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Summary. This chapter considers the multiple change–point problem for time se-
ries, including strongly dependent processes, with an unknown number of change–
points. We propose an adaptive method for finding the segmentation, i.e., the se-
quence of change–points τ with the optimal level of resolution. This optimal segmen-
tation τ̂ is obtained by minimizing a penalized contrast function J(τ , y)+βpen(τ ).
For a given contrast function J(τ , y) and a given penalty function pen(τ ), the adap-
tive procedure for automatically choosing the penalization parameter β is such that
the segmentation τ̂ does not strongly depend on β. This algorithm is applied to the
problem of detection of change–points in the volatility of financial time series, and
compared with Vostrikova’s (1981) binary segmentation procedure.

1 Introduction

The change–point analysis of volatility processes is a recent and important
research topic in financial econometrics. Volatility processes, i.e., absolute
and squared returns on asset prices, are characterized by a hyperbolic decay
of their autocorrelation function (ACF), and then have been first considered
as the realization of a strongly dependent, or long–range dependent or long–
memory process. Most of the applied research works in this field resorted to
the class of long–range dependent volatility processes introduced by Robinson
(1991), developed by Granger and Ding (1995) and other authors, defined as

Yt = σtεt, εt ∼ iid, Eε0 = 0, Var ε0 = 1, σ2
t = ω +

∞
∑

j=1

αjY
2
t−j , (1)

with hyperbolically decaying positive weights αj ≍ j−(1+ϑ/2), ϑ ∈ (0, 1),
∑

j αj 6 1. Volatility processes were then implicitly viewed as the realization
of a homogeneous process defined by the single scaling parameter ϑ. The
estimated intensity of long–range dependence ϑ̂ of asset price volatility is
usually strong, near the stationarity limit.
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Alternatively, the returns series are modeled by the Integrated ARCH(∞)
volatility process, defined by equation (1) with exponentially decaying coeffi-
cients αj and

∑

j αj = 1, i.e., a process with infinite variance since ω > 0. This
IARCH representation is incompatible with the conclusion on the presence of
long–memory in volatility grounded on the hyperbolic decay of the sample
ACF of power transformations of this returns process, since this sample ACF
is not properly defined. This contradiction should have questioned the rele-
vance of the hypothesis of a homogeneous volatility process as it was already
well known in the statistical literature that change–point processes, nonsta-
tionary processes and long–range dependent processes might be confused; see
e.g., Bhattacharya et al. (1983).

Pioneering works by Mikosch and Stărică (1999, 2003, 2004) advocated
the change–point alternative for the analysis of volatility processes, and
claimed that the empirical long–range dependence of volatility process was
the consequence of nonstationarities. The standard short–range dependent
volatility models still provide an accurate representation of the volatility
process, provided that we estimate them on intervals of homogeneity. This
idea of approximating nonstationary processes with locally stationary pro-
cesses has been considered by Dalhaus (1997). The statistical theory for
volatility processes with a change–point was developed very recently; see,
besides the references mentioned above, Chu (1995), Kokoszka and Leipus
(1999, 2000), Horváth, Kokoszka and Teyssière (2001), Kokoszka and Teyssière
(2002), Berkes, Horváth and Kokoszka (2004), Berkes, Gombay, Horváth and
Kokoszka (2004). Interested readers are referred to the chapter on GARCH
volatility models by Giraitis, Leipus and Surgailis (2005) in this volume.

Furthermore, if we stick to the parametric framework of long–range depen-
dent volatility processes, the estimates of the long memory parameter on the
whole sample and on different subsamples significantly differ. Statistical tests
for change in the memory parameter by Horváth (2001), Horváth and Shao
(1999) and Beran and Terrin (1999) would reject the null hypothesis of con-
stant long–memory parameter. Thus, even in this framework, the hypothesis
of a homogeneous process might be too strong.

We consider here a semiparametric approach, i.e., without reference to a
parametric volatility model. The time series cannot be modeled as a stationary
process but rather as a piecewise stationary process. Some abrupt changes
affect the variance of the time-series at random times, but the distribution
of the data does not vary between two successive sudden changes. In what
follows, we propose a method which allows to systematically detect these
sudden changes and to locate their positions. This method also allows the
estimation of the distribution of the data between the abrupt changes. This
semiparametric approach is also of interest in a parametric framework, as
it might suggest a partition of the series in intervals of homogeneity were
stationary volatility models can be estimated; see Aggarwal et al. (1999).

The issue of multiple change–points detection has been first viewed as an
extension of the single change–point problem by using Vostrikova’s (1981) bi-
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nary segmentation (BS) procedure, which consists in iteratively applying the
single change–point detection procedure, i.e., apply first the test for change–
point on the whole sample of observations, and if such a point is found, use the
same testing procedure on the two resulting sub–segments and on subsequent
partitions, until no further change–point is found. This method has been ex-
tended by Whitcher et al. (2002) to the case of long–range dependent processes
by applying it to the discrete wavelet transform of the long–memory process
with changes in variance. The BS method was also used by Berkes, Horváth,
Kokoszka and Shao (2003) for adjudicating between multiple change–points
and long–range dependence in levels.

The BS method is very simple, but has a serious drawback: the number of
change–points might be overestimated and their location might be wrong, as
one transforms the global problem of change–point detection in a sequence of
local change–point detections. The resulting segmentation is not optimal.

We shall adopt here a global approach, where all the change–points are
simultaneously detected by minimizing a penalized contrast function of the
form

J(τ , y) + βpen(τ ),

see Braun et al. (2000), Lavielle (1999), Lavielle and Ludeña (2000) and Yao
(1988). Here, J(τ , y) measures the fit of τ with y, with y = Y1, . . . , Yn. Its
role is to locate the change–points as accurately as possible. The penalty term
pen(τ ) only depends on the dimension K(τ ) of the model τ and increases
with K(τ ). Thus, it is used for determinating the number of change–points.
The penalization parameter β adjusts the trade-off between the minimization
of J(τ , y) (obtained with a high dimension of τ ), and the minimization of
pen(τ ) (obtained with a small dimension of τ ). Lavielle (1999) applied this
method, with an arbitrary choice for β, to the series of French CAC 40 index
and uncovered changes in the distribution of returns.

Asymptotic results concerning penalized least–squares estimates have been
obtained in theoretical general contexts in Lavielle (1999) and Lavielle and
Ludeña (2000), extending the previous results by Yao (1988). We shall show
that this kind of contrast can also be useful in practice. The main problem is
the optimal choice for a penalty function and a coefficient β. In the Gaussian
case, Yao (1988) suggested the Schwarz criterion. A complete discussion of the
most popular criteria (AIC, Mallow’s Cp, BIC), and many other references can
be found in Birgé and Massart (2001). In a more general context, we can use
a contrast other than the least-squares criterion, since the variables are not
necessarily Gaussian and independent. We propose an adaptive procedure for
automatically choosing the penalty parameter β in section 2. We present in
section 3 the binary segmentation procedure. An application to financial time
series, daily returns on the FTSE 100 index and on 30–minutes spaced returns
on FX rates, and simulated returns from artificial financial markets based on
microeconomic models with interactive agents, is considered in section 4.
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2 A Penalized Contrast Estimate for the Change–Point

Problem

2.1 The Contrast Function

We assume that the process {Yt} is abruptly changing and is characterized
by a parameter θ ∈ Θ that remains constant between two changes. We will
strongly use this assumption to define our contrast function J(τ , y).

Let K be some integer and let τ = {τ1, τ2, . . . , τK−1} be an ordered se-
quence of integers satisfying 0 < τ1 < τ2 < . . . < τK−1 < n. For any
1 6 k 6 K, let U(Yτk−1+1, . . . , Yτk

; θ) be a contrast function useful for es-
timating the unknown true value of the parameter in the segment k. In other
words, the minimum contrast estimate θ̂(Yτk−1+1, . . . , Yτk

), computed on seg-
ment k of τ , is defined as a solution to the following minimization problem:

U
(

Yτk−1+1, . . . , Yτk
; θ̂(Yτk−1+1, . . . , Yτk

)
)

6 U(Yτk−1+1, . . . , Yτk
; θ) , ∀θ ∈ Θ.

(2)
For any 1 6 k 6 K, let G be defined as

G(Yτk−1+1, . . . , Yτk
) = U

(

Yτk−1+1, . . . , Yτk
; θ̂(Yτk−1+1, . . . , Yτk

)
)

. (3)

Then, define the contrast function J(τ , y) as

J(τ , y) =
1

n

K
∑

k=1

G(Yτk−1+1, . . . , Yτk
), (4)

where τ0 = 0 and τK = n.
For the detection of changes in the variance of a sequence of random vari-

ables, the following contrast function, based on a Gaussian log–likelihood func-
tion, can be used:

Jn(τ , y) =
1

n

K
∑

k=1

nk log(σ̂2
k), (5)

where nk = τk − τk−1 is the length of segment k, σ̂2
k is the empirical variance

computed on that segment k, σ̂2
k = n−1

k

∑τk

i=τk−1+1(Yi − Ȳ )2, and Ȳ is the
empirical mean of Y1, . . . , Yn.

When the true number K⋆ of segments is known, the sequence τ̂n of
change–point instants that minimizes this kind of contrast function has the
property, that under extremely general conditions, for any 1 6 k 6 K⋆ − 1,

P(|τ̂n,k − τ⋆
k | > δ) → 0, when δ → ∞ and n → ∞, (6)

see Lavielle (1999), Lavielle and Ludeña (2000). In particular, this result holds
for weakly and strongly dependent processes.
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2.2 Penalty Function for the Change–Point Problem

When the number of change–points is unknown, we estimate it by minimizing
a penalized version of the function J(τ , y). For any sequence of change–point
instants τ , let pen(τ ) be a function of τ that increases with the number K(τ )
of segments of τ . Then, let {τ̂n} be the sequence of change–point instants that
minimizes

U(τ ) = J(τ , y) + βpen(τ ). (7)

The procedure is intuitively simple: the adjustment criteria must be com-
pensated for in a way such that the over-segmentation would be penalized.
However, the compensation must not be very important as a too large penalty
function yields an underestimation of the number of segments.

If β is a function of n that goes to 0 at an appropriate rate as n goes
to infinity, the estimated number of segments K(τ̂n) converges in probability
to K⋆ and condition (6) still holds; see Lavielle (1999), Lavielle and Ludeña
(2000) for more details.

In practice, asymptotic results are not very useful for selecting the penalty
term βpen(τ ). Indeed, given a real observed signal with a fixed and finite
length n, the parameter β must be fixed to some arbitrary value. When the pa-
rameter β is chosen to be very large, only the more significant abrupt changes
are detected. However, a small value of β produces a high number of the esti-
mated changes. Therefore, a trade-off must be made, i.e., we have to select a
value of β which yields a reasonable level of resolution in the segmentation.

Various authors suggest different penalty functions according to the model
they consider. For example, the Schwarz criterion is used by Braun et al.
(2000) for detecting changes in a DNA sequence.

Consider first the penalty function pen(τ ). By definition, pen(τ ) should
increase with the number of segments K(τ ). Following the most popular in-
formation criteria such the AIC and the Schwarz criteria, we suggest to use
in practice the simplest penalty function pen(τ ) = K(τ ).

Remark 1. We can argue this specific choice for the penalty function with
theoretical considerations. Indeed, precise results have been recently obtained
by Birgé and Massart (2001) in the following model:

Yi = s⋆(i) + σεi, 1 6 i 6 n, (8)

where s⋆(i) =
∑K⋆

k=1 mk1{τ⋆
k−1

+16i6τ⋆
k
} is a piecewise constant function. The

sequence {εi} is a sequence of Gaussian white noise, with variance 1. A pe-
nalized least-squares estimate is obtained by minimizing

J(τ , y) =
1

n

K(τ)
∑

k=1

τk
∑

i=τk−1+1

(Yi − Ȳk)2 + βpen(τ ). (9)

In a non asymptotic context, Birgé and Massart (2001) have shown that a
penalty function of the form
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pen(τ ) = K(τ )

(

1 + c log
n

K(τ )

)

, β =
2σ2

n
, (10)

is optimal for minimizing E
(

‖ŝτ − s⋆‖2
)

, where the estimated sequence of

means {ŝτ (i)} is defined as ŝτ (i) =
∑K(τ)

k=1 Ȳk1{τk−1+16i6τk}. Based on some
numerical experiments, the authors suggest to use c = 2.5. Note that when the
number K⋆ of segments is small in comparison with the length n of the series,
this optimal penalty function is an almost linear function of K. Furthermore,
Yao (1988) has proved the consistency of the Schwarz criterion for this model,
with pen(τ ) = K(τ ) and β = 2σ2(log n)/n.

2.3 An Adaptive Choice for the Penalization Parameter

For a given contrast function J and a given penalty function pen(τ ), the
problem now reduces to the choice for the parameter β.

Let KMAX be an upper bound on the dimension of τ . For any 1 6 K 6

KMAX , let TK be the set of all the models of dimension K:

TK = {τ = (τ0, . . . , τK) ∈ N
K+1, τ0 = 0 < τ1 < τ2 < . . . τK−1 < τK = n}.

By definition the best model τ̂K of dimension K minimizes the contrast func-
tion J :

τ̂K = arg min
τ∈TK

J(τ , y). (11)

Note that the sequence {τ̂K , 1 6 K 6 KMAX} can easily be computed. Indeed,
let G be the upper triangular matrix of dimension n×n such that the element
(i, j), for j > i is Gi,j = G(Yi, Yi+1, . . . Yj), where G(Yi, . . . Yj) is the contrast
function computed with (Yi, Yi+1, . . . Yj). Thus, for any 1 6 K 6 KMAX , we
have to find a path τ0 = 0 < τ1 < τ2 < . . . , < τK−1 < τK = n that minimizes
the total cost

J(τ , y) =
1

n

K
∑

k=1

Gτk−1,τk
. (12)

A dynamic programming algorithm can recursively compute the optimal paths
(τ̂K , 1 6 KMAX), see Kay (1998). This algorithm requires O(n2) operations.
Then, let

JK = J(τ̂K , y), (13)

pK = pen(τ ), ∀τ ∈ TK . (14)

As mentioned above, we suggest to use pK = K.
Thus, for any penalization parameter β > 0, the solution τ̂ (β) minimizes

the penalized contrast:

τ̂ (β) = argmin(J(τ , y) + βpen(τ )) (15)

= τ̂ K̂(β) (16)
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where
K̂(β) = arg min

K>1
{JK + βpK}. (17)

The way how the solution K̂(β) varies with the penalization parameter β is
given by the following proposition:

Proposition 1. There exists a sequence {K1 = 1 < K2 < . . .}, and a se-
quence {β0 = ∞ > β1 > . . .}, with

βi =
JKi

− JKi+1

pKi+1
− pKi

, i > 1, (18)

such that K̂(β) = Ki, ∀β ∈ [βi, βi−1).
The subset {(pKi

, JKi
), i > 1} is the convex hull of the set {(pK , JK), K > 1}.

Proof. For any K > 1, let K̂(β) = K. Then

JK + βpK < min
L>K

(JL + βpL), (19)

JK + βpK < min
L<K

(JL + βpL). (20)

Thus, β must satisfy

max
L>K

JK − JL

pL − pK
< β < min

L<K

JL − JK

pK − pL
. (21)

�

The estimated sequence τ̂ should not strongly depend on the choice for
the penalization coefficient β. In other words, a small change of β should
not lead to a radically different solution τ̂ . This stability of the solution with
respect to the choice for β will be ensured if we only retain the largest intervals
[βi, βi−1), i > 1.

In summary, we propose the following procedure:

1. For K = 1, 2, . . . , KMAX , compute τ̂ K , JK = J(τ̂ K , y) and pK =
pen(τ̂K),

2. compute the sequences {Ki} and {βi}, and the lengths {lKi
} of the inter-

vals [βi, βi−1),
3. retain the greatest value(s) of Ki such that lKi

≫ lKj
, for j > i.

Remark 2. Choosing the largest interval usually underestimates the number
of changes. Indeed, this interval usually corresponds to a very small number
of change–points and we only detect the most drastic changes with such a
penalty function. This explains why we should better look for the highest
dimension Ki such that lKi

≫ lKj
, for any j > i, to recover the smallest

details.
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Instead of computing only one configuration of change–points, this method
allows us to put forward different solutions with different dimensions. Indeed,
it would be an illusion to believe that a completely blind method can give
the “best” solution in any situation. If two dimensions Ki and Kj satisfy the
criteria suggested in step 3, it is more suitable to propose these two solutions
to the user, instead of removing one of them with an arbitrary criterion.

Remark 3. A classical and natural graphical method for selecting the dimen-
sion K can be summarized as follows:

i) examine how the contrast JK decreases when K (that is, pK) increases,
ii) select the dimension K for which JK ceases to decrease significatively.

In other words, this heuristic approach looks for the maximum curvature in
the plot (pK , JK). Proposition 1 states that the second derivative of this curve
is directly related to the length of the intervals ([βi, βi−1), i > 1). Indeed, if
we represent the points (pK , JK), for 1 6 K 6 KMAX , βi is the slope between
the points (pKi

, JKi
) and (pKi+1

, JKi+1
). Thus, looking for where JK ceases

to decrease means looking for a break in the slope of this curve. Now, the
variation of the slope at the point (pK , JK) is precisely the length lKi

of the
interval [βi, βi−1).

2.4 An Automatic Procedure for Estimating K

Without any changes in the variance, the joint distribution of the sequence
{JK} is very difficult to compute in a closed form, but some Monte-Carlo
experiments show that this sequence decreases as c1K + c2K log(K).

A numerical example is displayed Figure 1. We have simulated ten se-
quences of i.i.d. Gaussian variables and computed the series (JK) for each
of them. The fit with a function c1K + c2K log(K) is always almost perfect
(r2 > 0.999). Nevertheless, the coefficients c1 and c2 are different for each of
these series. Thus, we propose the following algorithm:

Algorithm 1

For i = 1, 2, . . .,

1. Fit the model
JK = c1K + c2K log(K) + eK ,

to the sequence {JK , K > Ki}, assuming that {eK} is a sequence of iid
centered Gaussian random variables,

2. Evaluate the probability that JKi−1 follows also this model, i.e., estimate
the probability

PKi
= P (eKi−1 > JKi−1 − ĉ1(Ki − 1) + ĉ2(Ki − 1) log(Ki − 1)) , (22)

under this estimated model.

Then, the estimated number of segments will be the largest value of Ki such
that the P–value PKi

is smaller than a given threshold α. We set α = 10−5

in the numerical examples.
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Fig. 1. Ten sequences of contrast functions (JK) computed from ten sequences of
i.i.d. Gaussian variables

3 An Alternative Method: The Binary Segmentation

Procedure

We present here the local approach for finding multiple change–points, i.e.,
finding the configuration τ = (τ1, . . . , τK−1) with break dates {0 < τ1 <
. . . < τK−1 < n}, which rely on single change–points tests. Since financial
time series are very large, i.e., over several thousands of observations, single
change–point tests are of limited practical interest.

The binary segmentation procedure, studied by Vostrikova (1981), is the
standard method for detecting multiple change–points by using a test for
single change–point: we split the series at the point detected by the single
change–point test, i.e., the point where the test statistic reaches its maxi-
mum over the critical value, and repeat the detection procedure on the new
segments until no further change–point is found. However, the problem of op-
timal resolution in the segmentation τ is not solved as no penalized objective
function is considered.

Remark 4. Most applied econometrics research papers supposedly using the
multiple change–point tests by Lavielle (1999) and Lavielle and Moulines
(2000) do in fact resort to the binary segmentation algorithm, which is the
less we can say missleading.
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3.1 Weakly Dependent Processes

We present here the tests for single change–point in the variance of time series
by Inclán and Tiao (1994) and Kokoszka and Leipus (1999). The test by Inclán
and Tiao (1994) for change in the variance of a weakly dependent process {Yt}
is based on the process {Dn(h), h ∈ [0, 1]} defined as

Dn(h) :=

∑[nh]
j=1 Y 2

j
∑n

j=1 Y 2
j

− [nh]

n
, h ∈ [0, 1]. (23)

Under the null hypothesis of constant unconditional variance, the process
{Dn(h), h ∈ [0, 1]} converges to a Brownian bridge on [0, 1]. A test for con-
stancy of the unconditional variance is based on the following functional of the
process {Dn(h)}, which under this null hypothesis of constant unconditional
variance converges in distribution to the supremum of a Brownian bridge on
[0, 1]

√

n/2 sup
06h61

|Dn(h)| d−→ sup
06h61

∣

∣W 0(h)
∣

∣ . (24)

where W 0(h) is the Brownian bridge on the unit interval [0, 1] defined as
W 0(h) = W (h) − hW (1), W (h) is the Wiener process.

Kokoszka and Leipus (1999) made the assumption that the process {Yt}
follows an ARCH(∞) process defined as

Yt = σtεt, εt ∼ iid, Eε0 = 0, Var ε0 = 1, (25)

σ2
t = ω +

∞
∑

j=1

αjY
2
t−j , t = 1, . . . , t0,

σ2
t = ω⋆ +

∞
∑

j=1

α⋆
jY

2
t−j , t = t0 + 1, . . . , n,

with the assumption that the unconditional variance of the process changes
at an unknown time t0, i.e.,

∆(n) =
ω

1 −∑∞
j=1 αj

− ω⋆

1 −∑∞
j=1 α⋆

j

6= 0. (26)

The null hypothesis is H0 : ω = ω⋆, αj = α⋆
j for all j, while under the

alternative hypothesis HA : ω 6= ω⋆ or αj 6= α⋆
j for some j. The change–point

test is based on the process {Un(h), h ∈ [0, 1]} defined as

Un(h) :=
√

n
[nh](n − [nh])

n2





1

[nh]

[nh]
∑

j=1

Y 2
j − 1

n − [nh]

n
∑

j=[nh]+1

Y 2
j



 , (27)

which under H0 converges to the process
{

σW 0(h), h ∈ [0, 1]
}

, i.e.,
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Un(h)
D[0,1]−→ σW 0(h), (28)

where
D[0,1]−→ means weak convergence in the space D[0, 1] endowed with the

Skorokhod topology. We consider here as test statistic the functional based
on the process {Un(h), h ∈ [0, 1]}

sup
06h61

|Un(h)| /σ
d−→ sup

06h61

∣

∣W 0(h)
∣

∣ , (29)

where the long–run variance σ2 is usually estimated by nonparametric ker-
nel methods. We use here the heteroskedastic and autocorrelation consis-
tent (HAC) estimator by Newey and West (1987) with the truncations order
q = 0, 2, 5, 10, 15.

The location of the change–point τ̂ is detected by the CUSUM–type esti-
mator based on the same process {Un(h), h ∈ [0, 1]}, and defined by

τ̂ = [nĥ], ĥ = min

{

h : |Un(h)| = max
0<h61

|Un(h)|
}

. (30)

This estimator is consistent if ∆(n) → 0 as n → ∞ but at a slower rate than
n1/2 as

|∆(n)|n1/2 → ∞, n → ∞,

see Kokoszka and Leipus (2000) for further details.

3.2 Strongly Dependent Processes

In the previous section, the process {Yt} was assumed weakly dependent.
Whitcher et al. (2002) proposed to deal with long–range dependent processes
with an unknown number of change–points in the unconditional variance, by
applying the BS procedure to the discrete wavelet transform of the long–
memory process {Yt}.

4 Detecting Change–Points in the Volatility of Financial

Time Series

We consider two series, the FTSE 100 index and the US dollar–Japanese yen
intra–day foreign exchange (FX) rate.

4.1 Application to The FTSE 100 Index

The FTSE 100 index, or Footsie, consists of 100 blue chip stocks that trade
on the London Stock Exchange. This series of 4381 observations has been
observed between January 1984 and November 2002. Figure 2 displays the
series of indices in levels:
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Fig. 2. The series of FTSE 100 indices

Table 1 below displays the sequence of change–points Ki, lengths lKi
and

P–values given by Algorithm 1, see also equation (22).

Table 1. Sequences of number of change–points Ki, lengths lKi
and corresponding

P–values PKi
given by Algorithm 1

Ki lKi
PKi

1 ∞ 5.0000e-05
3 152.9601 9.7200e-07
4 68.9379 6.8018e-04
6 50.9085 9.1889e-07
7 32.4764 6.5439e-06
8 7.4296 2.8738e-01
11 5.6321 2.6108e-01
13 5.6107 1.3535e-03
15 5.4152 3.7485e-02

Figure 3 below shows that Algorithm 1 is able to pick the main changes
in the unconditional variance of the series of returns on FTSE 100 .



Adaptive Detection of Multiple Change–Points in Volatility 13

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0  500  1000  1500  2000  2500  3000  3500  4000

 Log of returns

Change-Point Times

 18200

 18400

 18600

 18800

 19000

 19200

 19400

 19600

 19800

 20000

 0  2  4  6  8  10  12  14  16  18  20

Contrast Function
Number of  Segments

 18300

 18400

 18500

 18600

 18700

 18800

 0  5  10  15  20

Contrast Function
Regression (22)

J(K_opt)

Fig. 3. Above: the series with the estimated change–points represented by vertical
lines; Middle: The sequence of contrasts (JK , 1 6 K 6 KMAX), the vertical line in-
dicates the estimated number of segments (K̂, JK̂); Below: the sequence of contrasts

{JK , K̂ 6 K 6 KMAX} are indicated with +, the fitted function ĉ1(K)+ ĉ2K log(K)
is in solid line and JK̂ is represented with a circle

We obtain the segmentation τ̂ = {112, 568, 624, 1840, 3020, 4272}. The
point τ 1 = 112 matches a change in the sampling frequency, as we have weekly
data before January 1986, and daily observations after that date. Thus, the
procedure detects this heterogeneity in the process. The point τ 2 = 568 is
simply the 14th October 1987, i.e., the stock market crash, while the increase
of volatility after τ 5 = 3020 (June 26, 1997) indicates the conjunction of two
opposite phenomena: the Footsie has broken the psychological 5,000 barrier
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in August 1997, as a consequence of a series of positive earnings for the com-
panies composing the index. On the other side, the Asian crisis of Summer
1997 increased the uncertainty, and then the volatility, as the extent of the
consequences of this crisis on economic activity were unpredictable.

Figure 4 below displays the sample autocorrelation function (ACF) for the
whole series of absolute returns on the FTSE index:
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Fig. 4. Sample ACF of the absolute value of returns |rt| on FTSE

This sample ACF has a hyperbolic decay which is similar to the one of
a strongly dependent process: the ACF are always positive, with a plateau
for the larger orders of autocorrelation. However, when displaying the sam-
ple ACF for the sub–intervals defined by Algorithm 1, we get the following
pictures, the shape of which are very different from Figure 4:
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Fig. 5. Sample ACFs of the absolute value of returns |rt| on FTSE for the time
interval [1, 112] (left), and for the time interval [113, 568] (right)
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Fig. 6. Sample ACF of the absolute value of returns |rt| on FTSE for the time
interval [569, 624] (left), and for the time interval [625, 1840] (right)
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Fig. 7. Sample ACF of the absolute value of returns |rt| on FTSE for the time
interval [1841, 3020] (left), and for the time interval [3021, 4272] (right)

The sample ACF of the absolute value of returns |rt| on FTSE for the time
interval [4273, 4380] displays a pattern similar to Figure 6 (right) and is not
displayed here.

For all the sub–samples, the sample ACF displayed in figures 5–7 do not
indicate the same degree of persistence as the one observed for the whole
sample in Figure 4: some autocorrelations are negative, and these ACF do not
display the “plateau effect” for the higher orders. Thus, as mentioned in the
introduction of this chapter, the hypothesis of homogeneity and stationarity
of the returns process is inappropriate, and the global procedure for finding
the optimal resolution for the process is able to pick the nonstationarities of
the process out.

Choosing the level of resolution just below, i.e., with 6 segments, would
have given τ̂ = {112, 568, 624, 3048, 4272}. However, considering the period
between t = 624 and t = 3048, i.e., between the 5th of January 1988 and the
4th of August 1997 as homogeneous is rather unlikely. Figure 8 below displays
the sample ACF for the absolute returns for this time interval.



16 Marc Lavielle and Gilles Teyssière

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  20  40  60  80  100  120  140  160  180  200
-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  20  40  60  80  100  120  140  160  180  200

Fig. 8. Sample ACF of the absolute value of returns |rt| on FTSE for the time
interval [624, 3047]

The sample ACF resembles the one of a long–range dependent process,
with a mild degree of persistence. However, we have seen before that the sam-
ple ACF for the two sub–periods [624, 1847] and [1848, 3019] have a different
shape, which indicates that the mild persistence for the interval [624, 3047] is
a statistical artefact. Thus, the resolution with 7 segments looks preferable.

We compare the selected segmentation with the one obtained with the
binary segmentation procedure. Table 2 below reports the segmentation yield
by the BS method, using both statistics given by equations (24) and (29).
We observe that the two statistics give a quite similar segmentation, which
however has a higher resolution than the one yield by Algorithm 1. The seg-
mentation given by the BS method includes the points found by Algorithm
1, or points close to those of τ̂ .
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Table 2. Segmentation found by the BS method, Inclán and Tiao (1994), henceforth
IT, and Kokoszka and Leipus (1999), henceforth KL

KL statistic Change–point date IT statistic Change–point date

9.0585 110 5.5376 110
12.2929 570 6.1560 570
13.2107 648 10.0611 648
1.8179 1062 1.6352 1062
1.3997 1113 1.9091 1273
2.6116 1273 2.0503 1324
2.5349 1324 2.3089 1703
2.6729 1703 2.6606 1838
2.8486 1838 1.5992 1943
2.3037 2117 2.3103 2117
2.1048 2458 2.2611 2458
4.2924 3000 4.3451 3000
1.6788 3173 1.3736 3173
11.2412 3284 7.4494 3284
4.8933 3418 2.4585 3418
3.2717 3654 1.9844 3654
2.6650 3761 1.7056 3761
5.0372 3955 2.5301 3955
3.2697 4128 1.7171 4128
8.6904 4270 4.3607 4270

If we try to refine the segmentation by choosing a number of change–points
similar to the BS method, we get the following picture
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Fig. 9. The series with the 20 estimated change–points represented by vertical lines

We capture more and more details of the variations of the process, but the
gain is rather marginal, as the main variations are captured with 7 segments.
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4.2 Application to the US Dollar–Japanese Yen FX Rate

We consider here a sample of 30 minute–spaced observations observed in the
year 1996. These data, provided by Olsen & Associates are in ϑ time, i.e., all
intra–day seasonal components have been removed.
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Fig. 10. Above: the series with the estimated change–points represented by vertical
lines; Middle: The sequence of contrasts (JK , 1 6 K 6 KMAX), the vertical line in-
dicates the estimated number of segments (K̂, JK̂); Below: the sequence of contrasts

{JK , K̂ 6 K 6 KMAX} are indicated with +, the fitted function ĉ1(K)+ ĉ2K log(K)
is in solid line and JK̂ is represented with a circle

Figure 10 displays the series with the estimated change–points, the con-
trast function JK , and the fitted function ĉ1(K) + ĉ2K log(K).
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The detected number of change points is rather low for the sample size
considered, but we have to keep in mind that this series represents only a
year of observations, so that structural changes are rather rare, even for data
sampled with a high frequency.

Table 3 below displays the sequence of the number of change–points Ki

found by Algorithm 1.

Table 3. Sequences of number of change–points Ki, lengths lKi
and corresponding

P–values PKi
given by Algorithm 1

Ki lKi
PKi

1 ∞ 5.0000e-05
2 183.5677 6.8982e-05
4 72.2762 3.1535e-05
7 21.4666 2.4397e-04
9 16.3938 9.4880e-03
12 1.7163 1.7154e-01

The chapter by Teyssière and Abry (2005) in this volume considers the
wavelet analysis of this series: they compare the wavelet estimator of the de-
gree of persistence for the absolute returns of this series with the local Whittle
and log–periodogram estimators. The discrepancy between the estimation re-
sults obtained with the wavelet based estimator and the ones obtained from
the spectral based estimators is interpreted as the consequence of nonstation-
arities in the returns process.

The BS procedure finds a far larger number of change–points, i.e., 103 for
the KL statistic and 95 for the IT statistic. The graphical representation of
the segmentation yield by algorithm 1 looks however more sensible.

In fact, the segmentations yield by competing statistical methods are very
different. Mikosch and Stărică (1999) and Granger and Hyung (2004) studied
the series of S&P 500, using respectively parametric and semiparametric tests.
While Mikosch and Stărică (1999) found a rather parsimonious segmentation,
the number of change–points found by Granger and Hyung (2004) is huge.

However, this parsimonious segmentation looks relevant when comparing
the sample ACF of the absolute returns of the whole series and of the sub–
intervals defined by Algorithm 1, see figures 11–13: while the sample ACF,
computed on the whole sample, Figure 11, is similar to the one of a strongly
dependent process, the patterns of the sample ACFs for the sub–intervals
defined by Algorithm 1 show that the persistence on these sub–intervals is far
smaller than the one for the whole sample.
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Fig. 11. Sample ACF of the absolute value of returns |rt| on USD–JPY FX rate
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Fig. 12. Sample ACF of the absolute value of returns |rt| on USD–JPY FX rate
for the time interval [1, 2736] (left), and for the time interval [2737, 10386] (right)
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Fig. 13. Sample ACF of the absolute value of returns |rt| on USD–JPY FX rate
for the time interval [10387, 14454] (left), and for the time interval [14455, 17508]
(right)
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4.3 Application to Micro–Simulated Data

We consider here simulated series from an artificial financial market, i.e.,
a dynamic system which models financial markets with interacting agents.
Although these models do not resort to statistical distributions leading to the
generation of long–range dependent processes, the volatility series generated
by these models display the same dependence properties as the ones of the
volatility of asset prices.

We consider that agents i on financial markets differ by their forecasting
function Ei(Pt+1|It) of the future price as a function of the information set
It. Chartists extrapolate the exchange rate Pt+1 by using is a linear function
of the previous prices, i.e.,

Ec (Pt+1|It) =

Mc

∑

j=0

hjPt−j , (31)

where hj, j = 0, . . . , M c are constants, M c is the ’memory’ of the chartists,
while fundamentalists forecast this next price as:

Ef (Pt+1|It) = P̄t +

Mf

∑

j=1

νj(Pt−j+1 − P̄t−j), (32)

where νj , j = 1, . . . , Mf are positive constants, representing the degree of
reversion to the fundamentals, Mf is the ’memory’ of the fundamentalists.
We assume that the series of ‘fundamentals’ P̄t, which can be thought as the
price if it were only to be explained by a set of relevant variables, follows a
random walk:

P̄t = P̄t−1 + εt, εt ∼ N(0, σ2
ε). (33)

Agents have the possibility of investing at home in a risk free asset or
investing abroad in a risky asset. We denote by ρt the foreign interest rate,
by di

t the demand by the ith agent for foreign currency, and by r the domestic
interest rate, with ρt > r. The exchange rate Pt and the foreign interest rate ρt

are considered by agents as independent random variables, with ρt ∼ N(ρ, σ2
ρ).

The cumulated wealth of individual i at time t + 1, W i
t+1 is given by:

W i
t+1 = (1 + ρt+1)Pt+1d

i
t + (W i

t − Ptd
i
t)(1 + r). (34)

Agents i have a standard mean–variance utility function:

U(W i
t+1) = E(W i

t+1) − λVar(W i
t+1), (35)

where λ denotes the risk aversion coefficient, and

E(W i
t+1|It) = (1 + ρ)Ei(Pt+1|It)d

i
t + (W i

t − Ptd
i
t)(1 + r), (36)

Var(W i
t+1|It) = (di

t)
2ζt, ζt = Var (Pt+1(1 + ρt+1)) . (37)
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Demand di
t is found by maximizing utility. First order condition gives

(1 + ρ)Ei(Pt+1|It) − (1 + r)Pt − 2ζtλdi
t = 0, (38)

where Ei(.|It) denotes the forecast of an agent of type i. Let kt be the pro-
portion of fundamentalists at time t, the market demand is:

dt =
(1 + ρ)

(

ktE
f (Pt+1|It) + (1 − kt)E

c(Pt+1|It)
)

− (1 + r)Pt

2ζtλ
. (39)

Now consider the exogenous supply of foreign exchange Xt, then the mar-
ket is in equilibrium if aggregate supply is equal to aggregate demand, i.e.,
Xt = dt, which gives

Pt =
1 + ρ

1 + r

(

ktE
f (Pt+1|It) + (1 − kt)E

c(Pt+1|It)
)

− 2ζtλXt

1 + r
. (40)

From equation (40), the dynamics of the price process {Pt} depends on the
evolution of the process {kt}, i.e., the proportion of fundamentalists, which
governs the transition between the two forecast functions Ef (Pt+1|It) and
Ec(Pt+1|It). Several mechanisms for the evolution of the opinion process {kt}
have been proposed in the literature, which are either based on epidemiologic
phenomenon, or on a preference given to the most performing forecasting
function, or on the accumulated wealth gained with each forecast function,
etc. Interested readers are referred to Teyssière (2003) and the chapter by
Gaunersdorfer and Hommes (2005) in this volume.

We consider a multivariate extension of this model, i.e., a bivariate process
(P1,t, P2,t) of foreign exchange rates. This is motivated by the fact that struc-
tural changes do not affect singles markets, i.e., the same swing in opinions
from chartists to fundamentalists affects linked markets. It has been suggested
in the 1999 version of the work by Granger and Hyung that these common
breaks might explain the common persistence of asset prices volatility. Indeed,
the bivariate common break process by Teyssière (2003) used here, generates
the same type of dependence as the one observed in multivariate financial
time series.

We then consider that the opinion process {kt} is the same for both mar-
kets. This bivariate foreign exchange rate process depends on a pair of foreign
interest rates (ρ1, ρ2). We assume that 2ζi,tλXi,t/(1+ρi) = γiP̄i,t for i = 1, 2,
and Mf = M c = 1, the equilibrium price for the bivariate model is given by

(

P1,t

P2,t

)

=

(

kt−γ
A1

P̄1,t − ktν1,1

A1
P̄1,t−1 +

(1−kt)h1,1

A1
P1,t−1

kt−γ
A2

P̄2,t − ktν2,1

A2
P̄2,t−1 +

(1−kt)h2,1

A2
P2,t−1

)

, (41)

with

Ai =
1 + r

1 + ρi
− (1 − kt)hi,0 − ktνi,1. (42)
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We assume that the bivariate process of fundamentals (P̄1,t, P̄2,t) is positively
correlated as follows:
(

P̄1,t

P̄2,t

)

=

(

P̄1,t−1

P̄2,t−1

)

+

(

ε1,t

ε2,t

)

,

(

ε1,t

ε2,t

)

∼ N

[(

0
0

)

,

(

σ2
1,1 σ1,2

σ1,2 σ2
2,2

)]

, (43)

with σ1,2 > 0. In the example considered here, we set σ1,2 so that the coeffi-
cient of correlation between the two processes ε1,t and ε2,t is equal to 0.75, a
choice motivated by empirical results; see Teyssière (1997, 2003).

We generate here a bivariate series of returns. Figure 14 below displays
the two generated series of returns r1,t, r2,t, with r1,t = ln(P1,t/P1,t−1)
and r2,t = ln(P2,t/P2,t−1), and the detected changes in their uncondi-
tional variance. We can see that the detected changes for the series r2,t

are very close to some of the detected changes for the series r1,t, i.e.,
τ̂ = {676, 868, 1360, 1584, 2408, 4032, 4148} for the series r1,t, while τ̂ =
{1360, 1580, 4144} for the series r2,t, which is not very surprising as the opinion
process {kt} is common for both processes r1,t and r2,t. The joint detection of
change–points in multivariate time series is considered in a subsequent paper;
see Lavielle and Teyssière (2005).
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Fig. 14. The two jointly simulated series, r1,t above and r2,t below, with the
estimated change–points represented by vertical lines

We focus on the second returns series r2,t, with the lowest resolution level:
its sample ACF, see Figure 15, is similar to the one of a strongly dependent
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process. However, the sample ACF for the sub–intervals defined by Algorithm
1, see figures 16 and 17, display a different pattern with both positive and
negative autocorrelations, a property similar to what has been observed with
the two previous examples.

Thus, Algorithm 1 is able to detect the nonstationarities of the returns
process generated by the artificial financial market.
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Fig. 15. Sample ACF of the absolute value of simulated returns |r2,t|
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Fig. 16. Sample ACF of the absolute value of simulated returns |r2,t| for the time
interval [1, 1360] (left), and for the time interval [1361, 1580] (right)

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  20  40  60  80  100  120  140  160  180  200
-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  20  40  60  80  100  120  140  160  180  200

Fig. 17. Sample ACF of the absolute value of simulated returns |r2,t| for the time
interval [1581, 4144] (left), and for the time interval [4145, 4500] (right)
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5 Conclusion: Detecting Break in the Variance of

Returns or in the Mean of Absolute Returns?

Since we checked the adequacy of the resolution by looking at the ACF of the
sequence of absolute returns, one might think that changes in the volatility
are uncovered by detecting changes in the mean of the absolute returns series,
i.e., instead of the contrast function given by equation (5) one might consider
the following contrast function based again on a Gaussian likelihood function

Jn(τ , y) =
1

n

K
∑

k=1

‖Yτk
− Ȳτk

‖. (44)

Applying again Algorithm 1 to the series of absolute returns |rt| on the FTSE
100 index, we select different values for the number of change–points Ki from
9 to 12, and obtained the following segmentations:

• τ̂ = {112, 568, 576, 624, 3300, 3348, 4080, 4092, 4272},
• τ̂ = {112, 568, 576, 624, 3300, 3348, 4080, 4092, 4284, 4304} ,
• τ̂ = {112, 568, 576, 624, 3300, 3340, 3348, 4080, 4092, 4284, 4304},
• τ̂ = {112, 568, 576, 624, 1856, 3004, 3312, 3348, 4080, 4092, 4284, 4304},
i.e., we have to consider a large number of segments, 13, for splitting the
interval [624, 3300]. Thus, considering the series of absolute returns is not
suitable for finding the optimal resolution of the volatility series.

Alternatively, one might detect both changes in the mean and the variance
for the series of absolute returns by considering the following contrast function:

Jn(τ , y) =
1

n

K
∑

k=1

‖Yτk
− Ȳτk

‖
σ̂2

k

+ nk log(σ̂2
k). (45)

In that case, algorithm 1 selected the following partition with 12 change–
points:

τ̂ = {112, 568, 576, 624, 1796, 1828, 3020, 3304, 3348, 4080, 4128, 4272},

which has a level of resolution far higher than the one obtained when detecting
changes in the unconditional variance of the returns process. We obtain similar
results for the series of returns on US dollar–Japanese Yen FX rate, and the
series of results generated by the artificial microeconomic model. Thus, the
straightforward and natural way for detecting changes in the volatility is to
consider the contrast function defined by equation (5).
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