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Summary

We propose in this paper an extension of Besag’s auto-models to exponential families
with multi-dimensional parameters. This extension is necessary for the treatment of
spatial models like the ones where the conditional distributions are Beta-distributed. A
family of cooperative auto-models is proposed. Moreover we apply the result to the
analysis of lattice observations which are mixtures of a point mass at the origin and a
continuous component.
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1 INTRODUCTION

We consider a random field X = {X;,7 € S} on a finite set of sites S = {1,...,n}. For a site
1, let us note

pi(wil) = pi(zilz;, j # 1),

the probability density of X; given the event {X; = z;,j # i}. An important approach
in stochastic modelling consists in specifying the family of all these conditional distributions
{pi(zi|-)}, and then to determine a joint distribution P of the system, which is compatible with
this family, i.e. the p;’s are exactly the conditional distributions associated to P. This problem
was first investigated by Whittle, Bartlett and Besag since years 1960-1970. We refer to the
seminal paper of Besag (1974) which presents general results including a useful summary of
the previous results of Whittle and Bartlett about the “nearest neighbours systems” (Whittle
(1963), Bartlett (1968)). Recently a Markovian approach is proposed in Kaiser & Cressie
(2000) (see also Kaiser & al. (2002)) where the commonly used positivity condition on the
joint probability distribution is relaxed.

In this paper, we focus on auto-models introduced by Besag (1974). Let us recall that if
the joined distribution P is positive everywhere, the Hammersley-Clifford’s Theorem gives a
characterization of P by an energy Q(x) given by a sum of potentials G deduced from a set
of cliques. These auto-models are constructed under two assumptions: first, the dependence
between sites is pairwise and secondly, the collection of conditional distributions from the
sites belongs to a one-parameter exponential family.

Recent studies in spatial statistics indicate clearly a need for an enlargement of these one
dimensional auto-models. An extension of the first condition is proposed in Lee & al. (2001)
where the pairwise only dependence is replaced by a multiway dependence but still with one
parameter exponential families. We propose in this work an extension to exponential families



involving a multi-dimensional parameter, as for instance the Beta distribution, the Gaussian
law with mean and variance depending on (xj,j # ) or mixture distributions considered in
4.

In section 2, we give a careful construction of multi-parameter auto-models. As a first
application of this general approach, we address the particular problem of building cooper-
ative spatial models. Indeed, the admissibility conditions for usual auto-models based on
Exponential, Gamma or Poisson conditional distributions imply a spatial competition be-
tween the neighbour sites (c¢f. Besag (1974)). In Section 3, we provide a special class of
auto-models where the family of conditional distributions are Beta-distributed. This class
has the advantage to be able to exhibit spatial cooperation as well as spatial competition
according to suitable choice of its parameter values. We notice that Kaiser & Cressie (2000)
have considered a Markov field admitting Beta conditional distributions. However their ap-
proach is different and for the special class of auto-models under consideration, they have
taken a much more constrained parametrization which implies in particular that the model
can exhibit spatial cooperation behavior only.

In Section 4, we present auto-models for mized-state data. In several application fields
like daily pluviometry data, observations contain two components of different nature. A first
part is made with discrete values accounting for some symbolic information and a second
part records a continuous measurement. We call such type of observations “mixed states
observations”. We use the previous result to propose a specific multi-parameter auto-model
modelling this kind of data.

Finally we provide in Section 5 some experiments on the analysis of motion measures from
video image sequences. Indeed empirical histograms of these motion measurements indicate a
composite picture: an important peak appears at the origin accounting for regions where no
motion is present, while a large continuous component encompasses actual motion magnitudes
in the images.

2 MULTI-PARAMETER AUTO-MODELS

Let us consider a set of sites S = {1,...,n}, a measurable state space (E,E, m) (usually
a subset of ]Rd). We denote the layouts space by Q = E°, equipped with the o-algebra
and the product measure (%%, v := m®9%). For simplicity, we shall consider Q = E°, but
all the following results hold equally with a more general configuration space Q = [[;.q Ei,
where each individual space (E;, &;) is equipped with some measure m;. We will give such an
example in section 2-1.

A random field is specified by a probability distribution p on €2, and we will assume that
1 has an everywhere positive density P with respect to v i.e.

p(dx) = P(x)v(dr) , P(z)=Z 'expQ(x), (2-1)

where Z is a normalizing constant. The Hammersley-Clifford’s Theorem gives a characteriza-
tion of Q(x) as a sum of potentials G deduced from a set of cliques. Moreover, the positivity
condition implies that in each site ¢, the conditional distribution (X;|X; = z;,j # i) admits
with respect to m(dx;), a density p;(z;|-) which is itself everywhere positive.

Let us set the pairwise-only dependence assumption.



[B1] the cliques involve at most two sites, i.e.,

Q@) =) Gilwi) + Y Gijlzi,z)) -

ies (i}

We fix a reference configuration 7 = (7;) € Q. In most cases, 7 = (0,...,0) but the choice
of this reference configuration essentially depends on the state space E ; for instance, if we
look for Beta distributions (Section 3), E = (0,1) and we will take 7 = (3,...,3).

Next we can always assume that, for all ¢, j and z it happens that

Gz‘j(Ti,J}j) = Gij(.fvi,Tj) = GZ(TZ) = O . (2'2)
Actually if this condition was not naturally satisfied, we may substitute for G;;(x;, ;)
Gij(xi,x5) — Gij (1, 25) — Gij(xs, 75) + Gij (T3, 75)

and make a similar adjustment for G;(x;). Note that we thus have Q(7) = 0 and Z~! = P(7).
The second assumption generalizes Besag’s one-parameter setting to the multi-parameter
case:

B2]: logpi(xil-) = (Ai(), Bi(zi)) + Ci(wi) + Di(-) ,  Ai(-) € R, By(m;) € RY.
The main result of the paper is the following.

Theorem 1 Let us assume that the two conditions [B1]-[B2] are satisfied with the normal-
ization Bi(;) = Ci(1;) = 0 in [B2], as well as the following condition

[C]:  for all i€ S, Span{B;(z;),z; € E} = R%.

Then there exists for i,j € S, i # j, a family of d-dimensional vectors {«;} and a family of
d x d matrices {(3;;} satisfying ﬂg = Bji, such that

J#i

And the potentials are given by

Gi(w;) = (i, Bi(x)) + Ci(zi) (2-4)
Gij(wy, w5) = B ()83 Bj(x;) - (2:5)

A model satisfying the assumptions of the theorem is called a multi-parameter auto-model.
The additional condition [C] eliminates singular local statistics B;(z;). This condition does
not exist for the one-parameter case, since it is automatically satisfied, meaning that the B;’s
are not identically zero. We will see below that this condition is not restrictive, easily satisfied
in most examples.

We give two useful notations. If z € €2, for each i we note 7z the layout deduced from x
replacing z; by 7;, and moreover z() = (x,7 # i) the outer configuration of site 4.



Proof of Theorem 1. For each i, we have:
Q(z) — Q(rix)
= Gi(w;) + Y _ Gij(wi, ) = log
J#i
= (Ai(2D), Bi(:)) + Ci(:) .

Pz‘(xz‘!l"(i))
pi(Tilz®)

We choose z() = 7(1) = (75,J # i), which ensures:
Gi(x:) = (A(r™), Bi(ws)) + Ci(w:) - (2:6)

Then we set two indexes ¢ # j, that is to say for simplification ¢ = 1 and j = 2. The previous
calculus also leads to

Q(‘Thx??TZ‘}a o 7Tn) - Q(Tlux277—37 cee 77—71)
= Gi(x1) + Gra(x1,22) = (A1(z2, 73, ..., Tn), B1(z1)) + C1(z1) -

Therefore
Gia(w1,12) = (A1(22), B1(21)) ,
where we put
Aq(x2) = A1(x2, 73, ..., Tn) — A1(72, T3, ..., Th) -
In an analogous way and switching indexes 1 and 2, we finally obtain for all x1,z9 € F,
Gha(w1,w2) = (A1(22), Bi(21)) = (Az(x1), Ba(w2))
with
Ag(z1) = Ag(x1, 73, ...y T) — Aa(T1,73, .., Th) -

Since condition [C] there exists d vectors Xo = (x2(1),x2(2), -+ ,22(d)) such that the d x
d—matrix Bo(Xy) = (Ba(x2(1)),. .., B2(x2(d))) is regular. Let us note A (X2) = (A1 (x2(1)), ..., A1 (x2(d)).
We still have:

As(21)" Bo(As) = Bi(a1)T Ai(Xz)
that is
Ag(x1)" = Bi(21)" B1a(X2) ,  where  Bia(X2) = A1 (Xp)[Ba(Xp)]
Finally Gy can be written as
Gha(z1,72) = Bi(21)” f12(A2) Ba(a2) .

The left hand side of this equality does not depend on Xs, so (12(X2) = (12 is a constant
matrix. Besides, as the potential G2 keeps invariant by permutation of its indexes, this
implies that B2 = 83,. O



In all the following, we will say that a measurable function H(x) defined on 2 is admissible
if

/ exp H(z)v(dz) < oo . (2-7)
Q

The following proposition is useful, giving a converse to the previous theorem. It also
provides a practical way to choose the parameters for a well-defined multi-parameter auto-
model.

Proposition 1 Assume that the energy function Q is defined by [B1] with potentials
Gi, Gij gwen in (2-4)-(2-5), and that it is moreover admissible. Then the family of con-
ditional distributions p;(x;|-) belong to an exponential family of type [B2] whose sufficient
statistics A;(-) satisfy (2-3).

Proof. We just have to check that the conditional laws of the field with potentials
(2-4)-(2-5) are those given by [B2] and (2-3). This follows from:

Q(x) = Qriz) = Gi(w)+ Y Gijlwi,x;)
jii
= (i, Bi(w:)) + Ci(zi) + ) Bi(wi)" 8 Bj(x;)
J#i
piai|z®)

= (Ai(zD), Bi(2:)) + Ci(as) = logm :

2-1  An illustrative application to a pair of Gaussian and Gamma variables

In section 3, we will examine multi-parameter auto-models on a lattice. We give here an
illustration of Theorem 1 in the case of a couple of variables (X7, X2) which respectively take
their values in F; = R™ and E, = R. This example is interesting since the two state spaces
FEq et Es are different. We first require that the conditional distribution of X given Xo = x9
is a Gamma distribution, and that Xs given X; = x1 is Gaussian. The reference configuration
is 7 = (1,0). In other words, we have according to [B2]:

log p1(21]|22) = 10g fp, (2,)(x1) = (A1(z2), B1(z1)) — D1(z2)
log p2(z2]x1) =108 gy (1) (72) = (A2(1), B2(22)) — Da2(21) -

Here the sufficient statistics are By(z) = (—x + 1,logz)” and Ba(z) = (=, 22)T.
Condition [C] is trivially satisfied here. Therefore by Theorem 1, there exists two vectors
a1, ag and one (2 X 2)-matrix 3 such that

Ai(x2) = a1 + BBa(x2) , As(z1) = s + 87 By(21)

The joint density is P(z1, x2) = P(7) exp Q(z1, 22) with Q(x1, x2) = (a1, Bi(z1))+(az, Ba(z2))+
By (21)T 8Ba(z2) -

The model contains 8 parameters. Explicit conditions on these parameters can be obtained
in a straightforward way to ensure admissibility of the energy function ) and consequently the
existence of a joint distribution. Therefore we have in a simple way recovered a known-result
as presented in Arnold & al. (1999), §4.8.



3 A SPECIAL CLASS OF AUTO-MODELS WITH BETA CONDITIONALS

As pointed out in Besag (1974), several common one-parameter auto-models necessarily imply
spatial competition between neighbouring sites. For instance, this is the case for the auto-
exponential, auto-Poisson schemes as well as for the auto-Gamma family. This competition
behaviour is clearly inadequate for many spatial systems where neighbouring sites are indeed
cooperative. A common way to get rid of this drawback is to transform the variables into a
bounded range. For instance a truncation or projection procedure could be used.

In this section, we propose another way to get cooperative auto-models by using Beta con-
ditionals. This is made possible by the multi-parameter auto-models introduced previously.
Moreover, the family of Beta distributions offers a large variety of densities on a determined
interval [a, b].

Let us write the density of a Beta distribution on [0,1] with parameters p,q > 0 as

folw) = k(p. @)~ (1 — 2)7~ = exp {{6, B(z)) — $(0)} ,0 <z <1

with @ = (p—1,q—1)T, B(x) = [log(2z),log(2(1—x))]T and ¢ (0) = (p+q—2) log 2-+log x(p, q).
We recall that x(p,q) = I'(p + q)/[['(p)['(q)]. Here the reference state is 7 = 3 ensuring
B(7) = 0. Throughout this section we denote the two base functions by u(z) = log(2z) and
v(z) =log[2(1 — x)].

We now consider a random field X with such Beta conditional distributions. Clearly,
Condition [C] is satisfied. From Theorem 1, there exists for ¢, € S and i # j some vectors

des
ai = (a;,b;)T € R? and (2 x 2)-matrices B;; = <2f3 ell].) verifying 0;; = ﬁ}-;, such that
ij €

u(z;)
Ai()=ai+ ) BijBzj) =ai+ ) Bij R
> bte) =34 (101)

The energy function @) can be written as

Q@i wn) =Y (i, B(x:)) + > Bla:)" Bi;B(x;) .
€S {i,5}
Finally the reference configuration is 7 = (%, ey %) satisfying Q(7) = 0.
This model is well-defined as soon as its energy function @ is admissible. We first note
that the canonical parameters of the conditional Beta distributions are given by

a; + 325 {cijulz;) + dijo(z;)}
Ai() = . . (3-1)
bi+ >4 {dijU(ij) + ez‘jv(%‘)}
It is then necessary that for all i and all outer layout 2* € (0,1)"1,
Lt a;+ Y {egulzy) + digo(a;)} >0, (3-2)
J#
and
14+b6; + Z {d;}u(%ﬂ + eijv(xj)} > 0. (3-3)
J#i



Let us consider the first inequality (3-2). If x; tends to 04 or 1_, necessarily it follows that
cij < 0 and d;; < 0. Assume for a moment ¢;; + d;; # 0. Then by studying the function
defined in this inequality, we see that it is convex and reaching its minimum at { = (&;) where
& = cij/(cij + di;) for j # i. Finally the first inequality holds as soon as

262" 2di'
hi ;:1+a-+§ {c-lo ——— +d;lo J}>o. 34
i i por ij gCij+dij ij gcij+dij ( )

If indeed ¢;; = d;; = 0, the situation is trivial and the same conclusion holds with the agree-
ment OIOg% = 0log0 = 0. The case of the second inequality (3-3) is similar by substituting

bi, d¥, e;s) for (a;,cii,d;;) with this time df; < 0 and e;; < 0, and we obtain the following
%] J J J % J
condition similar to (3-4)
2d*. 26,
ki=14+0b;+ df:log —2— 4+ e;ilog——2— % > 0. 35
1 [ ; { 1] g d;kj + eij ) g d:} + eij ( )

Proposition 2 With (h;) and (k;) defined in (3-4)-(3-5), the family of conditional distribu-
tions {pi(z;|-) ,i € S} is everywhere well-defined under the following assumptions

[T1] : (i)  forall{i,j}, Bij = <Cij d”) < (8 8) , element-wisely

d;‘j €ij
(i)  for alli, hy >0 and k; > 0.
Interestingly enough, these conditions also ensure the admissibility of the energy function Q.

Proposition 3 Under Conditions [T1], the energy function Q is admissible and conse-
quently, the auto-model with Beta conditionals is well-defined.

Proof. We have

Q1. xn) =Y uw) |ai+ Y {eijula;) + dijv(z;)}

= i

+ Zv(xz) bi + Z {dijulz;) + ejju(z;) }

ies i
<D {(hs = Du(as) + (ki = Do)} -
ies

Clearly exp Q(x) is integrable on (0,1)". O
In practice one may, instead of the conditions [T1], prefer the following
i . .. o Cz‘j dij < 00
[T2]: (i) forall {i,5}, Bi; = (dfj eij) < <0 R
(ii) for all ¢, 1+ a; + (log2) Z {cij +dij} >0, and
J#i
1+b6; + (IOgZ)Z {d;-kj +€ij} >0.
J#i

This set of stronger conditions has the merit to be much simpler to use.



3-1 Spatial cooperation versus spatial competition

We now examine the spatial competition or cooperation behavior of this model. At each site
i, the mean of the conditional distribution p;(x;|-) is

E(Xi) = 5 Lt Aial)

+ Ai1(-) + Aia(0)

This conditional mean increases with A; ;(-) and decreases with A; 2(-). Besides the model is
spatially cooperative if at each ¢ the above conditional mean increases with each neighbouring
value x;, j # ¢. This is possible by requiring for all 4, j, ¢;; = e;; = 0.

Alternatively, if we adopt the constraints di; = dj; = 0 for all pairs ¢ # j, the above
conditional mean becomes a decreasing function on any of its neighbouring value x;. There
is then a spatial competition between neighbouring sites.

To conclude the discussion about this special class, we compare the above results to those
of Kaiser & Cressie (2000). Following a different approach the authors have also considered
an auto-model with Beta conditional distributions. More precisely, the proposed model - Eq.
(16) of the reference-, corresponds to the following special specification:

3
Cz'j = eij = 0, dz’j = dij .

This provides an auto-model with spatial cooperation as proved by the authors and as men-
tioned above. However the additional constraint d;; = d7; is by no means necessary. It is also
worth noticing that the assumed conditions for the admissibility of the energy function Q(x)
corresponds to the set of conditions [T2] above which is sufficient but not necessary.

3-2 A cooperative model with the four-nearest-neighbours system

Consider the four-nearest-neighbours system on a two-dimensional lattice S = [1, M] x [1, N]:
each site i € S has the four neighbours denoted as {i. = i + (1,0),i, = i — (1,0),4,, =
i+(0,1),is =17 —(0,1)} (with obvious correction on the boundary). We next assume spatial
stationarity but allow possible anisotropy between the horizontal and vertical directions. Also
the systeme is required to be spatially cooperative so that we assume c;; = e;; = 0. Under
all these considerations and by the previous results, there exist a vector a = (a,b) and two
2 x 2 matrices 31 and ® such that Vi, a; = «, and for V{i,7}, Bij = 0 unless ¢ and j are
neighbours where

g (0 di\ _gr o p g (U d2) g7
61,7,5 6 <d>{ 0 ) 10,17 ﬁl,ln ﬁ (d; 0 15,17

The model involves 6 parameters (a,b,dy,d;,ds,d;). The admissibility conditions [T1] be-
come

dp <0, d;, <0,k=1,2; 14a+(di+da+di+d;)log2 > 0; 1+b+(di+do+di+d5)log2 > 0.

The associated local conditional distributions are Beta-distributed with canonical param-
eters

Ay() = a+ dyv(z;,) + djv(z;,) + dov(zg,) + div(x,) (36)
S0 N0+ dju(wi,) + diu(w,) + diu(ws,) + dau(as,) )

Note that these parameters can be easily estimated by the well-known pseudo-likelihood
method.



4  AUTO-MODELS FOR MIXED-STATE DATA

It is frequent to get measurements that can present continuous values during some periods
and discrete values at other times. For example, daily pluviometry time series at a given site
records many zeros when the rain is absent, followed by periods with positive rainfall values
(Allcroft and Glasbey (2003)). Another example arises in the motion analysis problem from
image sequences (Section 5). It then raises the question to find accurate models for this type
of data, where the variables belong to what we shall call a mized-state space. If the data
are collected from some lattice, then we will use the previous multi-parameter auto-models
involving observations of both continuous and discrete type.

Let us first define a simple random variable on the mixed-state space E = {0} U (0, 00).
This space is equipped with a “mixed” reference measure m(dx) = dg(dx) + A\(dz) where &y
is the Dirac measure at 0 and A the Lebesgue measure on (0,00). Any random variable X
taking its values in F is called a mized-state random variable, and the associated distribu-
tion a mized-state distribution. Such a variable arises from the following construction: with
probability v € (0,1) we set X = 0, and with probability 1 — v, X is positive, continuous
having on (0, 00) a density belonging to a s-dimensional exponential family

ge(x) = H(E) exp(, T(x)), £ € R®, T(x) € R’

where the sufficient statistics T' is defined with 7'(0) = 0 (a priori, T is not defined at the
origin but in practice, usual sufficient statistics can be extended by continuity). Define the
indicator function §(z) = Ijoy(v) and set 6*(z) = 1 — é(z). The variable X has then the
following density function w.r.t. m(dz)

fo(z) = v6(x) + (1 = 7)0"(2)ge (x)
= vexp{d*(z)In (1_:/)(5) + (&, T(x))}
= Z7Y0) exp(h, B(z)) (4-1)

where we have set

T
9:(91,92>T:<10g ,§> . B() = (5*(x), T@)")" .

(A=A
Y

In other words, X also belongs to an exponential family with parametric dimension 1+ s.

Note that the use of §* ensures the normalization equality B(0) = 0 used in Condition [B2].

Moreover the original parameters £ and v can be recovered from the natural parameter 6 by

H(E)

£=102, ’Y:W-

Coming back to spatial data on a lattice and by using the general theory of multi-
parameter auto-models, we are able to construct auto-models for mixed-state variables. We
start by assuming that the family of conditional distributions p;(x;|-) belongs to the family
of mixed-state distribution given in (4-1). In other words, we assume that

log pi(wi|-) = (0:i(-), B(x:)) — Di() (4-2)



Based on Theorem 1, we know that there are a family of (s+ 1)-dimensional vectors {«;} and
a family of (s + 1) x (s + 1) matrices {f;;} satisfying 3;; = ﬂ}; such that

0i() =i+ _ Bi;Blx;) . (4-3)
J#i
The associated energy function is given by
Q(z) =Y (i, B(z:)) ++ Y _ Blxi)"Bi;B(x;) - (4-4)
€S {i,5}

Note that for each specific family g¢, we will have to look for the conditions ensuring the
admissibility of the energy function Q(x).

5 AN APPLICATION TO MOTION ANALYSIS FROM VIDEO IMAGE SEQUENCES

5-1  Motion measurements from video sequences

Motion computation and analysis are of central importance in image analysis. Let {I;(¢)}
be an image sequence where i = (i1,i3) € S denotes the pixel locations and t = 1,...,T
time instants in the sequence. Roughly speaking, a motion map at time ¢, X (t) = {X;(¢)}
{||vi(t)||} is defined as the norm of the underlying motion field {v;(¢)} which is estimated by
a “regularized” minimization of the sum of squares Y[y, () (t + 1) — I;(t)]?. Usually some

local smoothing procedures are needed to get a moi‘e robust motion map and we refer to
Fablet and Bouthemy (2003) for details of these computations.

Here we consider video sequences of natural scenes. Figure 1 displays three sample images
from each of two sequences involving a moving escalator and a tree under wind respectively.
The corresponding motion maps are displayed in Figure 2. Next, sample histograms from
these motion maps are presented in Figure 3. As a matter of fact, these histograms present a
composite picture. An important peak appears at the origin accounting for regions where no
motion is present, while a large continuous component encompasses actual motion magnitudes
in the images.

5-2  The auto-model with mixed positive Gaussian distributions

We follow the general construction of mixed states auto-models. First, we call W a mized
positive Gaussian variable if g¢ is the density of the modulus of a zero-mean Gaussian dis-
tribution with variance o2 gg(x) = 2(2m0?)~1/2 exp{— 2{72 22}, Then W has the following
density w.r.t. m(dx):

fo(x) = vd(z) + (1 — 7)6"(2)ge(x) = exp [(0, B(x)) + log ] . (5-1)

Here we have set ¢ = (202)~! and consequently

(1 —7)ge(0)

T 2N\T
- ,5) . B(x) = (5(x),—)" . (5:2)

0 =(61,60:)" = <1Og

To construct auto-models for the motion maps observations { X;(t)}, we assume that the
family of conditional distributions p;(z;|-) belongs to the family of mixed positive Gaussian

10



distribution fy,(.)(xi) given in (5-1). By Theorem 1, there are a family of vectors a; = (a;, b;) €
R? and a family of 2 x 2 matrices {;;} satisfying 3;; = ﬁ};, such that
0i(-) = ai+ Y _ By Blx)) . (5-3)
J#i

Moreover the associated energy function is given by

Qe yxn) = Y [aid"(ws) = biaf] + (6% (w0), —a)Bij (6" (), —a3)" . (5-4)

€S {i,5}

We now consider the context of the four-nearest-neighbours system analoguous to the one
defined in Section 3-2 with spatial stationarity and possible anisotropy between the horizontal
and vertical directions. There exist then a vector o = (a,b) and two 2 x 2 matrices 3! and
52 such that Vi, a; = a, and for V{i,j}, Bi; = 0 unless i and j are neighbours where

g (e di\ _gr 5 ge)_ (2 d2) _ gr
/B’L,Zg /B <dT €1> 10,17 /817271 ﬁ <d; > 15,1 °

€2

Moreover we ask for spatial cooperation and thus we need to further constrain the parameters
dy, dj and e, kK = 1,2 to be zero. The resulting auto-model has four parameters ¢ =
(a,b,c1,c2) and is well-defined (admissible) under an unique condition: b > 0.

Furthermore the parameter ¢ can be estimated by maximizing the pseudo-likelihood (in
fact its logarithm)

L(z;¢) = > logpi(ilxj, j # i) . (5:5)

€S

This method has good consistency properties for classical one-parameter auto-models, see e.g.
Besag (1977), Guyon (1995).

5-3 FExperiments

The experiments are conducted in order to evaluate whether the above model can correctly
account for a fundamental characteristic of an homogeneous texture, namely spatial isotropy
or spatial anisotropy. According to the four-nearest-neighbours Gaussian mixed-state model
of Section 5-2, the spatial isotropy occurs if (and only if) ¢; = co. We then have fitted this
model to the motion maps displayed in Figure 2.

First we consider motions from trees (bottom row of the figure). A typical set of parameter
estimates is gZA) = (&,l;, ¢1,62) = (—5.805,3.044,3.057,2.954). The parameters ¢; and cp are
almost identical (with regard to standard deviations of these estimates computed at other
time instants of a same tree sequence). Therefore, the believed spatial isotropy for these
motions is well reflected here by the equality between the parameters {cx}.

Next we consider the motion maps from a moving escalator (top row of Figure 2). Since
the motion is a vertical one, we have clearly anisotropic motion. A typical set of parameter
estimates is <13 = (a, b, ¢, ¢2) = (—6.512,0.320,2.192, 3.598). Clearly, the difference between c;
and ¢y is significant. Therefore, the fitted model seems able to reflect the spatial anisotropy
of the considered motion.
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6 CONCLUSION

In this paper we have proposed an extension of Besag’s auto-models to the situations where
the local conditional distributions belong to some multi-parameter exponential families. This
extension is fundamental for the treatment of useful spatial models like the one exposed in
Section 3 with Beta conditionals. This model in particular can exhibit spatial cooperation
(as well as spatial competition). Another interesting application we have proposed is on the
modelling of mixed-state data where the distributions are mixtures of discrete and continuous
components. We look further to work on the development of a satisfactory estimation theory
both for the pseudo-likelihood estimator and the more difficult likelihood estimator.
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Figure 1: Sample images from two videos. Top row: a moving escalator; bottom row: trees.

Figure 2: Sample motion measures {X;(¢)} from the videos of Figure 1. Top row: a moving
escalator; bottom row: a tree (white=0; black=maximum value).

x 10

Figure 3: Sample histograms of motion measures {X;(t)} of Figure 2.
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