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Summary. We present and study the performance of the semiparametric wavelet
estimator for the long–memory parameter devised by Veitch and Abry (1999). We
compare this estimator with two semiparametric estimators in the spectral domain,
the local Whittle (LW) estimator developed by Robinson (1995a) and the “log–
periodogram” (LP) estimator by Geweke and Porter–Hudak (1983). The wavelet
estimator performs well for a wide range of nonlinear long–memory processes in
the conditional mean and the conditional variance, and is reliable for discriminating
between change–points and long–range dependence in volatility. We also address the
issue of selection of the range of octaves used as regressors by the weighted least
squares estimator. We will see that using the feasible optimal bandwidths for either
the LW and LP estimators, respectively studied by Henry and Robinson (1996) and
Henry (2001), is a useful rule of thumb for selecting the lowest octave. We apply the
wavelet estimator to volatility series of high frequency (intra–day) Foreign Exchange
(FX) rates, and to the volatility and volume of stocks of the Dow Jones Industrial
Average Index.

1 Introduction

The occurrence of long–range dependence, or strong dependence or long–
memory, in economics is documented by numerous research works. Although
it is widely accepted that squared or absolute returns on financial assets dis-
play long–range dependence, we are still unsure that what is observed is ei-
ther genuine long–memory or a statistical artefact, as statistical tools used
for the study of long–range dependent processes made the assumption that
the process under investigation is homogeneous and stationary. Thus, it has
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been claimed, see e.g., Mikosch and Stărică (1999, 2003, 2004a, 2004b) that
the observed long–range dependence is spurious and the consequence of non–
stationarity in the data.

Discriminating long–range dependence from single (or multiple) change–
point(s) is a very active research area in statistics, see e.g., Lavielle (1999),
Berkes, Horváth, Kokoszka and Shao (2003). Change–points and long–range
dependence might coexist, and finding the optimal number of change–points
and their location requires a more elaborated approach than Vostrikova’s
(1981) binary segmentation procedure, see Lavielle and Teyssière (2005), al-
though most econometrics research papers still resort to the binary segmen-
tation methods, or a mix of this algorithm and the tests by Lavielle (1999)
and Lavielle and Moulines (2000), a combination giving incorrect results.

We consider here a statistical method for the analysis of long–range de-
pendence, based on wavelets, which does not require these strong stationarity
assumptions and is robust to some departures from the previous hypotheses.
Empirical research works by Kokoszka and Teyssière (2002) and Teyssière
(2003) reached the conclusion that the intensity of strong dependence in
volatility processes measured with wavelet based estimators is lower than what
is usually found using estimators in either the time or the frequency domain,
and then volatility processes mix a moderate level of long–range dependence
and change–points.

As empirical evidence suggests that financial time series are highly non-
linear, in particular volatility processes exhibit a combination of nonlinearity,
long–range dependence and change–points, we study in this chapter the es-
timation of the scaling coefficient for some nonlinear long–memory processes
used in the statistical and econometrics literature, and compare the perfor-
mance of the wavelet estimator with the one of two semiparametric estimators
in the frequency domain: the local Whittle (LW) estimator by Künsch (1987)
and Robinson (1995a), and the “log–periodogram” (LP) estimator by Geweke
and Porter–Hudak (1983). These semiparametric estimators are of interest for
researchers dealing with real data, as the Data Generating Process (DGP) of
the observed data is unknown, the estimation of a misspecified parametric
model might lead to serious biases in estimation. Since one has to resort to
semiparametric methods, it is then useful to know the performance of these
estimators for a wide range of nonlinear dependent processes.

We consider some nonlinear long–memory processes that were not studied
in Abry et al. (2003): the linear ARCH (LARCH) process, the long–memory
stochastic volatility (LMSV) process, the nonlinear moving average (NLMA)
process, and some nonlinear transformations of fractionally integrated pro-
cesses. We also study the performance of the wavelet estimator for the case
of change–point processes, i.e., the non–stationary GARCH process, a pro-
cess with non constant coefficients. The relevance of wavelet analysis for
dealing with the issue of change–point and spurious strong dependence in
GARCH processes has been conjectured in previous works, see e.g., Kokoszka
and Teyssière (2002), Teyssière (2003), but never systematically analyzed. We
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also consider the case of a volatility process mixing both strong dependence
and change in regimes, the non homogeneous LMSV process, and the case of
dependent processes with polynomial and broken trends.

We also address a standard issue in semiparametric estimation of strongly
dependent processes, the cutoff between short–range and long–range depen-
dence. The bandwidth selection problem has been studied for the LW and LP
estimators by Henry and Robinson (1996), Hurvich, Deo and Brodsky (1998)
and Henry (2001). For the wavelet estimators, we have to select the range of
octaves used as regressors by the weighted least squares estimator. On the
basis of some simulations, we suggest some choices for the lowest octave, and
we will see that using the optimal bandwidth for the LW estimator is a useful
rule of thumb for selecting this lowest octave.

We also report some simulation results for the use of the feasible optimal
bandwidth for the LP estimator, and will see that this data–driven bandwidth
works well for a large variety of nonlinear long–range dependent processes, and
often better than the fixed bandwidths [T b], with b ∈ (0, 1), usually considered.

We will see that although the wavelet estimator has been devised for the
standard Gaussian case, it still works for a broader class of nonlinear processes,
provided in the case of highly nonlinear processes, that the sample size is
large enough for disentangling the long–memory component from the other
nonlinear ones. Since the performance of the wavelet estimator is satisfactory
enough, we consider an application of this estimator to high–frequency (intra–
day) foreign exchange (FX) rates, and to trading volume.

This chapter is organized as follows: section 2 presents the long–range
dependent processes that we will study with the wavelet estimator, while sec-
tion 3 presents the wavelet and semiparametric spectral estimators. Section
4 compares the performance of the wavelet estimator with other standard
semiparametric estimators in the spectral domain for a large variety of non-
linear strongly dependent processes. Section 6 gives several applications to
high–frequency Foreign Exchange (FX) rates and to trading volume of stocks
of the Dow Jones Industrial Average Index.

2 Long–Memory or Long–Range Dependence

2.1 Definition and Consequence

Definition 1. Let {Yt, t ∈ IR} be a second–order stationary process. This pro-
cess is a long–memory process if its spectrum fY (λ) is such that in a close
positive neighborhood of the zero frequency,

fY (λ) ∼ cfλ−α, λ→ 0+, cf ∈ (0,∞), (1)

or equivalently, if its autocorrelation function ρY (k) has the following hyper-
bolic rate of decay3

3 xk � yk means that ∃ two constants C1, C2 such that C1yk 6 xk 6 C2yk, k→∞.
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ρY (k) � kα−1, (2)

with α ∈ (0, 1).

As a consequence of equation (2), the autocorrelations of a long–memory
process are not summable, i.e.,

∞∑

k=−∞
ρY (k) =∞. (3)

Long–memory received an interesting non standard exposition based on the
covariance under aggregation of the sum of covariances in Gefferth et al.
(2003).

2.2 Standard Linear Long–Range Dependent Processes

• Fractionally Integrated Process

The Fractionally Integrated process, denoted as either FI(d) or I(d), defined
as

(1− L)d(Yt − µ) = εt, εt ∼ N(0, σ2
ε), (4)

where µ is the unknown mean of the process, L stands for the lag operator,
i.e., LYt = Yt−1, the fractional difference operator (1 − L)d associated with
the degree of fractional integration d ∈ (−0.5, 0.5), is defined as

(1− L)d =

∞∑

j=0

bjL
j , b0 = 1, bj =

j∏

k=1

(
1− 1 + d

k

)
, (5)

bj ∼ −
1

Γ (−d)
j−(1+d) −→∞,

where Γ (·) denotes the Gamma function. When d ∈ (0, 0.5) (respectively, d ∈
(−0.5, 0)) the process is said to be persistent (respectively, anti-persistent).
For this process, one has:

α = 2d. (6)

• Fractional ARIMA (FARIMA) Process

The FI(d) process is nested into the class of Fractional ARIMA processes,
defined as

φ(L)(1− L)d(Yt − µ) = θ(L)εt, εt ∼ N(0, σ2
ε), (7)

where φ(L) = 1−∑p
j=1 φjL

j and θ(L) = 1 +
∑q
j=1 θjL

j are lag polynomials
of respective orders p and q with root outside the unit circle. This model,
which is denoted as FARIMA(p, d, q), generalizes the class of ARIMA(p, d, q)
models with integer degree of differentiation.
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The spectrum of a FARIMA(p, d, q) process is equal to

fY (λ) =
σ2
ε

2π

|θ(exp(−iλ))|2
|φ(exp(−iλ))|2 |1− exp(−iλ)|−2d. (8)

With
α = 2d, (9)

then the spectrum of a FARIMA(p, d, q) process is of the form of equation (1).

• Estimation Issues

Under the hypothesis of Gaussian error terms, the parameters ζ = {θi, φj , µ, d}
are estimated by maximizing the log–likelihood function, in either the time or
the frequency domain; see Beran (1994), Robinson (1994) and Hauser (1999)

for a survey. The parameters ζ̂ have the rate of convergence equal to T 1/2,
where T denotes the sample size, except the parameter µ, the rate of conver-
gence of which is equal to T 1/2−d. This illustrates the difficulty to disentangle
long–range dependence from changes in the mean parameter µ of the process.

• Empirical Volatility: The Need for Nonlinear Long–Memory
Processes

While returns on asset prices, defined as rt = log(Pt/Pt−1), where Pt denotes
the asset price at time t, are uncorrelated, empirical evidence from the series
of absolute returns |rt| and squared returns r2

t has shown that the spectrum
and the autocorrelation function, henceforth ACF, for both series behave like
equations (1) and (2). Both the series |rt| or r2

t are commonly used as empirical
measures for the volatility, which hence appear to be strongly dependent.
Figures 1 and 2 below display the periodogram and the ACF of absolute
returns on dollar-deutschmark FX rate.
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Fig. 1. Periodogram of absolute returns on dollar-deutschmark FX rate
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Fig. 2. ACF of absolute returns on dollar-deutschmark FX rate

The rich dynamics of these volatility processes cannot be parsimoniously
fitted by standard FARIMA processes. Moreover, as emphasized by Granger
(2000, 2002) absolute and squared returns do not display trends, unlike
FARIMA processes. Thus, there is a need to resort to long–range dependent
nonlinear processes.

2.3 Nonlinear Long–Range Dependent Volatility Processes

• ARCH(∞) Processes

Robinson (1991) introduced the class of ARCH(∞) processes, further devel-
oped by Granger and Ding (1995) and other authors. The ARCH(∞) is defined
as

rt = σtεt, εt ∼ D(0, 1), σ2
t = ω + ϕ(L)ε2

t , (10)

where D(0, 1) is a zero-mean unit-variance random variable, and ϕ(L) =∑∞
i=1 ϕiL

i is an infinite order lag polynomial the coefficients of which are
positive and have asymptotically the following hyperbolic rate of decay

ϕj = O
(
j−(1+d)

)
. (11)

However, the existence of a stationary solution to the equation (10) defining
an ARCH(∞) process imply

∑∞
i=1 ϕi < ∞, then the model has moderate

memory; see Giraitis, Kokoszka and Leipus (2000) for further details.
With these assumptions, the autocorrelation function (ACF) of the se-

quence of squared returns {r2
t } satisfies

Cov(r2
0 , r

2
k) � k2d−1. (12)

Setting α = 2d, and Yt = r2
t , the squared returns process defined by a sta-

tionary ARCH(∞) has moderate memory. In the applied econometrics and
financial econometrics literature, the conditions for the existence of a station-
ary solution are disregarded, and it is wrongly claimed that the ARCH(∞)
defined by equation (10) has long–memory.
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• Linear ARCH

Robinson (1991) introduced the linear ARCH, henceforth LARCH, further
studied by Giraitis, Robinson and Surgailis (2000), and defined as

rt = σtεt, εt ∼ D(0, 1), σt = ω + β(L)rt, (13)

where β(L) =
∑∞

i=1 βiL
i is an infinite order lag polynomial the coefficients of

which have asymptotically the following hyperbolic rate of decay

βj = O
(
jd−1

)
, (14)

for some d ∈ (0, 1/2). For instance, the lag polynomial β(L) can be the one
of the moving average form of a FARIMA process.

Giraitis, Robinson and Surgailis (2000) proved the following theorem:

Theorem 1. Suppose Eε4
0 < ∞ and L(Eε4

0)1/2
∑∞
j=1 β

2
j < 1, where L = 7 if

the {εk} is Gaussian and L = 11 in the other cases. Then, there is a stationary
solution to equations (13) and (14) given by orthogonal Volterra series

rt = σtεt, σt = ω

∞∑

l=0

∞∑

j1,...,jl=1

βj1 · · ·βjlεt−j1 · · · εt−j1−···−jl . (15)

The sequence {r2
t } is covariance stationary and

Cov(r2
0 , r

2
k) � k2d−1. (16)

Setting α = 2d, and Yt = r2
t , the ACF of the squared returns process has

the hyperbolic decay of a long–memory process given by equation (2). See
the chapter by Giraitis, Leipus and Surgailis (2005) in this volume for further
details. Giraitis, Kokoszka, Leipus and Teyssière (2000) considered “pox–plot”
based estimators and the local Whittle estimator for the estimation of the
scaling parameter α. We consider in section 4.1 the estimation of the scaling
parameter with wavelet methods.

• The Long–Memory Stochastic Volatility Process

The long–memory stochastic volatility process, proposed by Breidt et al.
(1998), is defined as

rt = σtζt, ζt ∼ N(0, 1), (17)

σt = σ exp(Xt/2), Xt ∼ FARIMA(p, d, q), (18)

where σ is a scale parameter, the processes {Xt} and {ζt} are independent.
The process {r2

t } is linearized as follows

log r2
t = logσ2 +E(log ζ2

t ) +Xt +
(
log ζ2

t −E(log ζ2
t )
)

= µ+Xt + εt, (19)



8 Gilles Teyssière and Patrice Abry

where {εt} is i.i.d, E(εt) = 0 and Var(εt) = σ2
ε . Since ζ ∼ N(0, 1), then log ζ2

is distributed as the logarithm of a χ2
1 random variable, thus E(log ζ2) = 1.27

and σ2
ε = π2/2.

The spectral density of the process {log r2
t } is given by:

f(λ) =
σ2
e

2π

|θ(exp(−iλ))|2

|φ(exp(−iλ))|2
|1− exp(−iλ)|−2d

+
σ2
ε

2π
, λ ∈ (−π, π), (20)

where σ2
e denotes the variance of the innovations of the FARIMA process

{Xt}. Thus, the spectral density of the process {log r2
t } is the sum of the

spectral density of a FARIMA(p, d, q) process and the spectral density of a
white noise process. Setting α = 2d and Yt = log r2

t , then the spectrum fY (λ)
given by equation (20) satisfies equation (1).

Deo and Hurvich (2003) studied the estimation of the long–memory param-
eter using the semiparametric log–periodogram (LP) estimator in the spectral
domain by Geweke and Porter–Hudak (1983). In section 4.2, we compare the
estimations of the long–memory parameter obtained from the wavelet and LP
estimators using Henry’s (2001) feasible optimal bandwidths.

• The Nonlinear Moving Average Process

The nonlinear moving average process, proposed by Robinson and Zaffaroni
(1997), is an extension of Robinson’s (1977) short range dependent nonlinear
moving average process:

rt = µ+ σt−1εt, σt−1 = ρ+

∞∑

i=1

βiεt−i,
∞∑

i=1

β2
i <∞, (21)

where the innovation process {εt} is i.i.d and satisfy the following conditions:

E(εt) = E(ε3
t ) = 0, (22)

E(ε2
t ) = σ2, 0 < σ2 <∞,

E(ε4
t ) = κ+ 3σ4,

where κ is the fourth cumulant of the process {εt}. If the process {εt} is
Gaussian, κ = 0.

The autocorrelation function of the process {r2
t } is given by

γr2(k) = 2σ8β2
|k|δββ(0) + 2σ8δββ(k) + 4ρ2σ6δββ(k) (23)

+σ4κ
(
β2
|k|δββ(0) + δβ2β2(k)

)
+ 4σ4µβ|k|

(
ρ2 + σ2δββ(k)

)

+2ρ2σ6β2
|k| + νyδ(k, 0), k = 0,±1, . . . ,

where νr is a strictly positive constant, δβ% =
∑∞
i=1 βi%i+u, u = 0,±1, . . . for

any square summable sequence {βi} {%i}, δ(·, ·) is the Kronecker delta.
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When the sequence {βi} of the MA form of equation (21) verifies the
convergence rate given by equation (14) and ρ 6= 0, setting α = 2d and
Yt = r2

t , then the autocorrelation function has the rate of decay given by
equation (2).

2.4 Nonlinear Transformations of Fractionally Integrated
Processes

Another approach for modeling non–Gaussian LRD processes consists in tak-
ing nonlinear transformations of Gaussian LRD processes satisfying (2); see
Surgailis (1981), the third chapter by Beran (1994), Giraitis and Surgailis
(1985, 2005) and references therein for further details.

We consider here the case of a Gaussian process {Xt} and its transforma-
tion by a function G(·) such that EG2(Xt) < ∞, then this function can be
expanded in series of Hermite polynomials:

G(x) =

∞∑

k=0

ck
k!
Hk(x), (24)

where

ck = E[G(X)Hk(X)] =
1√
2π

∫ ∞

−∞
G(x)Hk(x)e−x

2/2dx, (25)

so that H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, Hk(x) =

(−1)ke(x2/2)(e−x
2/2)(k), k > 0.

If {Xt} is a Gaussian LRD process with scaling parameter α, satisfying
equation (2), then the expansion

Yt = G(Xt) =

∞∑

J=1

cJ
J !
HJ(Xt), (26)

has the following properties:

• The processes {HJ(Xt), t ∈ ZZ} are orthogonal,
• For 1 6 J 6 1/(1− α), the process {HJ(Xt)} satisfies equation (2) as

Cov(HJ (X0), HJ (Xk)) = J !Cov(X0, Xk)J � J !cJγk
J(α−1), (27)

thus, the memory parameter of {HJ(Xt), t ∈ ZZ} decreases with J .

The index of the lowest nonzero coefficient ck, k > 1, of the transformation
G(·) is called the Hermite rank of the transformation, denoted by R. For a
transformation G(Xt) of rank 1,

Yt = G(Xt) = c1H1(Xt) +
∑

J>2

cJHJ(Xt)/J ! = c1Xt + St, (28)
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the linear term c1Xt dominates the memory of the nonlinear term St. As a
consequence, Yt has the same scaling parameter of Xt: the transformation
G(Xt) does not increase the memory of Xt.

The intensity of long–range dependence of the nonlinear transformed pro-
cess {Yt} coincides with the scaling parameter of the lowest nonzero term
k > 1, as for a transformation G(Xt) of Hermite rank R,

Yt = G(Xt) = cRHR(Xt) +
∑

J>R+1

cJHJ(Xt)/J !, (29)

the memory of the leading term cRHR(Xt) dominates the memory of the
remainder term

∑
J>R+1 cJHJ(Xt)/J !.

Dittman and Granger (2002) considered the particular case Xt ∼ FI(d),
then {Yt = G(Xt), t ∈ ZZ} is a long–memory process with long–memory pa-
rameter d̃ = max{0, (d−0.5)R+0.5}. Here, α = 2d̃. We consider in section 4.4
the estimation of the scaling parameter for some nonlinear transformations of
FI(d) processes.

3 Estimation of the Long–Memory Parameter

We compare the statistical performance of the wavelet estimator with the
two standard semiparametric estimators in the spectral domain used in the
statistical and econometric literature for estimating the scaling parameter α
of the processes introduced in section 2 and of real data, namely the local
Whittle estimator and the LP estimator. The remainder of this section recalls
the definitions and compare the key properties of the wavelet, local Whittle
and LP estimators (hereafter denoted by α̂W , α̂LW and α̂LP ).

Remark 1. All three estimators are sharing similar features:

• They are based on the same semiparametric hypothesis: in the neighbor-
hood of the zero frequency, the spectrum of the process under investigation
satisfies equation (1).

• They imply the estimation of a second-order statistical quantity from the
observed times series (the periodogram IY (λj) or the scalogram SY (j)).

• They involve the choice of a range of frequencies or scales over which the
estimation is to be performed. This crucial step will be addressed with
care as this is one of the main practical issue that strongly controls the
actual performance of these estimators.

• For the LP and LW estimators in the spectral domain, we will select the
range of frequencies using plug–in methods; see Henry (2001), Moulines
and Soulier (2003) for a detailed presentation. For the wavelet estimator,
we will derive the lowest octave using the optimal bandwidth provided by
these plug–in methods.
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3.1 Local Whittle Estimator

• Definition. The local Whittle estimator α̂LW has been proposed by
Künsch (1987) and further developed by Robinson (1995a). It is defined as

α̂LW = arg min
α
G(α,m) :=



ln


 1

m

m∑

j=1

IY (λj)

λ−αj


− α

m

m∑

j=1

ln(λj)



 , (30)

where IY (λj) is the periodogram evaluated on a set of m Fourier frequencies
λj = 2πj/T, j = 1, . . . ,m � [T/2], where [·] denotes the integer part, the
bandwidth parameter m tends to infinity with the sample size T but more
slowly since 1/m + m/T → 0 as T → ∞. The process does not need to be
Gaussian, but its spectrum is differentiable near the zero frequency, and the
process has a moving average representation.

• Performance. The LW estimator has the following asymptotic distribu-
tion √

m(α̂LW − α)
d−→ N(0, 1), (31)

where
d−→ means convergence in distribution. The normality result comes

from the assumption that the spectrum

fY (λ) = Cλ−α
[
1 +Eβ(α)λβ + o(λβ)

]
, 0 < |Eβ(α)| <∞, (32)

as λ → 0+, with β ∈ (0, 2] controls the smoothness of the spectrum near
the zero frequency, C is a strictly positive constant, and the bandwidth m
satisfying

1

m
+
m2β+1 log2m

T 2β
−→ 0, T −→∞, (33)

see Robinson (1995a) and Henry (2001) for further details.

Remark 2. In this framework, Giraitis, Robinson and Samarov (1997) have
demonstrated that the best attainable rate for an estimator α̂ is T−r(β), with
r(β) = β/(1 + 2β) < 1/2, thus slower than the rate T−1/2 of parametric
estimators. For the LW estimator, the rate of convergence is T−r(β)Mn where
(logm)−1/(1+2β)Mn = o(1).

•Range of Frequencies. In this framework, i.e., when fY (λ) satisfies (32)
the optimal bandwidth in the sense of minimization of the mean square error
(MSE) has been provided by Henry and Robinson (1996) as

mopt
LW =

[
(β + 1)4

2β3Eβ(α)2(2π)2β

]1/(1+2β)

T 2β/(1+2β). (34)

With the additional assumption that β = 2, i.e., the smoothest case for the
spectrum, we obtain the optimal bandwidthmopt

LW with the iterative procedure:
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α̂(k) = arg min
α
G(α,m(k)), (35)

mopt
LW

(k+1)
=

(
3T

4π

)4/5 ∣∣∣E2(α(k))
∣∣∣
−2/5

, (36)

this iterative procedure starting at m(0) = T 4/5, with α ∈ (0, 1). Without
additional knowledge on E2(α(k)), this procedure is infeasible. If we further
assume the following specification for the spectrum

fY (λ) = |2 sin(λ/2)|−α f?(λ), (37)

where f?(·) is twice continuously differentiable and positive at λ = 0, then a
feasible optimal bandwidth is obtained with this approximation (see Delgado
and Robinson, 1996):

E2(α(k)) =
f ′′? (0)

2f?(0)
+

α

24
(38)

where f?(0) and its second derivative f ′′? (0) are the first and last coefficients of
the regression of the periodogram I(λj) against |1−exp(iλ)|−α(0)(1, λj , λ

2
j/2)

for the range of Fourier frequencies λj for j = 1, . . . ,m(0). This iterative
procedure defined by equations (35) and (36) converges very quickly.

Remark 3. The choice for this optimal bandwidth is motivated by two reasons:

• This bandwidth, the theory of which has been developed for linear LRD
processes, is also robust to the presence of (long–memory) conditional
heteroscedasticity in the process; see Henry (2001).

• This bandwidth works well, even for nonlinear LRD processes, such as the
LARCH process; see Giraitis, Kokoszka, Leipus and Teyssière (2000).

3.2 Log–Periodogram Regression

• Definition. Geweke and Porter–Hudak (1983) proposed an estimator
α̂LP for α that consists in performing a least squares regression on the log–
periodogram (LP) over a range of frequencies λj :

log IY (λj) = log cf − α log λj + ej , j = 1, . . . ,m, (39)

where the sequence {ej} is interpreted as error terms; see Henry (2005) in this
volume for more details.

• Performance. The LP estimator α̂LP has the following asymptotic dis-
tribution

√
m(α̂LP − α)

d−→ N

(
0,
π2

6

)
. (40)
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Remark 4. This central limit theorem requires that the bandwidth m satisfies
equation (33). As mentioned in the remark 2 above, this estimator has the
slow rate of convergence m1/2. The best rate of convergence T−r(β), with
r(β) = β/(1 + 2β) is attained with Robinson’s (1995b) version of the LP
estimator.

• Regression Range. Usually, to select m, one chooses m = [T 4/5] for
long–memory processes in the conditional mean, e.g., FARIMA processes or
nonlinear transformations of FI(d) processes, see e.g., Dittman and Granger
(2002), and m = [T 1/3] for the LMSV process, see e.g., Deo and Hurvich
(2003). For the LMSV process, this usual choice yields estimates with a
slightly lower bias than he one obtained with m = [T 4/5], while the Root
Mean Squared Error of the estimator is increased by a factor equal to 2. For
other nonlinear processes, like the ones considered in this chapter, this choice
yields strongly biased and then unreliable estimates. Under the restriction
that the spectrum has the specification given by equation (37), Hurvich et al.
(1998) proposed an optimal bandwidth mopt

LP minimizing the MSE for the LP
estimator

mopt
LP =

[
27(2f?(0))2

512π2(f ′′? (0))2

]1/5

T 4/5. (41)

A feasible bandwidth is obtained by estimating f?(0) and f ′′? (0) as above for
the case of the optimal bandwidth for the LW estimator; see the useful paper
by Henry (2001) for further details.

Remark 5. The choice m = cT r(β) gives the best rate, and with a suitable
choice of c minimizes the MSE. However, this choice does not imply the central
limit theorem of equation (40).

Remark 6. Unlike for the optimal bandwidth of the LW estimator, the proper-
ties of robustness of α̂LP to heteroskedasticity have to be established, so that
we tend to prefer α̂LW .

3.3 Wavelet Based Estimator

A Short Introduction to Wavelet Analysis

For complete and thorough introductions to wavelet analysis and decompo-
sitions, the reader is referred to e.g., the books by Daubechies (1992) and
Mallat (1998).

•Mother–Wavelet.

Definition 2. A wavelet is a function ψ(·) defined on IR such that
∫

IR

ψ(t) dt = 0, (42)

i.e., satisfies the admissibility condition.
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We also assume that ψ(t) satisfies some integrability condition, i.e., ψ(t) ∈
L1(IR)∩L2(IR). The wavelet function is then a band–pass function, i.e., a small
“wave” the support of which is almost limited in both the time and frequency
domains. To perform a wavelet analysis, one choose a reference wavelet, called
the mother–wavelet, hereafter denoted ψ0.
• Wavelet–Basis. From this ψ0, a entire family of wavelets is designed
using two operators:

1. A times–shift operator: (Tτψ0)(t) = ψ0(t− τ),

2. A dilation (or change of scale) operator: (Daψ0)(t) =
1√
a
ψ0

(
t

a

)
.

For the particular purpose of this work, we consider here only a particu-
lar type of wavelet decomposition, the so-called Discrete Wavelet Transform
(DWT). From the time-shift and dilation operators above, the specific collec-
tion of translated and dilated templates of ψ0, defined as

{
ψj,k = 2−j/2ψ0(2−jt− k), j ∈ ZZ, k ∈ ZZ

}
, (43)

forms (a possibly orthonormal) basis of L2(IR).

• Wavelets Coefficients of the Discrete Wavelet Transform. The
wavelet coefficients of the DWT for an analyzed process or function Yt are
labeled dY (j, k) and defined as

dY (j, k) = 〈Y, ψj,k〉 =

∫

IR

Y (t)ψj,k(t) dt, (44)

where ψj,k is the wavelet basis defined in (43). It is worth noting that
the dY (j, k)s can be computed at a very low cost (of the order of that
of a FFT) from a recursive pyramidal algorithm on the condition that the
mother-wavelet ψ0 is chosen to belong to a Multiresolution analysis; see e.g.,
Daubechies (1992) or Mallat (1998).

• Number of Vanishing Moments and Polynomial Trends. The
mother wavelet ψ0 is further characterized by an integer N , called the number
of vanishing, or zero, moments and defined as:

∫

IR

tkψ0(t)dt ≡ 0, ∀k = 0, . . . , N − 1. (45)

Obviously, from the admissibility condition, equation (42) above, one has
N ≥ 1. This integer N constitutes a key degree of freedom in wavelet analysis
that can be freely chosen by the user and tuned to a given purpose. We will
show that the use of this degree of freedom plays a central role in the analysis
of long–range dependent processes as well as in the discrimination between
genuine strong dependence, and non–stationarities such as those existing in
change–points processes or trended processes. Indeed, by definition of N , the
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wavelets coefficients of any polynomial of order P < N will be strictly null
dP (j, k) ≡ 0. By linearity of the wavelet transform, it implies that wavelet
coefficients are identical for the processes {Yt} and {Yt + Pt}. This implies,
for instance, that when Yt is a zero-mean long–range dependent process, the
potential superposition of a non–stationary polynomial mean will not affect
the measure of the long–memory parameter as long as the degree of the poly-
nomial remain strictly lower than the number of vanishing moment, that can
be varied by the user. It has been shown elsewhere, see e.g., Abry and Veitch
(1999) or Veitch and Abry (2001), that increasing N reduces the impact of
the superimposed trend even if it is not strictly a polynomial one. This will be
further discussed in Section 5. The counterpart to the increase of N however
usually lies in the corresponding increase in the time support of the wavelet,
an important practical drawback as discussed below.

Wavelet Analysis of Long–Range Dependent Processes

Let Yt denote a second order stationary random process. It can be shown that
its wavelet coefficients constitute a zero-mean random field that satisfies:

EdY (j, k)dY (j′, k′) =∫

IR

fY (λ)2j/2Ψ0(2jλ)2j
′/2Ψ∗0 (2j

′
λ) exp(−ı2π(2jk − 2j

′
k′))dλ, (46)

where Ψ0(λ) denotes the Fourier transform of the mother wavelet ψ0.
From this general general result, it can be shown that when Yt is a sec-

ond order stationary long–range dependent process, the coefficients dY (j, k)
possess the two following key properties:

P1 : The process {dY (j, k), k ∈ ZZ} is stationary if N ≥ (α − 1)/2, and its
variance reproduces in the limit of large scales the power law behavior of
the spectrum of Yt,

2j → +∞, EdY (j, ·)2 ' 2jαcfC(α, ψ0), C(α, ψ0) =

∫
|λ|−α|Ψ0(λ)|2dλ,

(47)
P2 : The process {dY (j, k), k ∈ ZZ} is stationary and short–range dependent,

if N > α/2. The residual correlations between the elements of the sequence
{dY (j, k), k ∈} is in reverse relationship with N ; see Flandrin (1989):

EdY (j, k)dY (j, k′) ≈ C |k − k′|α−1−2N
, |k − k′| −→ ∞. (48)

Properties P1 and P2 above constitute the main rationale for the wavelet
analysis of long–range dependent data. Indeed, P1 yields

log2

(
EdY (j, ·)2)

)
= jα+ log2(cfC(α, ψ0)). (49)

This invites to perform a linear regression in a log-log plot. However, the
expectation EdY (j, ·)2 needs to be estimated from a (single, finite duration)
observation. This is where P2 plays a key role: the ensemble average can be
efficiently replaced with the time average 1/nj

∑nj
k=1 dY (j, k)2.
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Estimation of the Long–Memory Parameter

This estimator was first proposed and studied in Abry et al. (1995) and Abry
and Veitch (1998) and further developed and analyzed in Veitch and Abry
(1999).

•Definition. Let SY (j) = 1/nj
∑nj
k=1 dY (j, k)2, where nj denotes the num-

ber of wavelet coefficients dY (j, k) available at octave j. Roughly, nj varies as
2−jT , where T denotes the number of observed samples. The wavelet-based
estimator consists of a (weighted) linear regression in the so-called logscale
diagram: log2 SY (j) versus log2 2j = j. Precisely, it is defined as:

α̂W =

j2∑

j1

wj(log2 SY (j)− (ψ(nj/2)/ log 2− log2(nj/2))), (50)

where ψ(z) := Γ ′(z)/Γ (z) is the Psi function and the weights are chosen to
satisfy the two constraints:

j2∑

j1

jwj ≡ 1,

j2∑

j1

wj ≡ 0. (51)

A natural form for the wjs reads:

wj =
1

aj

S0j − S1

S0S2 − S2
1

, (52)

where Sp =
∑j2

j1
jp/aj , p = 0, 1, 2. The ranges of octaves j ∈ [j1, j2] is assumed

to be a priori chosen; this will be discussed below. The ajs are arbitrary
coefficients used to weight the estimation according to the confidence given
to log2 S(j). Precisely, for the estimation of the LRD parameter, we chose
aj ≡ ζ(2, nj/2), with ζ(2, z) :=

∑∞
n=0 1/(z + n)2 a generalized Riemann Zeta

function, that provides us with an approximation of Var log2 S(j). ζ(2, nj/2)
turns out to be asymptotically proportional to 1/nj (see below). It implies
that the larger j, the smaller nj , the less log2 S(j) contributes to the estimate
of α.
• Performance. To study approximately but analytically the performance
of this estimator, the three following assumptions are assumed to hold:

H1: For each j, the sequences {dY (j, ·)} are stationary and uncorrelated,
H2: The processes {dY (j, ·)} and {dY (j′, ·)}, j 6= j′ are uncorrelated,
H3: The processes {dY (j, ·)}, j ∈ [j1, j2], are Gaussian.

The two first points constitute idealizations of the decorrelation property P2.
The third point is obviously satisfied when {Yt} is a Gaussian process.

Using these assumptions, it can be shown that
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E log2 S(j) = log2EdY (j, ·)2 + (ψ(nj/2)/ log 2− log2(nj/2)), (53)

Var log2 S(j) = ζ(2, nj/2)/ log2 2. (54)

From this, one shows that

Eα̂W = α, (55)

Varα̂W =
(1− 2−J)/ log2 2

1− 2−(J+1)(J2 + 4) + 2−2J

1

T
, (56)

where J = j2 − j1 + 1 is the width of the regression range. Veitch and Abry
(1999) conjectured the asymptotic approximation of the wavelet estimator

√
T (α̂W − α) ≈ N

(
0,

1

ln2(2)21−j1

)
, (57)

where j1 is the lowest octave, the long–memory behavior being captured by
the octaves larger than j1.

This analytical yet only approximative performance turns out to be ex-
tremely close to the actual ones, even when Yt are non Gaussian processes.
In practice, α̂W has a negligible bias and presents a Gaussian statistic with a
variance (approximately) known without the estimation of any quantity. An
effective confidence interval can hence be constructed.

Under some assumptions, i.e., nj1 →∞, but more slowly than the sample
size T , Bardet, Lang, Moulines and Soulier (2000) proved the asymptotically
Normal distribution of this estimator

√
nj1(α̂W − α)

d−→ N(0,Kv(α)), (58)

where the expression of Kv(α) depends on the unknown scaling parameter α.
•Regression Range. Let us turn now to the choice of the regression range
j ∈ [j1, j2]. One might first use the graphical representation of the logscale
diagram, i.e., the graphical plot of the yj against the octaves j from which
is estimated the scaling parameter α̂W . A graphical analysis might help to
select the upper and lower octaves that have a too high leverage effect on the
regression line; see Belsley et al. (1980).

Obviously, as LRD implies a power law behavior in the limit of large scales,
2j → +∞, the upper bound j2 for the octaves has to be chosen as large as
allowed by the observation length. We chose

j2 = [log2 T − log2(2N + 1)] , (59)

where [·] denotes the integer part, so that borders effects do not affect the
estimation of the variance. This is equivalent to the fact that the range of
frequencies for the LP and LW estimators starts at λj = π/T .

The choice for j1, i.e., the cutoff between short–range dependence and
long–range dependence, is similar to the bandwidth selection problem in semi-
parametric/nonparametric statistics and is exactly equivalent to the choice of
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the m parameter for the local Whittle and log-periodogram estimators intro-
duced above. This choice consists in optimizing a bias-variance trade-off: a too
small j1 should induce bias as the regression range would include octaves with
departures from the power law due to short-range dependencies, conversely,
a too large j1 decreases the bias but implies an increase of the variance, as
shown in relation (57). Abry et al. (2003) discussed the issue of the selec-
tion for the lower octave j1 in connexion with the bandwidth selection issue
for the local Whittle (LW) estimator, which has been addressed by Robinson
and Henry (1996) and Henry (2001, 2005); see equation (36). The frequency
cutoff, associated with the optimal bandwidth mopt

LW for the LW estimator, is

then equal to mopt
LW /T , and corresponds to the scale 2−j1 . Thus, using mopt

LW

we could define the optimal lower scale as

jopt1 =

[
logT − logmopt

LW

log 2

]
. (60)

A similar decision rule is possible using the feasible optimal bandwidth mopt
LP

for the log–periodogram (LP) estimator; see equation (39). Indeed, estimation
results given by equation (60) with mopt

LW and mopt
LP are very close, with a slight

advantage for mopt
LW as the RMSE is slightly lower with this bandwidth.

In Veitch, Abry and Taqqu (2003), it has been proposed that the choice of
the lowest octave j1 might be guided using a goodness–of–fit function, such
as the generalized Pearson statistic defined as

Q =

j2∑

j=j1

(yj − α̂W j − â)
2

σ2
j

, (61)

where â is the unbiased estimator for log2(ĉfC), and σ2
j = Var(yj) . Under

the null hypothesis of Gaussian residuals, the statistic Q ∼ χ2(J − 2), where
J = j2 − j1 + 1. The statistic Q can be viewed as a function of j1, denoted
Q(j1). Studying the evolution of Q as a function of j1, Veitch, Abry and Taqqu
(2003) proposed an empirical criterion to choose automatically j1. It turns
out that this procedure amounts for most cases to select the j1 that ensures
the lowest RMSE, and hence the bias-variance trade-off. Bardet et al. (2000)
provided an analytical expression for the choice of an asymptotically optimal
j1 minimizing the MSE, and conjectured that a feasible approximation of this
optimal bandwidth using estimates of α, f?(0) and f ′′? (0) as for the LW and
LP estimators might be obtained. This procedure is beyond the scope of this
chapter.

• Choosing the Number of Vanishing Moments. On one hand, equa-
tion (48) may lead to think that the larger N , the weaker the correlation
amongst wavelet coefficients, however we saw that the LRD is turn in SRD
as soon as N > α/2. On the other hand, as already mentioned, increasing N
induces an increase of the wavelet size and hence of the border effects. In turn,
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this produces a decrease of j2, as summarized in equation (59). Therefore, an
optimal practical choice for the estimation of the parameter α of true LRD pro-
cesses is N = 2 or N = 3, as will be seen on numerical simulations conducted
in next sections. However, in disentangling LRD from non–stationarities, the
possibility of varying N and using larger N is fruitful.

• Discrete Time. By definition, the DWT applies to continuous time
processes, see equation (44). However, in most practical cases, only a collection
of discrete samples {yk, k = 1, . . . , n} is available. This specific difficulty was
carefully addressed in Veitch, Taqqu and Abry (2001). Numerical simulations
such as those proposed in the next two sections taking into account this point
are under investigation; see Abry and Teyssière (2005).

4 Estimation of the Long–Memory Parameter for
Nonlinear Long–Range Dependent Processes

• Protocol. In this section, we compare by means of numerical simulations,
the performance of the local Whittle, log-periodogram and wavelet estimators
for the long–memory parameter. Because wavelet based estimation of the
long–memory parameter for linear FARIMA processes has been considered
in Veitch and Abry (1999), we consider in this section the estimation of the
scaling parameter of the nonlinear processes described in section 2 .

For each process of interest, 5000 replications, with sample sizes T were
numerically synthetised. In general, we used T = 10000, in some cases, we went
up to T = 20000, for having a better idea on the asymptotic bias for some
highly nonlinear processes. For each simulation, bias and Root Mean Squared
Error (RMSE) defined respectively asB = 〈α̂〉−α and RMSE =

√
B2 + 〈〈α̂〉〉),

where 〈·〉 and 〈〈·〉〉 denote respectively the sample mean and sample variance
estimators computed from the 5000 replications.

For the wavelet-based estimator, we used the Daubechies wavelets with the
number of vanishing moments ranging from N = 2, . . . , 10. We considered the

range of lowest octaves j1 = 1, . . . , 7 and denoted by α̂
(j1)
W the corresponding

estimates. We computed the “optimal” j1 according to equation (60), α̂mW
denotes the wavelet estimator with the lowest octave j1 derived from equation
(60). We also chose the j1 and N that minimize the Root Mean Squared Error
(RMSE) of α̂W . We denote by jRMSE1 and α̂RMSEW the corresponding j1 and
estimate. Systematically, we compare this RMSE to that obtained with the
choice j1 = 6 and N = 2. As we will see below, the RMSE for this choice of
(j1, N) is not too far from the minimum one and the bias is lower. On the
basis of simulation results for T = 20000, we also conjecture that for some of
these nonlinear processes we could get rid off the bias with very large samples,
so that we could select a higher value for j1 which minimizes the RMSE. For
each simulation, Tables are reporting the results and logscale diagrams are
displayed.
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For the the local Whittle and the log–periodogram estimators, we respec-
tively denote by α̂optLW and α̂optLP those obtained with the optimal bandwidth
mopt as in equations (36) and (41).

4.1 The Long–Memory Linear ARCH Process

The long–memory LARCH process is defined as:

rt = σtεt, εt ∼ D(0, 1), σt = ω + β(L)rt, (62)

where the coefficients βj of the lag polynomial β(L) have the rate of decay
βj = O

(
jα/2−1

)
, for some 0 < α < 1. We choose here three parameteriza-

tions for β(L) from the moving average representation of a FARIMA(0,d,0),
a FARIMA(1,d,0) and a FARIMA(0,d,1) processes, with α = 2d, that we re-
spectively denote as LARCH A, LARCH B and LARCH C. For LARCH
B and LARCH C, we respectively set φ = −0.20 and θ = 0.20.

We consider the following values for the scaling parameter α = 0.10, 0.15,
0.20, . . . , 0.60. For values of α over 0.60, the sequence of coefficients {βj}
must be largely rescaled for satisfying the stationarity condition of theorem
1, i.e., L(Eε4

0)1/2
∑
j=1 β

2
j < 1. We estimate the scaling parameter using the

wavelet estimator and the two spectral estimators LW and LP. We report
in Table 2 the LP results only as they are very close to the LW estimator,
although with a slightly higher RMSE as theoretically expected, and so far
there are no results for the estimation results of the LARCH process with the
LP estimator, while Giraitis, Kokoszka, Leipus and Teyssière (2000) already
report estimation results for LARCH processes with the LW estimator for
T = 3000, 6000. Tables 1 and 2 below report estimation results for the LARCH
processes for T = 10, 000 while Tables 3 and 4 give the results for T = 20, 000.
For T = 20, 000, estimation results for the LW estimator are reported on Table
4.

Figures 3 to 5 below display the logscale diagrams for LARCH A pro-
cesses, with T = 10000 and T = 20000. We can see that the “correct” LRD
behavior is captured by the octaves j greater than 5. When T increases, the
number of octaves that can be used for the wavelet regression is obviously
larger, so that wavelet estimates are more reliable.
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Fig. 3. Logscale diagram for the realization of a LARCH A process, with α = 0.40,
T = 10000. We select here j1 = 1, j2 = 11, N = 2
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Fig. 4. Logscale diagram for the realization of a LARCH A process, with α = 0.40,
T = 10000. We select here j1 = 6, j2 = 9, N = 2
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Fig. 5. Logscale diagram for the realization of a LARCH A process, with α = 0.40,
T = 20000. We select here j1 = 6, j2 = 11, N = 2

From the results in Tables 1 to 4, we can conclude that even for T =
10, 000, both the LW and LP estimators perform slightly better than the
wavelet estimator as both their bias and RMSE are slightly lower. For this
sample size, choosing the wavelet estimator with j1 = 6 and N = 2 reduces the
bias, which becomes smaller than the one of the LW estimator, but increases
the variance. However, for T = 20, 000, the RMSE of the estimates for j1 = 6
is reduced and becomes closer to the one of the LW estimator. For T = 20, 000,
jRMSE1 is often equal to 5, the wavelet estimates are closer to the LW estimates,
and we conjecture that for larger samples j1 = 6 would minimize the RMSE,
so that the performance of the wavelet, LP and LW estimator would become
very close.

We also note that the estimations for the wavelet estimator with j1 chosen
according to equation (60) gives interesting results, not as good as those given
by jRMSE1 , but that can be used as a first approximation.
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Table 1. Estimation of the scaling parameter for LARCH processes. T = 10000,
N = 2

Model α α̂RMSEW jRMSE1 Eα̂RMSEW − α RMSE α̂
(6)
W Eα̂

(6)
W − α RMSE

LARCH A 0.10 0.0255 3 -0.0745 0.0824 0.0445 -0.0555 0.1350
0.15 0.0690 4 -0.0810 0.0971 0.0966 -0.0534 0.1357
0.20 0.1199 4 -0.0801 0.0980 0.1622 -0.0378 0.1330
0.25 0.1785 4 -0.0715 0.0937 0.2325 -0.0175 0.1329
0.30 0.2394 4 -0.0606 0.0891 0.3046 0.0046 0.1381
0.35 0.3010 4 -0.0490 0.0891 0.3618 0.0118 0.1487
0.40 0.3349 4 -0.0650 0.1028 0.3994 -0.0006 0.1549
0.45 0.3880 5 -0.0620 0.1252 0.4228 -0.0272 0.1585
0.50 0.4060 5 -0.0940 0.1442 0.4463 -0.0537 0.1663
0.55 0.4234 5 -0.1266 0.1677 0.4697 -0.0803 0.1778
0.60 0.4928 6 -0.1072 0.1924 0.4928 -0.1072 0.1923

LARCH B 0.10 0.0125 1 -0.0875 0.0898 0.0039 -0.0961 0.1554
0.15 0.0128 2 -0.1372 0.1399 0.0314 -0.1185 0.1704
0.20 0.0633 5 -0.1367 0.1581 0.0824 -0.1176 0.1706
0.25 0.1222 5 -0.1278 0.1514 0.1531 -0.0969 0.1586
0.30 0.1938 5 -0.1062 0.1354 0.2351 -0.0649 0.1441
0.35 0.2712 5 -0.0788 0.1180 0.3190 -0.0310 0.1367
0.40 0.3483 5 -0.0517 0.1069 0.3977 -0.0023 0.1397
0.45 0.4202 5 -0.0298 0.1061 0.4669 0.0169 0.1504
0.50 0.4249 4 -0.0751 0.1117 0.5216 0.0216 0.1640
0.55 0.4901 5 -0.0599 0.1281 0.5375 -0.0125 0.1641
0.60 0.4987 5 -0.1013 0.1520 0.5530 -0.0470 0.1709

LARCH C 0.10 0.1014 1 0.0014 0.0306 0.0725 -0.0275 0.1332
0.15 0.1369 1 -0.0131 0.0375 0.1232 -0.0268 0.1382
0.20 0.1477 1 -0.0523 0.0635 0.1641 -0.0359 0.1426
0.25 0.1567 1 -0.0933 0.1004 0.2032 -0.0468 0.1479
0.30 0.1979 4 -0.1021 0.1243 0.2406 -0.0594 0.1545
0.35 0.2500 5 -0.1000 0.1413 0.2766 -0.0734 0.1624
0.40 0.2803 5 -0.1197 0.1570 0.3114 -0.0886 0.1717
0.45 0.3092 5 -0.1408 0.1745 0.3451 -0.1049 0.1824
0.50 0.3368 5 -0.1632 0.1939 0.3777 -0.1223 0.1945
0.55 0.4093 6 -0.1407 0.2081 0.4093 -0.1407 0.2081
0.60 0.4398 6 -0.1602 0.2230 0.4398 -0.1602 0.2230



24 Gilles Teyssière and Patrice Abry

Table 2. Estimation of the scaling parameter for LARCH processes. T = 10000,
N = 2. The optimal bandwidth mopt

LP is used for the LP estimator

Model α α̂mW Eα̂mW − α RMSE α̂optLP Eα̂optLP − α RMSE

LARCH A 0.10 0.0289 -0.0711 0.0847 0.0323 -0.0677 0.0821
0.15 0.0654 -0.0845 0.0981 0.0778 -0.0722 0.0869
0.20 0.1149 -0.0851 0.1011 0.1379 -0.0621 0.0826
0.25 0.1756 -0.0744 0.0967 0.2085 -0.0415 0.0754
0.30 0.2412 -0.0588 0.0934 0.2792 -0.0208 0.0749
0.35 0.3097 -0.0403 0.0964 0.3482 -0.0018 0.0785
0.40 0.3485 -0.0515 0.1090 0.3889 -0.0111 0.0902
0.45 0.3672 -0.0827 0.1310 0.4138 -0.0362 0.1014
0.50 0.4285 -0.0715 0.1317 0.4421 -0.0579 0.1089
0.55 0.4081 -0.1419 0.1788 0.4668 -0.0831 0.1313
0.60 0.4284 -0.1715 0.2041 0.4935 -0.1064 0.1495

LARCH B 0.10 0.0001 -0.0999 0.1102 -0.0019 -0.1019 0.1119
0.15 0.0130 -0.1370 0.1448 0.0196 -0.1304 0.1379
0.20 0.0415 -0.1585 0.1658 0.0605 -0.1395 0.1480
0.25 0.0876 -0.1624 0.1711 0.1216 -0.1284 0.1408
0.30 0.1507 -0.1493 0.1617 0.2042 -0.0958 0.1178
0.35 0.2314 -0.1186 0.1417 0.2905 -0.0595 0.1015
0.40 0.3228 -0.0772 0.1205 0.3803 -0.0197 0.0899
0.45 0.4041 -0.0459 0.1127 0.4571 0.0071 0.0964
0.50 0.4688 -0.0312 0.1153 0.5192 0.0192 0.1056
0.55 0.4813 -0.0687 0.1318 0.5381 -0.0119 0.1075
0.60 0.4921 -0.1079 0.1565 0.5569 -0.0431 0.1178

LARCH C 0.10 0.0640 -0.0360 0.0661 0.0631 -0.0339 0.0596
0.15 0.1066 -0.0434 0.0751 0.1094 -0.0406 0.0643
0.20 0.1380 -0.0620 0.0889 0.1473 -0.0527 0.0758
0.25 0.1675 -0.0825 0.1063 0.1842 -0.0658 0.0875
0.30 0.1971 -0.1029 0.1248 0.2206 -0.0794 0.1022
0.35 0.2256 -0.1244 0.1459 0.2574 -0.0926 0.1160
0.40 0.2542 -0.1458 0.1674 0.2940 -0.1060 0.1302
0.45 0.2824 -0.1676 0.1893 0.3308 -0.1192 0.1440
0.50 0.3113 -0.1887 0.2110 0.3662 -0.1338 0.1598
0.55 0.3404 -0.2096 0.2327 0.4022 -0.1478 0.1736
0.60 0.3694 -0.2306 0.2541 0.4383 -0.1617 0.1874
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Table 3. Estimation of the scaling parameter for LARCH processes. T = 20000,
N = 2

Model α α̂RMSEW jRMSE1 Eα̂RMSEW − α RMSE α̂
(6)
W Eα̂

(6)
W − α RMSE

LARCH A 0.10 0.0315 4 -0.0685 0.0767 0.0475 -0.0525 0.0925
0.15 0.0858 5 -0.0642 0.0821 0.1022 -0.0478 0.0910
0.20 0.1464 5 -0.0536 0.0757 0.1701 -0.0299 0.0850
0.25 0.2132 5 -0.0368 0.0675 0.2419 -0.0081 0.0830
0.30 0.2802 5 -0.0198 0.0642 0.3107 0.0107 0.0880
0.35 0.3433 5 -0.0067 0.0680 0.3726 0.0226 0.0972
0.40 0.3809 5 -0.0191 0.0746 0.4113 0.0113 0.1003
0.45 0.4007 5 -0.0493 0.0880 0.4361 -0.0139 0.1018
0.50 0.4202 5 -0.0798 0.1085 0.4612 -0.0388 0.1092
0.55 0.4862 6 -0.0638 0.1213 0.4862 -0.0638 0.1213
0.60 0.5110 6 -0.0890 0.1371 0.5110 -0.0890 0.1371

LARCH B 0.10 0.0120 1 -0.0880 0.0891 0.0065 -0.0935 0.1208
0.15 0.0249 5 -0.1251 0.1347 0.0368 -0.1132 0.1368
0.20 0.0913 6 -0.1087 0.1335 0.0913 -0.1086 0.1335
0.25 0.1653 6 -0.0847 0.1157 0.1653 -0.0847 0.1157
0.30 0.2491 6 -0.0509 0.0955 0.2491 -0.0509 0.0955
0.35 0.3356 6 -0.0164 0.0855 0.3356 -0.0164 0.0855
0.40 0.3612 5 -0.0388 0.0726 0.4120 0.0120 0.0895
0.45 0.4337 5 -0.0163 0.0697 0.4808 0.0308 0.1009
0.50 0.4943 5 -0.0057 0.0764 0.5357 0.0357 0.1122
0.55 0.5059 5 -0.0441 0.0885 0.5533 0.0033 0.1074
0.60 0.5705 6 -0.0295 0.1121 0.5705 -0.0295 0.1121

LARCH C 0.10 0.1019 1 0.0019 0.0218 0.0743 -0.0257 0.0851
0.15 0.1435 1 -0.0065 0.0245 0.1270 -0.0230 0.0878
0.20 0.1562 1 -0.0438 0.0504 0.1696 -0.0304 0.0915
0.25 0.1910 5 -0.0590 0.0862 0.2104 -0.0396 0.0966
0.30 0.2259 5 -0.0741 0.1243 0.2494 -0.0506 0.1033
0.35 0.2869 6 -0.0631 0.1113 0.2869 -0.0631 0.1113
0.40 0.3232 6 -0.0768 0.1210 0.3232 -0.0768 0.1210
0.45 0.3585 6 -0.0915 0.1321 0.3584 -0.0915 0.1321
0.50 0.3928 6 -0.1072 0.1446 0.3928 -0.1072 0.1446
0.55 0.4261 6 -0.1239 0.1585 0.4261 -0.1239 0.1585
0.60 0.4583 6 -0.1717 0.1737 0.4583 -0.1417 0.1786
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Table 4. Estimation of the scaling parameter for LARCH processes. N = 2, T =
20000. The optimal bandwidth mopt

LW is used for the LW estimator

Model α α̂mW Eα̂mW − α RMSE α̂optLW Eα̂optLW − α RMSE

LARCH A 0.10 0.0299 -0.0701 0.0774 0.0349 -0.0651 0.0736
0.15 0.0687 -0.0813 0.0888 0.0826 -0.0674 0.0771
0.20 0.1239 -0.0761 0.0872 0.1470 -0.0530 0.0692
0.25 0.1926 -0.0574 0.0780 0.2229 -0.0271 0.0584
0.30 0.2678 -0.0322 0.0684 0.2990 -0.0010 0.0563
0.35 0.3355 -0.0145 0.0694 0.3663 0.0163 0.0635
0.40 0.3754 0.0246 0.0765 0.4086 0.0086 0.0659
0.45 0.3969 -0.0531 0.0907 0.4372 -0.0128 0.0690
0.50 0.4178 -0.0822 0.1108 0.4671 -0.0329 0.0776
0.55 0.4381 -0.1119 0.1350 0.4975 -0.0525 0.0900
0.60 0.4573 -0.1427 0.1620 0.5285 -0.0715 0.1040

LARCH B 0.10 0.0002 -0.0088 0.1050 -0.0003 -0.1003 0.1055
0.15 0.0155 -0.1345 0.1385 0.0237 -0.1263 0.1308
0.20 0.0471 -0.1529 0.1570 0.0686 -0.1314 0.1369
0.25 0.0999 -0.1501 0.1564 0.1375 -0.1125 0.1226
0.30 0.1800 -0.1200 0.1333 0.2305 -0.0695 0.0904
0.35 0.2751 -0.0749 0.0972 0.3278 -0.0222 0.0647
0.40 0.3592 -0.0408 0.0748 0.4141 0.0141 0.0652
0.45 0.4326 -0.0174 0.0704 0.4862 0.0362 0.0782
0.50 0.4931 -0.0069 0.0789 0.5429 0.0429 0.0789
0.55 0.5057 -0.0433 0.0915 0.5652 0.0152 0.0790
0.60 0.5190 -0.0810 0.1160 0.5883 -0.0117 0.0806

LARCH C 0.10 0.0650 -0.0350 0.0525 0.0650 -0.0350 0.0525
0.15 0.1066 -0.0434 0.0751 0.1094 -0.0406 0.0640
0.20 0.1425 -0.0575 0.0736 0.1523 -0.0477 0.0629
0.25 0.1756 -0.0744 0.0898 0.1921 -0.0579 0.0739
0.30 0.2094 -0.0906 0.1066 0.2321 -0.0679 0.0848
0.35 0.2439 -0.1061 0.1229 0.2731 -0.0769 0.0952
0.40 0.2796 -0.1204 0.1373 0.3140 -0.0860 0.1047
0.45 0.3137 -0.1363 0.1529 0.3551 -0.0949 0.1143
0.50 0.3460 -0.1540 0.1696 0.3955 -0.1045 0.1239
0.55 0.3756 -0.1744 0.1888 0.4351 -0.1149 0.1343
0.60 0.4032 -0.1968 0.2098 0.4743 -0.1257 0.1451

4.2 The Long–Memory Stochastic Volatility Process

We consider the long–memory stochastic volatility (LMSV) process defined
by equation (17) with the scale parameter σ = 0.8. The process {Xt} is a
FARIMA(0,d,0) process generated using the Durbin–Levinson algorithm. Ta-
bles 5 and 6 report the estimation results for the long–memory parameter
α = 2d obtained from the local Whittle, wavelet and log–periodogram esti-
mators. The comparison with the LP estimator is of interest as the use of
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this estimator for LMSV processes is theoretically justified. Deo and Hurvich
(2003) report few simulation results for m = [T 0.3], [T 0.4], [T 0.5]: the bias in-
creases with m, while the RMSE decreases. We use both the optimal feasible
bandwidth given by (41) and m = [T 0.3].

Figures 6 and 7 below display the logscale diagrams for one realization of
a LMSV process, with different choices for the range of octaves [j1, j2]: the
long–range dependent behavior of the LMSV process is captured for j1 ≥ 6.
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Fig. 6. Logscale diagram for the realization of a LMSV process, with α = 0.90. We
select here j1 = 1, j2 = 11, N = 2

These three estimators give here very similar results, when the optimal
bandwidth is used for the LP estimator. This set of simulation results should
stimulate further theoretical research on this wavelet estimator for volatility
processes. We mention that in that case, the choice for j1 using equation (60),
with either mopt

LW or mopt
LP , does not yield the best results.

When using the standard bandwidth m = [T 0.3], the mean of the α̂LP
estimates are equal to -0.0598, -0.111, 0.0722, 0.1794, 0.2986, 0.4224, 0.5437,
0.6584, 0.7680, for scaling parameters respectively equal to 0.10, 0.20, 0.30,
0.40, 0.50, 0.60, 0.70, 0.80, 0.90, with a RMSE ranging from 0.4897 to 0.5139,
i.e., the bias is slightly reduced only for α > 0.40, but the RMSE is always
very high so that the estimates obtained with m = [T 0.3] are not reliable.
As we will see for other volatility processes, the choice m = [T 0.3] does not
appear very sensible.
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Fig. 7. Logscale diagram for the realization of a LMSV process, with α = 0.90. We
select here j1 = 6, j2 = 11, N = 2

Table 5. Estimation of the scaling parameter for LMSV processes, wavelet estima-
tor. T = 10000

α α̂RMSEW jRMSE1 Eα̂W − α RMSE α̂
(6)
W Eα̂

(6)
W − α RMSE

0.10 0.0183 2 -0.0817 0.0847 0.0213 -0.0787 0.0898
0.20 0.0519 4 -0.1481 0.1559 0.0492 -0.1508 0.1569
0.30 0.1043 5 -0.1957 0.2092 0.0876 -0.2124 0.2170
0.40 0.1872 6 -0.2128 0.2441 0.1872 -0.2128 0.2441
0.50 0.2764 6 -0.2236 0.2536 0.2764 -0.2236 0.2536
0.60 0.3807 6 -0.2193 0.2499 0.3807 -0.2193 0.2499
0.70 0.4959 6 -0.2051 0.2367 0.4959 -0.2051 0.2367
0.80 0.6177 6 -0.1823 0.2184 0.6177 -0.1823 0.2184
0.90 0.7423 6 -0.1577 0.1986 0.7423 -0.1577 0.1986

Remark 7. The results reported here for the wavelet estimator α̂RMSEW are ob-
tained with N = 2. When N increases, both bias and RMSE (slightly) in-
crease, but the octave which minimizes the RMSE does not depend on the
choice of N .
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Table 6. Estimation of the scaling parameter for LMSV processes, LW and LP
estimator. T = 10000. The optimal bandwidths mopt

LP and mopt
LW are respectively used

for the LP and LW estimators

α α̂optLP Eα̂optLP − α RMSE α̂optLW Eα̂optLW − α RMSE

0.10 0.0153 -0.0847 0.1102 0.0186 -0.0814 0.0927
0.20 0.0516 -0.1484 0.1644 0.0508 -0.1492 0.1557
0.30 0.1049 -0.1951 0.2075 0.0971 -0.2029 0.2082
0.40 0.1764 -0.2236 0.2346 0.1622 -0.2378 0.2437
0.50 0.2656 -0.2344 0.2453 0.2525 -0.2475 0.2555
0.60 0.3715 -0.2285 0.2405 0.3679 -0.2321 0.2433
0.70 0.4914 -0.2085 0.2234 0.4978 -0.2022 0.2169
0.80 0.6198 -0.1802 0.1991 0.6313 -0.1687 0.1876
0.90 0.7511 -0.1489 0.1732 0.7634 -0.1366 0.1611

4.3 The Nonlinear Moving Average Process

Full Whittle estimation, i.e., with an exact specification of the spectrum, of
the parameters for the Nonlinear Moving Average (NLMA) process has been
considered by Robinson and Zaffaroni (1997) and studied by Zaffaroni (2003).
Due to the incomplete specification used for the local Whittle estimator, see
equation (1), we expect the bias for the LW estimator to be greater.
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Fig. 8. Logscale diagram for the realization of a NLMA process, with α = 0.90. We
select here j1 = 1, j2 = 11, N = 2
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Figures 8 and 9 display the logscale diagrams for the realization of a NLMA
process. As for the LMSV process, the long–memory behavior is captured by
the octaves j ≥ j1 = 6.
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Fig. 9. Logscale diagram for the realization of a NLMA process, with α = 0.90. We
select here j1 = 6, j2 = 10, N = 2

Table 7. Estimation of the scaling parameter for NLMA processes, wavelet esti-
mator. T = 10000, N = 2

α α̂RMSEW jRMSE1 Eα̂RMSEW − α RMSE α̂
(6)
W Eα̂

(6)
W − α RMSE

0.10 0.2717 1 0.1717 0.1752 0.3120 0.2120 0.2529
0.20 0.3187 1 0.1187 0.1263 0.2936 0.0936 0.1807
0.30 0.3294 1 0.0294 0.0542 0.2684 0.0316 0.1692
0.40 0.3354 1 -0.0646 0.0793 0.2761 -0.1239 0.2132
0.50 0.3637 2 -0.1363 0.1487 0.3164 -0.1836 0.2565
0.60 0.4028 3 -0.1972 0.2106 0.3816 -0.2184 0.2858
0.70 0.4636 4 -0.2364 0.2554 0.4633 -0.2364 0.3033
0.80 0.5436 5 -0.2564 0.2891 0.5540 -0.2460 0.3130
0.90 0.6205 5 -0.2795 0.3094 0.6469 -0.2531 0.3197

As can be seen from Tables 7 and 8, the wavelet estimator performs slightly
better than both the LW and LP estimators, as its bias and RMSE are on
average smaller. The wavelet estimator with j1 selected using equation (60),
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with either mopt
LW or mopt

LP , gives results close to the LW estimator and the
wavelet estimator with j1 = jRMSE1 . Again in this case, equation (60) might
serve as a rule of thumb for selecting j1.

Table 8. Estimation of the scaling parameter for NLMA processes, local Whittle
and log–periodogram estimators. T = 10000. The optimal bandwidths mopt

LP and
mopt
LW are respectively used for the LP and LW estimators

α α̂optLP Eα̂optLP − α RMSE α̂optLW Eα̂optLW − α RMSE

0.10 0.3028 0.2028 0.2124 0.3025 0.2025 0.2109
0.20 0.2899 0.0899 0.1157 0.2892 0.0892 0.1143
0.30 0.2689 -0.0311 0.0942 0.2679 -0.0321 0.0932
0.40 0.2732 -0.1268 0.1620 0.2731 -0.1269 0.1620
0.50 0.3092 -0.1908 0.2204 0.3091 -0.1909 0.2205
0.60 0.3744 -0.2256 0.2556 0.3714 -0.2286 0.2574
0.70 0.4557 -0.2443 0.2756 0.4537 -0.2463 0.2766
0.80 0.5470 -0.2530 0.2845 0.5469 -0.2531 0.2847
0.90 0.6458 -0.2542 0.2895 0.6456 -0.2544 0.2872

When using the standard bandwidth m = [T 0.3], the mean of the α̂LP
estimates is equal to 0.3024, 0.3161, 0.3170, 0.3350, 0.3672, 0.4071, 0.4483,
0.4847, 0.5105, with a RMSE ranging from 0.0563 to 0.3927. The advantage
provided by the optimal bandwidth mopt

LP is not as obvious as for the LMSV
model, but in the absence of the knowledge on the true Data Generating
Process (DGP), using this optimal bandwidth does not yield any significant
loss for the estimation of the parameter.

4.4 Nonlinear Transformations of Fractionally Integrated
Processes

We also consider some nonlinear transformations of FI(d) processes, i.e.,
processes {Yt} defined as Yt = G(Xt), where Xt ∼ FI(d), and G(·) can
be written as a sum of Hermite polynomials. As in Dittman and Granger
(2002), we choose the transformations G(x) = x2, G(x) = x3, G(x) = x4,
G(x) = x3 − 3x, and G(x) = x4 − 6x2, the Hermite rank of which are re-
spectively equal to R = 2, 1, 2, 3, 4. We also consider some trigonometric and
exponential transformations: G(x) = sin(x), G(x) = cos(x), G(x) = exp(x),
and G(x) = (1 + exp(−x))−1. The Hermite rank of these transformations are
all equal to 1, except for the cosine transformation, the Hermite rank of which
is R = 2.

Granger and Dittman (2002) report simulation results for smaller sample
sizes and the LP estimator with bandwidth m = [T ]4/5. The use of the optimal
bandwidth mopt

LP results for some transformations in a marginal increase of the
bias and RMSE, but not very significant, so that we can reliably stick to that
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optimal bandwidth. We observe that for all nonlinear transformations, the
estimators α̂LW and α̂LP give very close results.

The FI(d) processes have been generated using the Durbin–Levinson al-
gorithm. Consider the first series of transformations, see Tables 9 and 10:
the wavelet estimator performs generally better than the LP and LW estima-
tors, i.e., its bias and RMSE are most of the times lower than those of the
LP and LW estimators, the advantage of the wavelet estimator being obvi-
ous for the largest values of α̃. For the highly nonlinear transformations, e.g.,
G(x) = x3−3x and G(x) = x4−6x2, the bias is huge for all estimators for the
lowest values of α̃, and choosing a higher value for j1, even for samples of size
T = 20, 000, does not yield any significant improvement. Estimation results
with j1 computed from equation (60) are not as good as the ones with either
jRMSE1 or the LP and LW estimators, but might be considered as informative
for a first analysis.

Remark 8. When N increases, the wavelet estimates do not differ too much
in terms of bias and RMSE, except for the case j1 = 7 and N = 6 for which
the RMSE is very large.

Figures 10 to 18 below display the logscale diagrams for the 9 transforma-
tions G(x) considered here.
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Fig. 10. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = x2, d = 0.45 then α = 0.80, T = 10000. We select here
j1 = 1, j2 = 11, N = 2
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Fig. 11. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = x3, d = 0.45 then α = 0.90, T = 10000. We select here
j1 = 1, j2 = 11, N = 2
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Fig. 12. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = x4, d = 0.45 then α = 0.80, T = 10000. We select here
j1 = 1, j2 = 11, N = 2
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Fig. 13. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = x3 − 3x, d = 0.45 then α = 0.80, T = 10000. We select
here j1 = 1, j2 = 11, N = 2
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Fig. 14. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = x4 − 6x, d = 0.45 then α = 0.60, T = 10000. We select
here j1 = 1, j2 = 11, N = 2
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Fig. 15. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = sin(x), d = 0.45 then α = 0.90, T = 10000. We select
here j1 = 1, j2 = 11, N = 2
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Fig. 16. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = cos(x), d = 0.45 then α = 0.80, T = 10000. We select
here j1 = 1, j2 = 11, N = 2
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Fig. 17. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = exp(x), d = 0.45 then α = 0.90, T = 10000. We select
here j1 = 1, j2 = 11, N = 2
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Fig. 18. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = (1 + exp(−x))−1, d = 0.45 then α = 0.90, T = 10000.
We select here j1 = 1, j2 = 11, N = 2
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Table 9. Estimation of the scaling parameter for nonlinear transformations of FI(d)
processes, with α = 2d̃ and d̃ = max{0, (d− 0.5)R + 0.5}. N = 2, T = 10000

G(x) α α̂RMSEW jRMSE1 Eα̂RMSEW − α RMSE α̂mW Eα̂mW − α RMSE

x2 0.00 0.1176 5 0.1176 0.1488 0.1403 0.1403 0.1527
(R = 2) 0.20 0.2627 1 0.0627 0.0705 0.2449 0.0449 0.0919

0.40 0.3964 1 -0.0036 0.0578 0.3786 -0.0214 0.1136
0.60 0.5769 2 -0.0231 0.0861 0.5396 -0.0604 0.1530
0.80 0.7447 2 -0.0553 0.0888 0.7145 -0.0855 0.1935

x3 0.10 0.0608 2 -0.0392 0.0464 0.0653 -0.0347 0.0599
(R = 1) 0.20 0.1341 3 -0.0659 0.0810 0.1385 -0.0615 0.0790

0.30 0.2224 4 -0.0775 0.0948 0.2122 -0.0808 0.0962
0.40 0.3087 4 -0.0913 0.1066 0.3062 -0.0938 0.1097
0.50 0.3966 4 -0.1034 0.1178 0.3974 -0.1026 0.1213
0.60 0.4841 4 -0.1159 0.1304 0.4882 -0.1118 0.1335
0.70 0.5705 4 -0.1295 0.1454 0.5759 -0.1241 0.1493
0.80 0.6596 4 -0.1404 0.1596 0.6640 -0.1360 0.1712
0.90 0.7564 3 -0.1436 0.1587 0.7589 -0.1411 0.1971

x4 0.00 0.1272 1 0.1272 0.1348 0.1129 0.1129 0.1374
(R = 2) 0.20 0.2094 1 0.0094 0.0522 0.2047 0.0047 0.0961

0.40 0.3392 2 -0.0608 0.0962 0.3222 -0.0778 0.1466
0.60 0.4796 2 -0.1204 0.1469 0.4591 -0.1409 0.2143
0.80 0.6105 2 -0.1600 0.1839 0.6097 -0.1903 0.2803

x3 − 3x 0.00 0.1483 1 0.1483 0.1557 0.1633 0.1633 0.1863
(R = 3) 0.10 0.2781 1 0.1781 0.1878 0.3188 0.2188 0.2474

0.40 0.4368 1 0.0368 0.0782 0.4884 0.0884 0.1646
0.70 0.6703 2 -0.0297 0.0929 0.6651 -0.0349 0.1736

x4 − 6x2 0.00 0.1738 1 0.1738 0.1949 0.1676 0.1676 0.2268
(R = 4) 0.20 0.3333 1 0.1333 0.1664 0.3327 0.1327 0.2341

0.60 0.5350 1 -0.0650 0.1197 0.5270 -0.0730 0.2459
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Table 10. Estimation of the scaling parameter for nonlinear transformations of
FI(d) processes, with α = 2d̃ and d̃ = max{0, (d − 0.5)R + 0.5}. T = 10000. The
optimal bandwidths mopt

LP and mopt
LW are respectively used for the LP and LW esti-

mators

G(x) α α̂optLP Eα̂optLP − α RMSE α̂optLW Eα̂optLW − α RMSE

x2 0.00 0.1193 0.1193 0.1371 0.1192 0.1192 0.1369
(R = 2) 0.20 0.2248 0.0248 0.0975 0.2225 0.0225 0.0960

0.40 0.3644 -0.0356 0.1315 0.3599 -0.0401 0.1302
0.60 0.5223 -0.0777 0.1735 0.5190 -0.0810 0.1736
0.80 0.6953 -0.1047 0.2133 0.6867 -0.1132 0.2149

x3 0.10 0.0638 -0.0362 0.0580 0.0636 -0.0364 0.0576
(R = 1) 0.20 0.1410 -0.0590 0.0754 0.1409 -0.0591 0.0750

0.30 0.2277 -0.0723 0.0882 0.2276 -0.0724 0.0881
0.40 0.3217 -0.0783 0.0964 0.3216 -0.0784 0.0964
0.50 0.4184 -0.0816 0.1029 0.4185 -0.0815 0.1028
0.60 0.5134 -0.0866 0.1099 0.5134 -0.0866 0.1099
0.70 0.6019 -0.0981 0.1261 0.6020 -0.0980 0.1245
0.80 0.6877 -0.1123 0.1495 0.6866 -0.1134 0.1446
0.90 0.7755 -0.1245 0.1755 0.7728 -0.1272 0.1699

x4 0.00 0.0981 0.0981 0.1180 0.0978 0.0978 0.1176
(R = 2) 0.20 0.1934 -0.0066 0.0936 0.1906 -0.0094 0.0910

0.40 0.3158 -0.0842 0.1474 0.3157 -0.0843 0.1475
0.60 0.4609 -0.1391 0.2043 0.4593 -0.1407 0.2048
0.80 0.6185 -0.1815 0.2566 0.6105 -0.1895 0.2568

x3 − 3x 0.00 0.1856 0.1856 0.2029 0.1850 0.1850 0.2022
(R = 3) 0.10 0.3542 0.2542 0.2759 0.3533 0.2533 0.2743

0.40 0.5286 0.1286 0.1789 0.5259 0.1259 0.1736
0.70 0.6893 -0.0107 0.1423 0.6866 -0.0134 0.1377

x4 − 6x2 0.00 0.1736 0.1736 0.2114 0.1732 0.1732 0.2107
(R = 4) 0.20 0.3506 0.1506 0.2204 0.3502 0.1502 0.2195

0.60 0.5487 -0.0513 0.1992 0.5435 -0.0565 0.1934
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For the second series of transformations, see Tables 11 and 12, the wavelet
estimator performs better than the two other estimators, except for the ex-
ponential transformation.

Table 11. Estimation of the scaling parameter for nonlinear transformations of
FI(d) processes, with α = 2d̃ and d̃ = max{0, (d− 0.5)R + 0.5}. N = 2, T = 10000

G(x) α α̂RMSEW jRMSE1 Eα̂RMSEW − α RMSE α̂mW Eα̂mW − α RMSE

sin(x) 0.10 0.0822 2 -0.0178 0.0352 0.0871 -0.0129 0.0450
(R = 1) 0.20 0.1694 2 -0.0306 0.0382 0.1777 -0.0223 0.0492

0.30 0.2652 3 -0.0348 0.0474 0.2704 -0.0296 0.0544
0.40 0.3556 3 -0.0444 0.0553 0.3642 -0.0358 0.0620
0.50 0.4577 4 -0.0423 0.0639 0.4585 -0.0415 0.0711
0.60 0.5413 4 -0.0587 0.0761 0.5496 -0.0504 0.0824
0.70 0.6353 5 -0.0647 0.1013 0.6235 -0.0765 0.1051
0.80 0.6648 5 -0.1352 0.1671 0.6561 -0.1439 0.1716
0.90 0.6606 5 -0.2394 0.2606 0.6556 -0.2444 0.2654

cos(x) 0.00 0.1505 1 0.1505 0.1520 0.1310 0.1310 0.1421
(R = 2) 0.20 0.2394 1 0.0394 0.0473 0.2333 0.0333 0.0779

0.40 0.3749 2 -0.0251 0.0519 0.3644 -0.0356 0.1015
0.60 0.5192 3 -0.0808 0.1043 0.5177 -0.0823 0.1389
0.80 0.6407 4 -0.1593 0.1751 0.6435 -0.1565 0.1890

exp(x) 0.10 0.0628 3 -0.0372 0.0598 0.0643 -0.0357 0.0648
(R = 1) 0.20 0.1326 3 -0.0674 0.0826 0.1361 -0.0639 0.0851

0.30 0.2169 4 -0.0831 0.1035 0.2152 -0.0848 0.1034
0.40 0.2986 4 -0.1014 0.1202 0.2967 -0.1033 0.1221
0.50 0.3798 4 -0.1202 0.1389 0.3807 -0.1193 0.1414
0.60 0.4573 4 -0.1427 0.1626 0.4599 -0.1401 0.1664
0.70 0.5276 4 -0.1724 0.1953 0.5320 -0.1680 0.2005
0.80 0.5868 4 -0.2132 0.2420 0.5885 -0.2114 0.2557
0.90 0.6260 3 -0.2740 0.3022 0.6265 -0.2735 0.3384

(1 + e−x)−1 0.10 0.0871 1 -0.0129 0.0202 0.0980 -0.0020 0.0429
(R = 1) 0.20 0.1905 2 -0.0095 0.0245 0.1964 -0.0036 0.0439

0.30 0.2879 2 -0.0121 0.0260 0.2945 -0.0055 0.0464
0.40 0.3842 2 -0.0158 0.0277 0.3935 -0.0065 0.0531
0.50 0.4799 2 -0.0201 0.0307 0.4946 -0.0054 0.0614
0.60 0.5878 3 -0.0121 0.0349 0.5961 -0.0039 0.0697
0.70 0.6848 3 -0.0152 0.0363 0.6951 -0.0049 0.0816
0.80 0.7796 3 -0.0204 0.0395 0.7925 -0.0075 0.0958
0.90 0.8669 3 -0.0331 0.0508 0.8796 -0.0204 0.1196
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Table 12. Estimation of the scaling parameter for nonlinear transformations of
FI(d) processes, with α = 2d̃ and d̃ = max{0, (d − 0.5)R + 0.5}. T = 10000. The
optimal bandwidths mopt

LP and mopt
LW are respectively used for the LP and LW esti-

mators

G(x) α α̂optLP Eα̂optLP − α RMSE α̂optLW Eα̂optLW − α RMSE

sin(x) 0.10 0.0855 -0.0145 0.0465 0.0856 -0.0144 0.0461
(R = 1) 0.20 0.1779 -0.0221 0.0518 0.1779 -0.0221 0.0517

0.30 0.2736 -0.0264 0.0581 0.2736 -0.0264 0.0579
0.40 0.3709 -0.0291 0.0649 0.3710 -0.0290 0.0647
0.50 0.4689 -0.0311 0.0728 0.4697 -0.0303 0.0712
0.60 0.5618 -0.0382 0.0795 0.5620 -0.0380 0.0791
0.70 0.6417 -0.0583 0.0972 0.6425 -0.0575 0.0950
0.80 0.6788 -0.1212 0.1582 0.6793 -0.1207 0.1569
0.90 0.6587 -0.2413 0.2735 0.6603 -0.2397 0.2704

cos(x) 0.00 0.1135 0.1135 0.1303 0.1129 0.1129 0.1296
(R = 2) 0.20 0.2147 0.0147 0.0883 0.2141 0.0141 0.0881

0.40 0.3512 -0.0488 0.1243 0.3510 -0.0490 0.1240
0.60 0.5121 -0.0879 0.1633 0.5108 -0.0892 0.1622
0.80 0.6441 -0.1559 0.2050 0.6450 -0.1550 0.2026

exp(x) 0.10 0.0617 -0.0383 0.0592 0.0615 -0.0385 0.0588
(R = 1) 0.20 0.1370 -0.0630 0.0787 0.1369 -0.0031 0.1194

0.30 0.2203 -0.0797 0.0952 0.2204 -0.0796 0.0951
0.40 0.3085 -0.0915 0.1089 0.3086 -0.0914 0.1087
0.50 0.3978 -0.1022 0.1226 0.3979 -0.1021 0.1223
0.60 0.4818 -0.1182 0.1442 0.4821 -0.1179 0.1406
0.70 0.5587 -0.1413 0.1671 0.5590 -0.1410 0.1666
0.80 0.6206 -0.1794 0.2136 0.6201 -0.1799 0.2092
0.90 0.6627 -0.2273 0.2743 0.6618 -0.2382 0.2727

(1 + exp(−x))−1 0.10 0.0962 -0.0038 0.0441 0.0961 -0.0039 0.0439
(R = 1) 0.20 0.1943 -0.0057 0.0482 0.1942 -0.0058 0.0475

0.30 0.2922 -0.0078 0.0529 0.2923 -0.0077 0.0529
0.40 0.3913 -0.0087 0.0636 0.3915 -0.0085 0.0601
0.50 0.4904 -0.0096 0.0686 0.4905 -0.0095 0.0684
0.60 0.5885 -0.0115 0.0822 0.5880 -0.0120 0.0766
0.70 0.6834 -0.0166 0.0903 0.6833 -0.0167 0.0902
0.80 0.7766 -0.0234 0.1053 0.7764 -0.0236 0.1041
0.90 0.8614 -0.0386 0.1350 0.8610 -0.0390 0.1245

5 Robustness: Long–Memory Versus Non–Stationarity

This section aims at contributing to the issue of disentangling long–memory
and non–stationarity. This can be addressed through two major questions.
Can one estimate correctly the long–memory parameter of an actual long–
range dependent process when non–stationarities are superimposed to it? Can
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one figure out that a given time series is non–stationary and has no long–
memory? The first question is illustrated in Sections 5.1, 5.2 and 5.4 where
trends, change points or both are respectively superimposed to long–memory
processes. The second one is considered in Section 5.3 where change points in
a short–range memory process may be confused with long–memory.

5.1 Long–Memory Plus Trends: Polynomial Trends Superimposed
to Fractionally Integrated Processes

As mentioned earlier, the wavelets coefficients dY (j, ·) are the same for the
processes {Yt} and {Yt+Pt} where Pt is a polynomial of order at most N −1,
where N is the number of vanishing moments of the mother wavelet ψ0. Thus,
with an appropriate choice for N , we can discriminate between trended and
long–range dependent processes. This separation is also possible with Fourier
based methods, when replacing the periodogram by a tapered version of it,
see e.g., Lobato and Velasco (2000).

We consider here the accuracy of the wavelet based estimator, as we will
use this estimator in section 6.2 for estimating the dependence of financial
time series with a trend, i.e., transactions volume. We consider the following
process

Yt = Xt + Tt, Xt ∼ FI(d), Tt =

q∑

l=0

ξlt
l, (63)

which additively mixes a long–range dependent process and a polynomial
trend. We consider q = 1, 2, 3. Table 13 below reports simulation results for
N = q + 1 only.

For the relevant choices of N , i.e., those for which N > q, the wavelet
estimates are the same as those for the FARIMA process without polynomial
trend, since we used the same sequence of pseudo–error terms for all the FI(d)
process.

Remark 9. In this section, we do not compare the performance of the wavelet
estimator with the one of the LP and LW estimators. For the LW estimator,
we would have to consider the tapered periodogram, as in Lobato and Velasco
(2000), and very likely perform a similar transformation for the LP estimator.
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Table 13. Estimation of the scaling parameter for an additive combination of a
FI(d) processes and a polynomial trend of order q. T = 10000

Order α α̂RMSEW jRMSE1 Eα̂RMSEW − α RMSE α̂
(5)
W Eα̂

(5)
W − α RMSE

q = 1 0.10 0.0860 2 -0.0140 0.0205 0.1016 0.0016 0.0744
(N=2) 0.20 0.1907 2 -0.0093 0.0235 0.2017 0.0017 0.0745

0.30 0.2868 2 -0.0132 0.0254 0.3018 0.0018 0.0747
0.40 0.3833 2 -0.0167 0.0275 0.4020 0.0020 0.0748
0.50 0.4800 2 -0.0200 0.0297 0.5022 0.0022 0.0751
0.60 0.5771 2 -0.0229 0.0318 0.6023 0.0023 0.0753
0.70 0.6934 3 -0.0066 0.0338 0.7025 0.0025 0.0757
0.80 0.7929 3 -0.0713 0.0341 0.8026 0.0026 0.0761
0.90 0.8924 3 -0.0076 0.0345 0.9027 0.0027 0.0766

q = 2 0.10 0.0875 2 -0.0125 0.0196 0.1022 0.0022 0.0771
(N=3) 0.20 0.1930 2 -0.0070 0.0234 0.2023 0.0023 0.0772

0.30 0.2899 2 -0.0101 0.0246 0.3023 0.0023 0.0773
0.40 0.3870 2 -0.0130 0.0259 0.4024 0.0024 0.0776
0.50 0.4842 2 -0.0158 0.0275 0.5024 0.0024 0.0779
0.60 0.5817 2 -0.0183 0.0291 0.6024 0.0024 0.0783
0.70 0.6792 2 -0.0208 0.0308 0.7042 0.0042 0.0788
0.80 0.7769 2 -0.0231 0.0325 0.8025 0.0025 0.0794
0.90 0.8747 2 -0.0253 0.0342 0.9026 0.0026 0.0800

q = 3 0.10 0.0880 1 -0.0120 0.0194 0.1030 0.0030 0.0817
(N=4) 0.20 0.1937 2 -0.0063 0.0237 0.2030 0.0030 0.0817

0.30 0.2909 2 -0.0091 0.0247 0.3031 0.0031 0.0817
0.40 0.3881 2 -0.0119 0.0259 0.4031 0.0031 0.0818
0.50 0.4855 2 -0.0145 0.0272 0.5030 0.0030 0.0819
0.60 0.5830 2 -0.0170 0.0287 0.6030 0.0030 0.0820
0.70 0.6806 2 -0.0194 0.0303 0.7029 0.0029 0.0823
0.80 0.7783 2 -0.0217 0.0319 0.8028 0.0028 0.0826
0.90 0.8761 2 -0.0239 0.0335 0.9027 0.0027 0.0830

5.2 Long–Memory Plus Trends Plus Change–Points:
Change–Points in Fractionally Integrated Processes

Since economic processes are subject to changes in regime, we consider the
extreme case of the following change–point process

Yt = Xt, Xt ∼ FI(d), t 6 k,

Yt = Xt + Tt, Xt ∼ FI(d), Tt =

q∑

l=0

ξl(t− k + 1)l, t > k, (64)

i.e., a process with a broken polynomial trend. In some sense, here two types
of difficulties are mixed up together. The non–stationarity superimposed to
long–memory results both from trends and change points. However, in that



Wavelet Analysis of Financial Time Series 43

particular extreme case, a visual inspection of the series will suggest to split
the series at the break points.

Remark 10. These results reported here obviously hold provided that the poly-
nomial trend series are of the same order of magnitude as the series Xt.

Table 14. Estimation of the scaling parameter for an additive combination of a
FI(d) processes and with a broken polynomial trend of order q = 1, q = 2 and q = 3,
defined by equation (64). Columns 3 to 6 report estimation results for k = [T/10],
while columns 7 to 10 report estimation results for k = [T/2], T = 10000

N α α̂RMSEW jRMSE1 Eα̂RMSEW − α RMSE α̂RMSEW jRMSE1 Eα̂RMSEW − α RMSE

q = 1 0.10 0.0970 2 -0.0030 0.0232 0.0971 2 -0.0029 0.0232
N = 6 0.20 0.1942 2 -0.0057 0.0238 0.1943 2 -0.0057 0.0238

0.30 0.2915 2 -0.0085 0.0246 0.2916 2 -0.0084 0.0246
0.40 0.3889 2 -0.0111 0.0258 0.3889 2 -0.0111 0.0258
0.50 0.4863 2 -0.0137 0.0270 0.4863 2 -0.0137 0.0271
0.60 0.5838 2 -0.0162 0.0285 0.5838 2 -0.0162 0.0285
0.70 0.6814 2 -0.0186 0.0301 0.6814 2 -0.0186 0.0301
0.80 0.7790 2 -0.0210 0.0317 0.7790 2 -0.0210 0.0317
0.90 0.8767 2 -0.0233 0.0334 0.8767 2 -0.0233 0.0334

q = 2 0.10 0.0915 1 -0.0085 0.0178 0.1018 1 0.0018 0.0159
N = 6 0.20 0.1981 2 -0.0019 0.0232 0.2046 2 0.0046 0.0243

0.30 0.2941 2 -0.0059 0.0240 0.2991 2 -0.0009 0.0239
0.40 0.3906 2 -0.0094 0.0251 0.4050 2 0.0050 0.0239
0.50 0.4874 2 -0.0126 0.0265 0.4996 2 -0.0004 0.0234
0.60 0.5846 2 -0.0154 0.0281 0.6023 2 0.0023 0.0233
0.70 0.6819 2 -0.0181 0.0299 0.6960 2 -0.0040 0.0237
0.80 0.7793 2 -0.0207 0.0315 0.7903 2 -0.0097 0.0255
0.90 0.8769 2 -0.0231 0.0332 0.8851 2 -0.0149 0.0281

q = 3 0.10 0.0996 2 -0.0004 0.0231 0.0981 2 -0.0019 0.0162
N = 6 0.20 0.1960 2 -0.0040 0.0235 0.2018 2 0.0018 0.0244

0.30 0.2927 2 -0.0073 0.0243 0.3039 2 0.0039 0.0242
0.40 0.3897 2 -0.0103 0.0255 0.3990 2 -0.0010 0.0238
0.50 0.4869 2 -0.0131 0.0268 0.5041 2 0.0041 0.0237
0.60 0.5842 2 -0.0158 0.0283 0.6037 2 0.0037 0.0235
0.70 0.6816 2 -0.0184 0.0299 0.6972 2 -0.0028 0.0235
0.80 0.7792 2 -0.0208 0.0315 0.7913 2 -0.0087 0.0251
0.90 0.8768 2 -0.0232 0.0333 0.8858 2 -0.0142 0.0276

We note that for this particular process, the value of the statistic Q for
j1 = jRMSE1 does not differ too much for the one when j1 is given following the
arguments in Veitch, Abry, Taqqu (2003) when the number of moments N is
adequately chosen, i.e., large enough for fitting all possible variations of the
process. Figures 19 and 20 display the logscale diagrams for trended processes
with change–points.
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Logscale Diagram,  N=6    [ (j_1,j_2)=  (1,9),  Estimated scaling parameter = 0.79]
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Fig. 19. Logscale diagram for the realization of an additive combination of a FI(d)
process (α = 0.8) and a broken polynomial trend of order q = 1, with k = [T/10].
We select here j1 = 1, j2 = 9, N = 6
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Logscale Diagram,  N=6    [ (j_1,j_2)=  (1,9),  Estimated scaling parameter = 0.804]
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Fig. 20. Logscale diagram for the realization of an additive combination of a FI(d)
process (α = 0.8) and a broken polynomial trend of order q = 1, with k = [T/2].
We select here j1 = 1, j2 = 11, N = 6
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For both cases, provided that N is large enough, N = 6 there, the long–
memory behavior quite always captured from the lowest octave j1 = 2.

5.3 Short–Memory and Change–Points: Change–Point GARCH
Process

Volatility, GARCH Process and Change–Points?

As mentioned in the introduction, a potentially useful application of wavelet
methods is the analysis of volatility series, the volatility of asset prices Pt
being commonly defined by either the absolute returns |rt| or the squared
returns r2

t , where the returns rt are defined as rt = ln(Pt/Pt−1).
Volatility processes are modeled using either GARCH type models, or

stochastic volatility models, although GARCH type models are more often
used as they are easy to estimate, parsimonious as a simple GARCH(1,1)
model with three parameters can fit most of the series of asset returns, and
have nice properties for asset pricing, see e.g., Duan (1995) and Kallsen and
Taqqu (1998).

A standard GARCH(1,1) process is defined as

rt = σtεt, εt ∼ N(0, 1), σ2
t = ω + βσ2

t−1 + γr2
t−1. (65)

The literature on the properties of GARCH–type processes is pretty impres-
sive; interested readers are referred to the chapter by Giraitis, Leipus and
Surgailis (2005) in this volume.

However, GARCH–type homogeneous processes have several drawbacks
and inconsistencies:

1. They cannot fit the heavy tails of the returns rt,
2. When the sample size increases, the sum of estimated parameters β̂ + γ̂

tends to 1, a property called the “IGARCH effect”. As a consequence, the
variance of the process {rt} is infinite since ω > 0,

3. For large samples, the ACF of the series |rt| and r2
t behave like equation

(2), this is the so called long–range dependence in the volatility.

Mikosch and Stărică (1999, 2003, 2004a, 2004b) emphasized in a series of
research works that points 2 and 3 are inconsistent, as the ACF of the power
transformation of a process with infinite variance is not properly defined.
Thus, the GARCH(1,1) model might be the “right” model, provided that
it is estimated on the sample for which the parameters of the process are
constant, and that IGARCH, long–range dependence and tail effects might
be the consequence of the non–stationarity of the GARCH process, and, for
instance, of changes in the parameters so that the unconditional variance
of the process is not constant. A major issue in practical time series analysis
hence consists in being able to decide whether long–memory is truly present in
the analyzed data or if a change–point type non–stationary property actually
exists and is likely to be misinterpreted as long–memory.
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Discriminating Between True Long–Memory and Change–Points?

There is a large number of research works dealing with the issue of change–
point detection, see e.g., Berkes et al. (2004), Berkes, Horváth and Kokoszka
(2004), Kokoszka and Teyssière (2002), Mikosch and Stărică (1999, 2004b),
Chu (1995). So far, none of the change–point tests proposed in research papers
is based on wavelets. More precisely, the relevance of the use of the wavelet
analysis in the context of non–homogeneous GARCH processes has not been
studied, since as it is discussed below, is does not fit in the standard framework
of change–point in the conditional mean processes. Such an analysis is the
purpose of this section.

We consider a GARCH(1,1) process with change–point at time k:

rt = σtεt, εt ∼ N(0, 1), (66)

σ2
t = ω + βσ2

t−1 + γr2
t−1 t 6 k,

σ2
t = ω? + β?σ2

t−1 + γ?r2
t−1, t > k.

with ω 6= ω? or β 6= β? or γ 6= γ?. The parameter of interest is the un-
conditional variance of the process σ2 = ω/(1− β − γ), and we consider two
cases: small change and large change in the unconditional variance. We choose
k = [T/2] and set for the first part of the process

ω = 0.1, β = 0.3, γ = 0.3, σ2 = 0.25, (67)

while the parameters for the second part of the two processes are:

• GARCH A (small change): ω? = 0.125, β? = 0.6, γ? = 0.1, σ2 = 0.4667,
• GARCH B (large change): ω? = 0.15, β? = 0.65, γ? = 0.25, σ2 = 1.5.

Since financial time series of size T = 10000 are likely affected by several
changes in regimes, we consider the following GARCH process, denoted by
GARCH C, with two un-periodic changes in regimes at times k and k

′
:

rt = σtεt, εt ∼ N(0, 1), (68)

σ2
t = 0.15 + 0.65σ2

t−1 + 0.25r2
t−1, t 6 k σ2 = 1.5,

σ2
t = 0.1 + 0.3σ2

t−1 + 0.3r2
t−1, k < t 6 k′ , σ2 = 0.25,

σ2
t = 0.25 + 0.6σ2

t−1 + 0.2r2
t−1, t > k

′
, σ2 = 1.25.

We set k = [T/6] and k
′

= [5T/6], i.e., near the end–points of the sample,
which is always the most difficult configuration to detect. Let us note that
the absolute value and squares of change–point GARCH processes are not
genuine change–point processes in the conditional mean, which makes the
standard theory for change–point in the conditional mean not applicable.

We consider also the performance of the estimators for the case without
change points, i.e., the Data Generating Process (65) with parameters given
by equation (67) that we denote as DGP 0.
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Let us first analyze the logscale diagrams (presented in figures 21–26)
for various realizations of the GARCH A, GARCH B and GARCH C
processes. One can see that fitting the entire logscale diagram (i.e., starting
from j1 = 1) would lead to the conclusion that long-memory exists in the
data. However, we also see that the spurious long–memory property caused
by the non–stationarity of the process is gotten rid-off by selecting the lowest
octave j1 ≥ 5.

Remark 11. The optimal choice jRMSE1 is the same for all values of the number
of vanishing moments N . Thus, we cannot use lower j1 by increasing N .
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Logscale Diagram,  N=2    [ (j_1,j_2)=  (1,11),  Estimated scaling parameter = 0.315]
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Fig. 21. Logscale diagram for the realization of the absolute value GARCH A
process. We select here j1 = 1, j2 = 11, N = 2
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Fig. 22. Logscale diagram for the realization of the squares of a GARCH A
process. We select here j1 = 5, j2 = 11, N = 2

 0

 2

 4

 6

 8

 2  4  6  8  10

Logscale Diagram,  N=2    [ (j_1,j_2)=  (1,11),  Estimated scaling parameter = 0.335]

y_j estimated  
Confidence Intervals

Regression line

Fig. 23. Logscale diagram for the realization of the squares of a GARCH B
process. We select here j1 = 1, j2 = 11, N = 2
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Fig. 24. Logscale diagram for the realization of the squares of a GARCH B
process. We select here j1 = 5, j2 = 10, N = 2
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Fig. 25. Logscale diagram for the realization of the squares of a GARCH C
process. We select here j1 = 1, j2 = 11, N = 2
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Fig. 26. Logscale diagram for the realization of the squares of a GARCH C
process. We select here j1 = 5, j2 = 11, N = 2

For the GARCH A process, i.e., with a constant unconditional variance,
both the LW and the LP estimators do not detect any long–range dependence,
while the wavelet estimator detects a very moderate intensity of long–memory,
although the Gaussian confidence intervals contains the value zero (let us
remind that α ≡ 0 corresponds to short memory processes). The wavelet
estimate with the octave j1 selected using the optimal bandwidth, see equation
(60), gives estimates from α̂W = 0.0392 to α̂W = 0.0333, depending on the
number of vanishing moments N .

Table 15. Estimation of the scaling parameter for change–points GARCH pro-
cesses, wavelet estimators. T = 10000, N = 2

Model α̂RMSEW jRMSE1 Eα̂RMSEW − α RMSE α̂
(5)
W Eα̂

(5)
W − α RMSE

GARCH 0 0.0369 4 0.0369 0.0719 0.0151 0.0151 0.0866
GARCH A 0.0495 4 0.0495 0.0791 0.0241 0.0241 0.0900
GARCH B 0.0520 5 0.0520 0.1086 0.0865 0.0865 0.1238
GARCH C 0.0219 4 0.0219 0.0708 0.0682 0.0682 0.1126

There is a significant discrepancy between the estimators for both GARCH
B and GARCH C processes. While the wavelet estimator does detect a very
moderate intensity of long–range dependence, both the LW and LP estima-
tors give a high value for α̂, with a RMSE far greater than the one of the
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Table 16. Estimation of the scaling parameter for change–points GARCH pro-
cesses, LP and LW estimators. T = 10000. The optimal bandwidths mopt

LP and mopt
LW

are respectively used for the LP and LW estimators

Model α̂optLP Eα̂optLP − α RMSE α̂optLW Eα̂optLW − α RMSE

GARCH 0 0.0038 0.0038 0.0669 0.0015 0.0015 0.0612
GARCH A 0.0043 0.0043 0.4735 0.0065 0.0065 0.0651
GARCH B 0.1921 0.1921 1.4738 0.4015 0.4015 0.4043
GARCH C 0.2440 0.2440 1.4087 0.4188 0.4188 0.4227

wavelet estimator. For the LP, the results obtained with m = [T 0.3] are very
high, as α̂LP = 0.0595 for GARCH A, α̂LP = 1.4454 for GARCH B, and
α̂LP = 1.3801 for GARCH C. This advocates again the use of the optimal
bandwidth (41) for volatility processes.

When selecting the lowest octave j1 that maximizes the goodness–of–fit
function (61), the estimated long–memory parameter for the GARCH B
process is α̂W = 0.0539 for N = 4 with a maximum for α̂W = 0.0877 for
N = 2. For the GARCH C process, α̂W = 0.0069 for N = 4, with a max-
imum α̂W = 0.0723 for N = 2. This shows that increasing N helps to get
rid of spurious long–memory. The wavelet estimates with the lowest octave j1
given by equation (60) are equal to 0.0053 for the GARCH A, 0.0575 for the
GARCH B, and −0.0281 for the GARCH C, in all three cases this “opti-
mal” octave is j1 = 7, which yields a very large variance as well emphasizes
the need for further research in this direction.

This example clearly shows that in spite of the octaves selection issue due
to the nonlinearity and non Gaussianity of the sequence {r2

t }, the wavelet esti-
mator detects a very moderate level of long–range dependence, i.e., α < 0.0520
in the worst case, while both the LW and the LP estimators are “fooled” by
the occurrence of a large change in the unconditional variance for the short
memory GARCH process. This advocates the use of the wavelet estimator,
in conjunction with other estimators, for adjudicating between strong depen-
dence and change–point for volatility processes.

5.4 Long–Memory and Change–Points: The Non–Homogeneous
Long–Memory Stochastic Volatility Process

We consider here a nonlinear process that displays long–range dependence in
conditional variance with a change–point, defined as:

rt = σtζt, ζt ∼ N(0, 1), σt = σ exp(Xt/2), Xt ∼ FARIMA(p, d, q),

E Xt = 0, t 6 k, E Xt = µ, t > k, (69)

i.e., the process {Xt} mixes long–range dependence and a change–point at
time k. We consider here samples of size T = 10000, k = [T/2], and µ = 2.0.
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Remark 12. The magnitude of the jump µ = 2.0 has to be compared with the
square root of the variance of the Xt process,

Var(Xt) = σ2
ε

Γ (1− 2d)

Γ 2(1− d)
.

Here, we set σ2
ε = 1, so that

√
Var(Xt) ranges from 1.0022 (d = 0.05) to

1.9085 (d = 0.45), i.e., the change is of significant magnitude.

Figures 27 and 28 display the logscale diagram for one realization of a non–
homogeneous LMSV process for different regression ranges [j1, j2]. Provided
that j1 ≥ 5, the long–range dependent behavior is satisfactorily captured.
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Fig. 27. Logscale diagram for the realization of a change–point LMSV process, with
α = 0.90. We select here j1 = 1, j2 = 11, N = 2
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Fig. 28. Logscale diagram for the realization of a change–point LMSV process, with
α = 0.90. We select here j1 = 5, j2 = 11, N = 2

Table 17. Estimation of the scaling parameter for change–point LMSV processes,
wavelet estimator. T = 10000, N = 2

α α̂RMSEW jRMSE1 Eα̂RMSEW − α RMSE α̂
(6)
W Eα̂

(6)
W − α RMSE

0.10 0.0959 3 -0.0041 0.0317 0.4740 0.3740 0.3878
0.20 0.1777 4 -0.0223 0.0509 0.4748 0.2748 0.2939
0.30 0.3079 5 0.0079 0.0690 0.4820 0.1820 0.2109
0.40 0.3385 5 -0.0605 0.0925 0.4984 0.0984 0.1473
0.50 0.5274 6 0.0274 0.1164 0.5274 0.0274 0.1164
0.60 0.5720 6 -0.0280 0.1120 0.5720 -0.0280 0.1120
0.70 0.6337 6 -0.0663 0.1367 0.6337 -0.0663 0.1367
0.80 0.7122 6 -0.0878 0.1496 0.7122 -0.0878 0.1496
0.90 0.8047 6 -0.0953 0.1546 0.8047 -0.0953 0.1546
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Table 18. Estimation of the scaling parameter for change–point LMSV processes,
LW and LP estimators. T = 10000. The optimal bandwidths mopt

LP and mopt
LW are

respectively used for the LP and LW estimators

α α̂optLP Eα̂optLP − α RMSE α̂optLW Eα̂optLW − α RMSE

0.10 0.5308 0.4308 0.4365 0.9026 0.8026 0.8034
0.20 0.5377 0.3377 0.3451 0.8931 0.6931 0.6940
0.30 0.5514 0.2514 0.2617 0.8829 0.5829 0.5842
0.40 0.5751 0.1751 0.1899 0.8734 0.4734 0.4751
0.50 0.6103 0.1103 0.1334 0.8657 0.3657 0.3684
0.60 0.6577 0.0577 0.0968 0.8625 0.2625 0.2678
0.70 0.7173 0.0173 0.0826 0.8676 0.1676 0.1795
0.80 0.7877 -0.0123 0.0851 0.8864 0.0064 0.1160
0.90 0.8675 -0.0325 0.0947 0.9251 0.0251 0.0927

Since the sequence of pseudo–error terms is the same for LMSV processes
with and without change–point, the results of Tables 17 and 18 can be directly
compared to those of Tables 5 and 6. The wavelet estimator is affected by the
presence of this change point, but in a far lower extent than both the LW and
LP estimators. What is really informative here is the strong discrepancy be-
tween the wavelet estimator and the spectral based estimators, which suggests
the presence of a break. For that case, the use of the optimal bandwidth for
the LP estimator is justified as the mean estimates obtained for m = [T 0.3]
are between 1.4114 and 1.8578, with a RMSE ranging from 0.6349 to 1.7718.

Remark 13. The best results, i.e., with the lowest RMSE, are obtained with
N = 2.

6 Financial Time Series

6.1 Intra–day Foreign Exchange (FX) Rates

• Financial data. We consider four high–frequency time series on intra–
day FX rates provided by Olsen and Associates, i.e., the US dollar–Swiss franc
(USD–CHF), the US dollar–Japanese yen (USD–JPY), the US dollar–German
deutsche mark (USD–DEM), and the British pound–US dollar (GBP–USD).
The data are observed for the whole year 1996 every 30 minutes in a time
scale denoted as ϑ–time, where all intra–day periodic components have been
removed: time scale with high volatility (activity) are expanded while time
scale with low activity are shortened. The ϑ–time scale can be interpreted as
a business scale, and then removes the seasonality in the volatility process;
see Dacorogna et al. (1993) for further details. Since the activity (volatility) is
not the same for the series considered, they do not have the same time scale.

We consider here the logarithmic middle price x(t) defined by
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xt ≡
xbidt + xaskt

2
with xbidt = ln(pbidt ), xaskt = ln(paskt ), (70)

where pbidt and paskt respectively denote the “bid” and “ask” price at time
t. This variable behaves symmetrically when the price is inverted. Next, we
define the returns rt as

rt = xt − xt−∆t, (71)

where ∆t represents the time interval between two consecutive observations;
here, ∆t = 30 minutes. The sample sizes of the series are quite large, as T =
17524, 17529, 17508 and 17520 for the log of returns on USD–DEM, USD–
CHF, USD–JPY and GBP–USD respectively.

Figures 29 and 30 below display the ACF of the series of absolute returns
|rt| and squared returns r2

t on US dollar–Japanese yen, up to the order 2500.
The hyperbolic decay of the ACF is typical or strongly dependent processes,
and is slower for the series of absolute returns than for the series of squared
returns: this is the so–called “Taylor effect”, i.e., the persistence of the se-
ries |rt|δ is the strongest for δ = 1. Unlike daily returns, intra–returns are
correlated, this negative correlation, which can be modeled by antipersistent
processes, is the consequence of market microstructure effects.
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Fig. 29. ACF of absolute returns on US dollar-Japanese yen FX rate
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Fig. 30. ACF of squared returns on US dollar-Japanese yen FX rate

• Long–Memory Analysis. The estimation of the long–memory param-
eter for the series of high frequency financial time series has been considered
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by Müller et al. (1990). A wavelet analysis of financial volatilities has been
conducted in Kokoszka and Teyssière (2002) and Teyssière (2003). They esti-
mated the degree of long–range dependence of absolute and squared returns
on FX rates and equities using the wavelet estimator by Veitch and Abry
(1999) and the local Whittle estimator. Their empirical results show that the
scaling parameter estimated with the wavelet estimator is far lower than the
one obtained with the local Whittle estimator.

In the present work, we estimate the degree of persistence for the series of
absolute returns and squared returns for the four intra–day FX rates, denoted
by |rusd−chf |, |rusd−dem|, |rusd−jpy |, |rgbp−usd|, r2

usd−chf , r2
usd−dem, r2

usd−jpy
and r2

gbp−usd. The choices for j1 and N are guided by the inspection of the
logscale diagrams.

We observe that the wavelet-based estimates of the long–memory param-
eter are significantly lower than the spectral-based estimates, confirming the
earlier finding mentioned above. Because the wavelet estimator benefits from
robustness against non–stationarities (change points and trends), such dis-
crepancies are in favor of the conjecture that the empirical high intensity of
strong dependence in asset price volatilities is a statistical artefact caused by
the occurrence of change–point(s). However, the results obtained here also
indicate that the estimates significantly depart from 0, i.e., the volatility se-
ries do display long–range dependence. This has implications for forecasting
purposes, as mentioned by Granger and Hyung (2004) who mix both long–
memory and change–point processes for forecasting absolute returns.
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Table 19. Estimation of the long–memory parameter for volatilities of intra–day FX
rates, N = 2. Standard errors are between parentheses, every other line. The optimal
bandwidths mopt

LP and mopt
LW are respectively used for the LP and LW estimators

Series α̂W j1 j2 α̂mW α̂optLP mopt
LP α̂optLW mopt

LW

|rusd−chf | 0.4309 5 9 0.4837 0.5956 549 0.5255 510
(0.0594) (0.0541) (0.0547) (0.0443)

|rusd−dem| 0.4511 5 11 0.4586 0.5863 557 0.5637 470
(0.0520) (0.0804) (0.0543) (0.0461)

|rusd−jpy| 0.3581 4 9 0.4017 0.4981 543 0.5597 467
(0.0381) (0.0572) (0.0550) (0.0463)

|rgbp−usd| 0.2923 5 11 0.3029 0.4126 555 0.5335 447
(0.0526) (0.0541) (0.0544) (0.0472)

r2
usd−chf 0.3088 3 10 0.3056 0.5808 594 0.5548 604

(0.0242) (0.0346) (0.0526) (0.0406)
r2
usd−dem 0.2543 4 9 0.2663 0.2583 694 0.3250 749

(0.0376) (0.0346) (0.0486) (0.0365)
r2
usd−jpy 0.2566 5 12 0.2794 0.4163 577 0.4351 527

(0.0513) (0.0572) (0.0533) (0.0436)
r2
gbp−usd 0.0982 5 9 0.1204 0.2796 753 0.2859 784

(0.0603) (0.0346) (0.0467) (0.0357)

Table 20. Wavelet estimates of the long–memory parameter for volatilities of
intra–day FX, for different values of the number of moments N . Standard errors are
between parentheses, every other line.

N = 3 N = 4 N = 5 N = 6

Series α̂W j1 j2 α̂W j1 j2 α̂W j1 j2 α̂W j1 j2

|rusd−chf | 0.4365 4 9 0.4137 4 9 0.4605 5 9 0.4630 5 9
(0.0380) (0.0385) (0.0621) (0.0631)

|rusd−dem| 0.4924 5 11 0.4277 5 11 0.4371 6 10 0.4328 6 10
(0.0541) (0.0573) (0.0963) (0.1005)

|rusd−jpy| 0.3591 4 8 0.3449 4 8 0.3776 4 10 0.3879 4 10
(0.0418) (0.0426) (0.0383) (0.0391)

|rgbp−usd| 0.2569 4 11 0.2125 5 10 0.2078 5 10 0.2126 4 9
(0.0356) (0.0581) (0.0600) (0.0401)

r2
usd−chf 0.3831 4 10 0.3856 4 10 0.4765 5 10 0.4400 5 10

(0.0362) (0.0374) (0.0599) (0.0617)
r2
usd−dem 0.2340 3 11 0.2977 5 11 0.2415 5 10 0.2871 5 10

(0.0240) (0.0573) (0.0600) (0.0617)
r2
usd−jpy 0.2851 4 11 0.2618 4 9 0.2871 4 10 0.2616 4 10

(0.0380) (0.0390) (0.0383) (0.0391)
r2
gbp−usd 0.1208 5 11 -0.0324 5 11 0.1541 4 10 -0.0217 4 10

(0.0541) (0.0573) (0.0383) (0.0391)
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Remark 14. We observe that the estimated scaling parameter does not signif-
icantly vary for different values of the number of moments N , which confirms
the presence of long–range dependence in the volatility series. The series of
squared returns r2

gbp−usd on dollar/pound FX rate, is a noticeable exception;
in fact, this highly nonlinear series was always very difficult to fit, see e.g.,
Gallant, Hsieh and Tauchen (1991).

6.2 Application to Trading Volume

• Bivariate Time Series. Lobato and Velasco (2000) considered the bi-
variate process (volatility, log trading volume) of asset prices of stocks con-
stituting the Dow Jones Average Industrial Index, observed from July 1962
to December 1994, i.e., 8176 daily observations, and investigated the issue of
common degree of long–range dependence for these two processes.

We consider here few of the series used by Lobato and Velasco (2000),
and check whether the wavelet based estimator gives the same results, i.e.,
the commonality of strong dependence between volatility and log of trading
volume.

Figures 31, 32, and 33 below display the log trading volume on three
stocks, Eastman Kodak, Chevron and ATT. These three series display strong
and clear upward trends.
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Fig. 31. Logarithm of trading volume on Eastman Kodak stock
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Fig. 32. Logarithm of trading volume on Chevron stock
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Fig. 33. Logarithm of trading volume on ATT stock

• Long–Memory Analysis. We estimate the long–memory parameters
for the log of trading volume and the absolute value of returns of six stocks:
AT & T Corp., Allied Signal Inc., Chevron Corp., Eastman Kodak Corp.,
Exxon Corp. and IBM.

Table 21. Estimation of the scaling parameter α for log of trading volume, and
absolute value of returns on stocks. Standard errors are between parentheses, every
other line. The optimal bandwidth mopt

LW is used for the LW estimator

Stocks α̂W (Volume) N j1 j2 α̂W (|rt|) j1 j2 α̂LW (|rt|)
AT & T 0.7632 6 1 9 0.6422 5 10 0.3465

(0.0179) (0.0871) (0.0533)
Allied Signal 0.6564 6 1 9 0.3126 5 8 0.4546

(0.0181) (0.1051) (0.0546)
Chevron 0.6548 6 1 9 0.3715 7 10 0.5108

(0.0181) (0.2530) (0.0572)
Eastman Kodak 0.7051 6 1 9 0.2484 5 8 0.4146

(0.0181) (0.1051) (0.0516)
Exxon 0.7151 6 1 9 0.5331 6 10 0.3088

(0.0182) (0.1431) (0.0515)
IBM 0.8532 6 1 9 0.3626 4 10 0.2553

(0.0181) (0.0556) (0.0462)

For the series of volume, estimation results no longer differ as soon as
N > 6, see also Table 22. As we can see from figures 34 and 35, the logscale
diagrams consist of straight lines for all octaves, except for Chevron, see Figure
36. Together with the estimated values of the long–memory parameter, this
tells that there does exist long–memory in the trading volume times series.
The wavelet based estimator is not fooled by the obvious trends that also exist
on top of long–memory. We also observe that the estimated long–memory
parameters for the series of absolute returns are lower than the estimated
scaling parameters for the series of log of volume. In fact, logscale diagrams
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for the series of absolute returns are more difficult to interpret than the ones
of the series of log–volume.
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Logscale Diagram,  N=6    [ (j_1,j_2)=  (1,8),  Estimated scaling parameter = 0.6902]
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Confidence Intervals
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Fig. 34. Logscale diagram for the logarithm of volume on AT& T , N = 6
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Fig. 35. Logscale diagram for the logarithm of volume on IBM , N = 10
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Fig. 36. Logscale diagram for the logarithm of volume on Chevron , N = 10

Table 22. Estimation of the scaling parameter α for log of trading volume, and
absolute value of returns on stocks, for different values of the number of moments
N . Standard errors are between parentheses, every other line

N = 7 N = 8 N = 9 N = 10

Series α̂W j1 j2 α̂W j1 j2 α̂W j1 j2 α̂W j1 j2

AT & T 0.7548 1 9 0.7475 1 8 0.7518 1 8 0.7337 1 8
(0.0180) (0.0183) (0.0187) (0.0189)

Allied Signal 0.6405 1 9 0.6385 1 8 0.6367 1 8 0.6316 1 8
(0.0180) (0.0183) (0.0187) (0.0189)

Chevron 0.6459 1 9 0.6435 1 8 0.6432 1 8 0.6384 1 8
(0.0180) (0.0183) (0.0187) (0.0189)

Eastman Kodak 0.7118 1 9 0.7041 1 8 0.6896 1 8 0.6896 1 8
(0.0180) (0.0183) (0.0187) (0.0189)

Exxon 0.7070 1 9 0.7099 1 8 0.7046 1 8 0.7089 1 8
(0.0180) (0.0183) (0.0187) (0.0189)

IBM 0.8351 1 9 0.8451 1 8 0.8301 1 8 0.8235 1 8
(0.0180) (0.0183) (0.0187) (0.0189)
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7 Conclusion

In nominal situations, i.e., when the analyzed time series corresponds to an
actual non corrupted long–range dependent process, the wavelet estimator
for the long–memory parameter works satisfactorily well and this for a large
variety of linear and nonlinear strongly dependent processes in conditional
mean an in conditional variance. In the same situations, the local Whittle
estimator slightly outperforms the log periodogram and wavelet estimators
whose performance are mostly comparable. From our point of view, the key
advantage of the wavelet based estimator lies in the possibility of varying N
which indeed constitutes a key degree of freedom in the wavelet based anal-
ysis of long–memory: as long as the logscale diagrams and the corresponding
estimates of the long–memory parameter vary with N , it shows that non–
stationarities exist in the time series and may impair a correct analysis of
the long–memory or confused with long–memory. When, for large enough N ,
no variation with N are observed, we know we have untangled long–memory
from non–stationarity and can accurately estimate the corresponding param-
eter. Section 5 consistently showed that the wavelet estimator significantly
outperformed the two other estimators in situations where non–stationarities
were added to long–memory or confused with.

Also, for financial time series, the possibility of varying N enabled to
show that the intensity of the long–range dependence of volatility processes is
lower than the one measured with spectral based semiparametric estimators.
Thus, it reveals that volatility processes mix non–stationarities with long–
range dependence. It also showed however that long–memory truly exists both
in the volatility and volume time series. The wavelet analysis of the series of
volume and volatility finally showed that the dynamics of volatility processes
is more complex than the one of volume processes.
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54. Mikosch, T. and Stărică, C. (1999). Change of structure in financial time series,
long range dependence and the GARCH model. Preprint.

55. Moulines, E. and Soulier, P. (2003). Semiparametric spectral estimation for
fractional processes, in: Doukhan, P., G. and Taqqu, M.S. (Eds.), Long–Range
Dependence: Theory and Applications. Birkhauser, Boston, pp. 251–301.

56. Müller, U.A., Dacorogna, M.M., Olsen, R.B., Pictet, O.V., Schwarz, M. and
Morgenegg, C. (1990). Statistical study of foreign exchange rates, empirical
evidence of a price change scaling law, and intraday analysis. Journal of Banking
and Finance, 14, 1189–1208.

57. Robinson, P.M. (1995a). Gaussian semiparametric estimation of long–range de-
pendence. The Annals of Statistics, 23, 1630–1661.

58. Robinson, P.M. (1995b). Log periodogram regression of time series with long
range dependence. The Annals of Statistics, 23, 1048–1072.

59. Robinson, P.M. (1994). Time Series with Strong Dependence, in C.A. Sims (Ed),
Advances in Econometrics, Sixth World Congress. Cambridge University Press,
pp. 47–95.

60. Robinson, P.M. (1991). Testing for strong serial correlation and dynamic con-
ditional heteroskedasticity in multiple regression. Journal of Econometrics, 47,
67–84.

61. Robinson, P.M. (1977). The estimation of a nonlinear moving average model.
Stochastic Processes and their Applications, 5, 81–90.

62. Robinson, P.M. and Zaffaroni, P. (1997). Modelling nonlinearity and long–
memory in time series. Fields Institute Communications, 11, 161–170.

63. Surgailis, D. (1981). Convergence of sums of nonlinear functions of moving av-
erages to self–similar processes. Soviet Mathematics, 23, 247–250.



66 Gilles Teyssière and Patrice Abry

64. Teyssière, G. (2003). Interaction models for common long–range dependence in
asset price volatility, in: Rangarajan, G. and Ding, M. (Eds.), Processes with
Long Range Correlations: Theory and Applications, Lecture Notes in Physics,
Vol. 621. Springer Verlag, Berlin, pp. 251–269.

65. Veitch, D. and Abry, P. (1999). A wavelet based joint estimator of the parameters
of long–range dependence. IEEE Transactions on Information Theory, 45, 878–
897.

66. Veitch, D., Taqqu, M.S. and Abry, P. (2000). Meaningfull MRA initialisation for
discrete time series. Signal Processing, 80, 1971–1983. EURASIP Best Paper
Award.

67. Veitch, D. and Abry, P. (2001). A statistical test for the time constancy of
scaling exponents. IEEE Transactions on Signal Processing, 49, 2325–2334.

68. Veitch, D., Abry, P. and Taqqu, M.S. (2003). On the automatic selection of the
onset of scaling. Fractals, 11, (4), 377-390.

69. Vostrikova, L.Ju. (1981). Detection of “disorder” in multidimensional random
processes. Soviet Mathematics Doklady, 24, 55–59.

70. Zaffaroni, P. (2003). Gaussian inference on certain long–range dependent volatil-
ity models. Journal of Econometrics, 115, 199–258.


