〉n
〈A〉n 〈B〉n

. (48)

Using (46) we have that the second term in (48) is bounded above in absolute value by

√
2n−α An

〈A〉n
|〈A〉n + 〈B〉n|1/2

|〈B〉n|1/2

=
√

2n−α An

〈A〉n

( 〈A〉n
〈B〉n

+ 1
)1/2

.

By Theorems 2 and 3, An/ 〈A〉n converges to the finite constant θ. By the limit (47), the last term in the
above expression converges to 2, so that the entire expression converges to 0.

Let k and γ be fixed positive values. For the first term in (48), using our hypotheses, by Chebyshev’s
theorem and the Burkholder-Davis-Gundy inequality, we have

P
[
|An −Bn|k > n−kγE

[
〈B〉kn

]]
≤ nγkE−1

[
〈B〉kn

]
E

[
|An −Bn|k

]
≤ nγkn−kα.

Thus picking a positive value γ < α and choosing k large enough, by the Borell-Cantelli lemma, almost
surely, for n large enough

|An −Bn| ≤ n−γE
[
〈B〉kn

]1/k

≤ 1
K

n−γ 〈B〉n ,

which finishes the proof of the proposition.

In order to apply this proposition to a concrete situation, we specialize to the linear case. Generalize the
next result to non-linear cases would presumably require a hypothesis such as (28); we will not comment on
this further.

Theorem 4 Assume b (x) = x. Then for all H ∈ (0, 1), almost surely limn→∞ θ̄n = θ where the discretiza-
tion θ̄n of the maximum likelihood estimator θn is defined in (45).

The proof of this theorem proceeds through several lemmas. We begin with some definitions. For the
sake of notational convenience, we reindex the sequence Q so that Qm+1 replaces Qm. Let

M (n) := E [|Qn|] ,

R (n) :=
|Qn| −M (n)√

n
,

S (n) :=
m∑

n=1

Qm,

Z (m) := sup
s∈[m,m+1]

|Qs −Qm| .

Lemma 7 R is a centered sub-Gaussian stochastic process on N relative to the canonical metric correspond-
ing to the centered Gaussian stochastic process {Qm/

√
m : m ∈ N}. In other words, let

δ2 (n, n′) = E

[(
Qn√

n
− Qn′√

n′

)2
]

;
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then for every λ ∈ R,

E [exp (λ (R (n)−R (n′)))] ≤ exp
(

λ2

2
δ2 (n, n′)

)
.

Moreover, M (n) =
√

ncH for some constant cH .

Proof. The last statement of the lemma is trivial using the scaling property of fBm and the equality
(27). For the remainder, note that

(R (n)−R (n′))2 =
( |Qn|√

n
− |Qn′ |√

n′

)2

=
|Qn|2

n
+
|Qn′ |2

n′
− 2

|Qn| |Qn′ |√
nn′

≤
(

Qn√
n
− Qn′√

n′

)2

.

The announced result follows immediately.

Lemma 8 The variance of the centered Gaussian random variable S (n) is bounded, for some constant c′H ,
as follows:

sn := E
[
|S (n)|2

]
≤ n2c′H .

Proof. The proof will proceed by induction on n. We have, using the constant cH in the previous lemma,

sn+1 = E
[
|S (n) + Qn+1|2

]
= sn + (cH)2 (n + 1) + 2E [S (n) Qn+1] .

We calculate the expectation in this last expression. Using the defining formula (26), and the covariance for
fBm, we have

E [S (n) Qn+1] =
n∑

m=1

m1/2−H (n + 1)1/2−H
∫ 1

0

∫ 1

0

drdr′
∣∣∣(mr)2H + ((n + 1) r)2H − |mr + (n + 1) r|2H

∣∣∣ .

Some tedious calculations yield, with x = m/ (n + 1)

E [S (n) Qn+1] =
n∑

m=1

x3/2−H (n + 1)2H

[
1

2H + 1

(
x2H+1 + (1− x)2H+1 − 1

)
+ x

]
.

We see that this quantity is, up to a factor (n + 1)2H+1, the Riemann-sum approximation for the integral

IH :=
∫ 1

0

x3/2−H

[
1

2H + 1

(
x2H+1 + (1− x)2H+1 − 1

)
+ x

]
.

A calculation shows that this value IH is strictly negative for any value of H ∈ (0, 1). Since for some n0,H

depending only on H, for all n ≥ n0,H ,

|E [S (n) Qn+1]− IH | ≤ IH/2,

we immediately obtain that for all n ≥ n0,H ,

E [S (n) Qn+1] < 0.
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This allows us to write, for all n ≥ n0,H ,

sn+1 ≤ sn + (cH)2 (n + 1) .

Now for n = n0,H , sn is a value depending only on H. Therefore we can write for some constant c′′H depending
only on H that the induction hypothesis (conclusion of the lemma) holds at n = n0,H if c′H ≥ c′′H . We then
obtain by induction that for all n ≥ n0,H ,

sn+1 ≤ n2c′H + (cH)2 (n + 1)

≤ n2c′H + (cH)2 (n + 1) + c′H .

This is consistent with the induction hypothesis as soon as (cH)2 ≤ 2c′H . Therefore, if we take c′H =

max
(
c′′H ; (cH)2 /2

)
, the proof is complete.

Lemma 9 For any H ∈ (0, 1), for any β ∈ (0,H), almost surely, there exists a finite integer n0 such that
for n ≥ n0,

|Zm| ≤ m1/2−(H−β).

Proof. This follows easily from the result of Lemma 6 and the Borel-Cantelli lemma. The details are
omitted.

Proof of Theorem 4. First note that we have

〈A−B〉n =
∫ n

0

∣∣Qs −Q[s]

∣∣2 ds

=
n−1∑
m=0

∫ m+1

m

∣∣Qs −Q[s]

∣∣2 ds

≤
n−1∑
m=0

|Zm|2 =
n0−1∑
m=0

|Zm|2 +
n−1∑

m=n0

|Zm|2 .

We recall that from the proofs of Theorems 2 and 3 that almost surely, limn→∞ 〈B〉n = +∞. Therefore to
prove that 〈A−B〉n / 〈B〉n converges to 0 as in the first condition of Proposition 3, we only need to consider
the tail of the above series (terms for m ≥ n0). By the result of Lemma 9, almost surely,

n−1∑
m=n0

|Zm|2 ≤
n−1∑
m=0

m1−2(H−β) ≤ CH,βn2−2(H−β).

Therefore it is sufficient to prove that that for some α > 0, almost surely

lim
n→∞

n2−2(H−β)+α

〈B〉n
= 0.

We can write, using Jensen’s inequality (and using the reindexed Q), that

√
〈B〉n =

√√√√ n∑
m=1

|Qm|2 ≥ 1√
n

n∑
m=1

|Qm| . (49)

Therefore we only need to show, for some α > 0, almost surely,

lim
n→∞

n3/2−(H−β)+α∑n
m=1 |Qm| = 0. (50)
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Using Lemma 7, the denominator in the above expression can be rewritten as

n∑
m=1

|Qm| =
n∑

m=1

(
cH

√
m +

√
mR (m)

)

≤ cHn3/2 +
n∑

m=1

√
mR (m)

:= q1 + q2, (51)

which means that this expression is the sum of q1 := cHn3/2 and of a random variable q2 = q2 (R,n) which is
a linear functional of the centered sub-Gaussian process R whose canonical metric is bounded above by that
of the process Q·/

√·. By the sub-Gaussian theory (see [18, Chapter 12]), and given the fact that q2 (R, 1)
has a density which is bounded above by that of a multiple of Q1, we can conclude for example that for
some constant c > 0, for all λ > 0,

E [exp λq2 (R,n)] ≤ E
[
exp λq2

(
cQ·/

√·, n)]
= E

[
exp λc

n∑
m=1

Qm

]

= E [exp λcS (n)] = exp
(

1
2
λ2c2sn

)

≤ exp
(

1
2
λ2c2n2c′H

)
,

where the last estimate is by Lemma 8.
Now from inequality (51) and the previous exponential moment, for some constant cH we can write, for

a fixed γ > 0

P

[
n∑

m=1

|Qm| ≤ cHn3/2 − nγ

]
≤ P [|q2 (R,n)| ≥ nγ ]

≤ exp
(

1
2
λ2n2c′H

)
exp (−λnγ) .

Choosing λ = 2nγ−2 yields that the right-hand side in the last expression is equal to exp
(−1

2n2γ−2
)
. If we

take γ > 1, then the above expression is summable in n, implying, by the Borel-Cantelli lemma, that for n

large enough,

n∑
m=1

|Qm| ≥ cHn3/2 − nγ

≥ 1
2
cHn3/2 (52)

The limit in (50) follows, and therefore also the convergence of 〈A−B〉n / 〈B〉n to 0 almost surely at the
speed n−α for any α < H (by choosing β arbitrarily small), as required in the first condition of Proposition
3.

The second and third conditions of Proposition 3 can be established using similar arguments to what we
have presented in this section, including the sub-Gaussian property of Lemma 7. For example, the second
condition for k = 1 is obtained as follows. By combining (52) and (49) we get almost surely for large n,

〈B〉n ≥
1
n

(
n∑

m=1

|Qm|
)2

≥
(cH

2

)2

n2.
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On the other hand, we can calculate explicitly

E [〈B〉n] =
n∑

m=1

mcH ≤ cHn2.

We leave it to the reader to check the second and third conditions of the proposition do hold. The theorem
then immediately follows from the proposition.
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[26] A.S. Üstünel (1985): An Introduction to Analysis on Wiener Space. Lecture Notes in Mathematics,
1610. Springer-Verlag.

29


