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Département de Mathématiques et Informatique
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Abstract

We study the asymptotic behavior in Sobolev norm of the local time of the
d–dimensional fractional Brownian motion with N–parameters when the space
variable tends to zero, both for the fixed time case and when simultaneously
time tends to infinity and space variable to zero.
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1 Introduction

Let BH = {BH
t : t ≥ 0} be a standard fractional Brownian motion (fBm for

brevity) with Hurst parameter H ∈ (0, 1). It is well known that this process is a
centered Gaussian process which admits an integral representation of the form

BH
t =

∫ t

0

KH(t, s)dWs,

where W is an standard Wiener process. The kernel KH(t, s) is given, for s < t, by

KH(t, s) = cH(t− s)µ − µcH

∫ t

s

(r − s)µ−1(1− (
s

r
)−µ)dr, (1)

with cH being a constant and µ = H − 1
2
.

The covariance function of BH
t can be represented as
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2Supported by the Spanish Ministerio de Educación, Cultura y Deporte: Grant BFM2000–0009

and by the Catalan CIRIT: Grant 2001SGR00174.
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RH(s, t) = E(BH
s BH

t ) =

∫ s∧t

0

KH(t, r)KH(s, r)dr,

and has the explicit form

RH(s, t) =
1

2
(s2H + t2H − |t− s|2H).

A very good survey about the fBm is the paper of Nualart [5].
For H = (H1, . . . , HN) the (N, 1)–fBm is defined as

BH
t =

∫
[0,t]

KH(t, s)dWs,

where KH(t, s) =
⊗N

j=1 KHj
(tj, sj), s, t ∈ RN

+ and W is an standard N–parameter
Brownian motion. Its covariance function is

RH(s, t) = E(BH
s BH

t ) =
N∏

j=1

RHj
(sj, tj).

Finally given the N × d–matrix H = (H1, . . . , Hd) where for i = 1, . . . , d and
j = 1, . . . , N, H i = (Hi,1, · · · , Hi,N) is a column vector and Hi,j ∈ (0, 1), the N–
parameter, d–dimensional fractional Brownian motion ((N, d)–fBm for brevity) is

defined by BH = (BH1
t , . . . , BHd

t )t∈RN
+

where its components are independent and for

every i = 1, . . . , d, BHi is a (N, 1)–fBm with Hurst parameter H i.
For any t ∈ RN

+ and x ∈ Rd, the local time L(t, x) of the (N, d)–fBm can be
defined as the density of the occupation measure µt, defined as

µt(A) =

∫
[0,t]

11A(BH
s )ds, A ∈ B(Rd).

Formally, we can write

L(t, x) =

∫
[0,t]

δx(B
H
s )ds

where δx denotes the Dirac function and δx(B
H
s ) is therefore a distribution in the

Watanabe sense (see [6]).
This local time for (N, d)–fBm has been studied by Xiao and Zhang [7], Hu and

Oksendal [2] and Eddahbi et al. [1] between others.
The aim of this paper is to study the asymptotic behavior of L(t, x) when |x|,

the euclidean norm of x in Rd, goes to 0, both for a fixed time and when the time
goes to infinity, and we renormalize his Sobolev norm. We generalize the results
of [3] from the (N, d)–standard Brownian motion to the (N, d)–fractional Brownian
motion. In the standard Brownian motion case, the covariance function is simply
R 1

2
(s, t) = s ∧ t. Here, the control of the covariance function RH(s, t) for H 6= 1

2
is

the main difficulty.
Section 2 is devoted to the presentation of the problem. In particular we review

from [1] the chaotic decomposition of the local time L(t, x) as a functional of the



Renormalization of the local time for the (N, d)–fBm 3

(N, d)–fBm and its regularity in terms of Sobolev–Watanabe norms. In section 3 we
present a list of auxiliary lemmas. Section 4 is devoted to the presentation and proof
of the main result, namely the asymptotic behavior of this local time, for fixed t, in
the case Hi,j = H, ∀ i, j, when |x| goes to 0. In section 5 we extend the result to the
case t := t1 · · · tN going to infinity.

2 Preliminaries and statement of the problem

If F is a square integrable Brownian random variable, it can be represented by
its Wiener chaos expansion

F =
∞∑

n=0

In(fn),

where In(fn) denotes the multiple Itô stochastic integral of the symmetric kernel
fn ∈ L2(Rn

+) with respect to the Wiener process W .
If L is the Ornstein–Uhlenbeck operator

LF = −
∞∑

n=0

nIn(fn),

p ∈ (1,∞) and α ∈ R, we define the Sobolev–Watanabe spaces Dα,p as the closure
of the set of polynomial random variables with respect to the norm

‖F‖α,p = ‖(Id− L)
α
2 F‖Lp(Ω),

where Id stands for the identity mapping.
We denote by D the chaotic derivative operator. It acts on multiple Itô stochastic

integrals as

Dt(In(fn)) = nIn−1(fn(·, t)),

and is continuous from Dα,p into Dα−1,p(L2(R+)).
It is known that a Brownian random variable F belongs to Dα,2 if and only if its

chaotic decomposition
∑∞

n=0 In(fn) satisfies

∞∑
n=0

(1 + n)α||In(fn)||22 < ∞,

where ||In(fn)||22 = n!||fn||22.
Set D∞,2 = ∩α∈RDα,2. If F ∈ D∞,2, we can compute its chaos expansion using

the Stroock formula

F =
∞∑

n=0

1

n!
In(E(DnF )).

For a complete survey of this subjects we refer the reader to the book of Watanabe
[6].
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Let pε(x) be the centered Gaussian kernel with variance ε > 0. Consider also, for
x ∈ Rd and ε > 0, the Gaussian kernel on Rd given by

pd
ε(x) =

d∏
i=1

pε(xi), x = (x1, . . . , xd).

We denote by Hn the n–th Hermite polynomial, defined for n ≥ 1, by

Hn(x) =
(−1)n

n!
exp(

x2

2
)

dn

dxn
(exp(−x2

2
)), x ∈ R

and H0(x) = 1.
As we proved in [1] the chaotic decomposition of the local time of the (N, d)–fBm

is

L(t, x) =
∑

n1,...,nd≥0

∫
[0,t]

d∏
i=1

p
s2Hi

(xi)

sniHi
Hni

(
xi

sHi
)I i

ni
(KHi

(s, ·)⊗ni) ds,

provided that
∑N

j=1
1

H∗
j

> d, where t ∈ RN
+ , x ∈ Rd, s = s1 · · · sN and sH̄i =∏N

j=1 s
Hi,j

j . The integrals I i
ni

denotes the multiple Itô stochastic integrals with respect

to the independent N–parameter Wiener processes W i. Finally H∗
j = max{Hi,j, i =

1, . . . , d}.
Moreover, in [1] we proved that this functional belongs to the space Dα,2 if

α <
N∑

j=1

1

2H∗
j

− d

2
.

If all Hi,j = H, this expression becomes α < N
2H
− d

2
, and then a sufficient condition

for the local time to be in L2(Ω) is N > Hd. Observe that this sufficient condition
is also founded in Xiao and Zhang [7]. From now on we will suppose always this
condition.

Recall that if H = 1
2
,

N∑
j=1

1

2H∗
j

− d

2
= N − d

2
,

which is the same condition obtained in [3] for the N–parameter Wiener process in
Rd.

3 Auxiliary lemmas

Lemma 1 If 1
4
≤ β ≤ 1

2
we have

sup
x∈R

|
√

n!Hn(x)e−βx2| ≤ c(n ∨ 1)−
8β−1

12
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Proof: This result is proved in [4]. �

Remark 2 The factor
√

n! appears because we do not use the same definition of
Hermite polynomials as in [4].

Lemma 3 Let d ≥ 1 and ν ∈ (0, 1). We can choose a universal constant c such that
for any m ≥ 1,

∑
n1+···+nd=m

d∏
i=1

(ni ∨ 1)−ν ≤ cmd(1−ν)−1

Proof: This result is proved in [4]. �.

Lemma 4 Let γ and a be positive constants and b ∈ R. Set α = b−1
a

. Then∫
[0,1]N

exp(− γ

sa
)
ds

sb
=

1

(N − 1)!
(
1

a
)Nγ−αgN−1(γ, α)

where

gN−1(γ, α) :=

∫ ∞

γ

tα−1e−t(log
t

γ
)N−1dt.

Proof:
Using the change of variables u1 = s1 · · · sN , u2 = s2 · · · sN , . . . , uN = sN , with

Jacobi determinant 1
u2···uN

, we obtain∫
[0,1]N

exp(− γ

sa
)
ds

sb
=

∫
{0≤u1≤···≤uN≤1}

1

ub
1

exp(− γ

ua
1

)
duN · · · du2

uN · · ·u2

du1

=
1

(N − 1)!

∫ 1

0

(log
1

r
)N−1 1

rb
exp(− γ

ra
)dr,

and making the change of variable γr−a = t we get the desired result. �

Lemma 5 The function

QH(z) =


RH(1, z)

zH
if z ∈ (0, 1]

0 if z = 0,

has the following properties:

1. It is strictly increasing and it continously maps [0, 1] onto [0, 1]. Moreover,
QH(1) = 1.

2. For fixed δ ∈ (0, 1) and for any z ∈ [0, 1− δ], it satisfies the inequality

QH(z) ≤ c(H, δ)zG,

where G = H ∧ (1−H).
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3. For fixed δ ∈ (0, 1) and β > 0, it satisfies the inequality

∫ 1

1−δ

QH(z)βdz ≤ c(H, δ)

β
1

2H

.

Proof:
The proof of parts 1 and 3 are done in [1].
For the part 2 we have

QH(z) =
1− (1− z)2H

2zH
+

zH

2
.

Using Taylor expansion, 1− (1− z)2H = 2H(1− θ)2H−1z with 0 ≤ θ ≤ z.
If H ≥ 1

2
, we have 1− (1− z)2H ≤ 2Hz, and therefore QH(z) ≤ Hz1−H + 1

2
zH ≤

c1z
1−H , c1 being a positive constant.
If H < 1

2
and z ∈ [0, 1 − δ], we have 1 − (1 − z)2H ≤ 2Hδ2H−1z, and then

QH(z) ≤ Hδ2H−1z1−H + 1
2
zH ≤ c2z

H , c2 being another positive constant. �

In what follows, for every x > 0 and γ ≥ 0, we denote the complementary
incomplete Gamma function as

Γ(x, γ) =

∫ ∞

γ

e−ttx−1dt.

In particular Γ(x) := Γ(x, 0) and Γ(x, γ) ≤ Γ(x).

Lemma 6 The function

gN−1(γ, α) :=

∫ ∞

γ

tα−1e−t(log
t

γ
)N−1dt.

has the following behavior when γ tends to 0 :

1. If α > 0, gN−1(γ, α) = (log 1
γ
)N−1Γ(γ, α) +O((log 1

γ
)N−2).

2. If α = 0, gN−1(γ, α) = e−γ 1
N

(log 1
γ
)N +O((log 1

γ
)N−1).

3. If α < 0, gN−1(γ, α) = γα(Γ(N)
|α|N + o(γ)).

Proof:
Note first that

(log
t

γ
)N−1 =

N−1∑
k=0

(
N − 1

k

)
(log

1

γ
)N−1−k(log t)k. (2)

Then,
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• If α > 0, the function

t 7−→ t
α
2
−1e−t(log t)k

is always integrable on [0,∞) for any k ∈ N. Therefore,

gN−1(γ, α) = (log
1

γ
)N−1Γ(γ, α) +O((log

1

γ
)N−2).

• If α = 0, we need to estimate the integral

gN−1(γ, 0) =

∫ ∞

γ

t−1e−t(log
t

γ
)N−1dt.

Integrating by parts we obtain

gN−1(γ, 0) =
1

N

∫ ∞

γ

e−t(log
t

γ
)Ndt =

e−γ

N
(log

1

γ
)N +O((log

1

γ
)N−1)

• If α < 0, making the change of variable s = −α log( t
γ
), the result follows

immediately.

�

4 Renormalization of the local time for fixed t

The main purpose of this section is to study the asymptotic behavior of L(t, x),
for t ∈ RN and x ∈ Rd, when |x| → 0. In the case dH ≥ 1 it has a singularity.
An interesting question is to renormalize the local time, that means, to find a deter-
ministic function f(t, x) such that f(t, x)L(t, x) converge to 1 in some precise sense.
We will do it with respect the norm ‖ · ‖α,2. Then we will obtain a function f(t, x)
such that ‖f(t, x)L(t, x)‖α,2 converges to 1 when |x| → 0, both for fixed t and when
t = t1 · · · tN →∞.

Recall the expression of the Dα,2–norm of the local time L(t, x). For the sake of
simplicity we take t := (1, . . . , 1).

We have

‖L(1̃, x)‖2
α,2 =

∞∑
m=0

(1 + m)αAm(x), (3)

where

Am(x) =
∑

n1+···+nd=m

||
∫

[0,t]

d∏
i=1

p
s2Hi

(xi)

sniHi
Hni

(
xi

sHi
)I i

ni
(KHi

(s, ·)⊗ni) ds||2L2(Ω),
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and as

E(I i
ni

(KH̄i
(u, ·)⊗ni)Ij

nj
(KH̄j

(v, ·)⊗nj)) = δijni!
(
RH̄i

(u, v)
)ni ,

Am(x) =
∑

n1+···+nd=m

∫
[0,1]N

du

∫
[0,1]N

dv

d∏
i=1

( N∏
j=1

RHi,j
(uj, vj)

(ujvj)Hi,j

)ni

×ni! Hni
(

xi

uHi
)Hni

(
xi

vHi
)p

u2Hi
(xi)pv2Hi

(xi),

and in particular

A0(x) = (

∫
[0,1]N

ds
d∏

i=1

1

(2π
∏N

j=1 s
2Hi,j

j )
1
2

exp(− x2
i

2
∏N

j=1 s
2Hi,j

j

))2.

In all this section we confine our attention to the situation where Hi,j = H for

all (i, j) ∈ {1, . . . , d} × {1, . . . , N}, and use the notation BH for BH .
Observe that in this particular case

A0(x) =
1

(2π)d

( ∫
[0,1]N

1

sdH
exp

(
− |x|2

2s2H

)
ds

)2
,

and

Am(x) =
∑

n1+···+nd=m

∫
[0,1]N

∫
[0,1]N

( N∏
j=1

RH(uj, vj)

(ujvj)H

)m
d∏

i=1

ni!Hni
(

xi

uH
)Hni

(
xi

vH
)pu2H (xi)pv2H (xi)dudv.

Our main result is the following:

Theorem 7 Let BH be (N, d)–fBm. Set λ := d− 1
H

. For any α < N
2H

− d
2

we have:

1) If λ > 0, lim|x|→0 ‖L(1, x)‖α,2

(2
λ
2 ( 1

2H
)N |x|−λ

(2π)
d
2 (N−1)!

(log 2
|x|2 )

N−1Γ(λ
2
)
)−1

= 1.

2) If λ = 0, lim|x|→0 ‖L(1, x)‖α,2

( ( 1
2H

)N

(2π)
d
2 N !

(log 2
|x|2

)N
)−1 = 1.

3) If λ < 0,

lim
|x|→0

‖L(1, x)‖α,2 = ‖L(1, 0)‖α,2 =
1

(2π)
d
2

( 1

1−Hd

)N
2

×
[ ∞∑

r=0

(1 + 2r)α(
∑

r1+···+rd=r

d∏
i=1

(2ri)!

(ri)!22ri
(

∫ 1

0

QH(z)m dz

zdH
)N

] 1
2 < ∞.
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Remark 8 This theorem shows that for λ ≥ 0 the local time explodes at the origin
and for λ < 0 it does not. Observe that if H = 1

2
, we have that the local time explodes

at the origin if and only if d ≥ 2, as is discussed in [3].

Proof:
The idea of the proof is to show that the convergence of Am(x) for any m ≥ 1

when |x| → 0, is controlled by A0(x) and then the asymptotic behavior of L(1, x)

coincides with the asymptotic behavior of A0(x)
1
2 .

Define now, for γ > 0 and m ≥ 0,

Bm(γ) =

∫
[0,1]N

∫
[0,1]N

(
∏N

j=1 RH(uj, vj))
m

(u · v)H(m+d)
exp(− γ

u2H
) exp(− γ

v2H
)dudv.

Clearly,

A0(x) =
1

(2π)d
B0(

1

2
|x|2).

For m ≥ 1, choosing β ∈ [1
4
, 1

2
), we can write

Am(x) =
∑

n1+···+nd=m

∫
[0,1]N

∫
[0,1]N

( N∏
j=1

RH(uj, vj)

(ujvj)H

)m 1

(uv)dH

×
d∏

i=1

√
ni!Hni

(
xi

uH
) exp{−β

x2
i

u2H
}
√

ni!Hni
(
xi

vH
) exp{−β

x2
i

v2H
}

× exp{−(
1

2
− β)

x2
i

u2H
} exp{−(

1

2
− β)

x2
i

v2H
}dudv,

and applying Lemmas 1 and 2 we obtain

Am(x) ≤ c
1

(2π)d
md(1− 8β−1

6
)−1Bm((

1

2
− β)|x|2).

Then our problem reduces to the study of the asymptotic behavior of Bm.

As RH(uj, vj) = RH(1,
vj

uj
)u2H

j , we have

Bm(γ) = 2N

∫
[0,1]N

∫ uN

0

· · ·
∫ u1

0

N∏
j=1

RH(1,
vj

uj
)mu2Hm

j

(ujvj)H(m+d)
exp(− γ

u2H
) exp(− γ

v2H
)dvN · · · dv1.

With the change
vj

uj
= zj,∀ j = 1, . . . , N and computing iteratively the previous

integral, we find

Bm(γ) = 2N

∫
[0,1]N

(

∫
[0,1]N

u1−2Hd exp(
−κ(z)γ

u2H
)du1 · · · duN))

N∏
j=1

RH(1, zj)
m

zj
H(m+d)

dz1 · · · dzN
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where κ(r) = 1 + 1
r2H .

By Lemma 4, with a = 2H and b = 2Hd− 1, we have

JN(γ, z) =

∫
[0,1]N

u1−2Hd exp(
−κ(z)γ

u2H
)du = c(N, d,H)γ−λ

∫ ∞

γ

e−sκ(z)sλ−1(log
s

γ
)N−1ds,

where λ = d− 1
H

= b−1
a

.
Therefore

Bm(γ) = c(N, H, d)γ−λ

∫ ∞

γ

∫
[0,1]N

N∏
j=1

RH(1, zj)
m

zHm
j

· e
− s

z2H

zHd
e−ssλ−1(log

s

γ
)N−1dzds.

First we will see that for m > λH
G

, we have

Bm(γ) ≤ c(H, d,N)γ−λgN−1(γ, λ)m− N
2H . (4)

Indeed, controlling the exponential by 1, we obtain

Bm(γ) ≤ c(N, H, d)γ−λ

∫
[0,1]N

N∏
j=1

RH(1, zj)
m

z
H(m+d)
j

∫ ∞

γ

e−ssλ−1(log
s

γ
)N−1dzds

= c(N, H, d)γ−λgN−1(γ, λ)(

∫ 1

0

QH(z)m 1

zdH
dz)N ,

where the function QH is introduced in lemma 5.
Now, choosing δ ∈ (0, 1), we have

∫ 1

0

QH(z)m 1

zdH
dz ≤

∫ 1−δ

0

QH(z)m 1

zdH
dz + (1− δ)−dH

∫ 1

1−δ

QH(z)mdz

The second summand on the right, using part 3 of Lemma 4, is controlled by
c(H, δ)m− 1

2H .
For the first summand, if m > dH−1

G
= λH

G
, we fix α ∈ (λH

G
, m), and write∫ 1−δ

0

QH(z)m 1

zdH
dz =

∫ 1−δ

0

QH(z)m−αQH(z)α 1

zdH
dz.

Using that QH is an increasing function and part 2 of Lemma 5, we control this by

QH(1− δ)m−αc(H, δ, α)

∫ 1−δ

0

zαG−dHdz.

As α > λH
G

, the integral that appears in the last expression is a constant that
depends on H, d, α and δ.
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Therefore, being QH(1− δ) < 1, we can estimate this term by

c(H, d, δ, α)m− 1
2H ,

and we get (4).
Note that this result is true only for m > λH

G
. If λ ≤ 0 this covers all cases. But

if λ > 0 the Bm terms with m ≤ λH
G

are not controlled yet. The following part of
the proof will discuss these first terms.

Observe that for any 0 < ε < m, being QH(·) ≤ 1, we have

Bm(γ) ≤ Bε(γ)

Now we will see that for λ > 0,

Bε(γ) ≤ c(H, d,N)γ−λgN−1(γ, α)

where α is some positive constant depending also on ε.
Indeed, putting c = c(N, H, d),

Bε(γ) = cγ−λ

∫ ∞

γ

∫
[0,1]N

N∏
j=1

QH(zj)
ε · e

− s

z2H

zHd
e−ssλ−1(log

s

γ
)N−1dzds

= cγ−λ

∫ ∞

γ

N∑
k=0

(
N

k

) ∫ 1−δ

0

· · ·
∫ 1−δ

0︸ ︷︷ ︸
k

∫ 1

1−δ

· · ·
∫ 1

1−δ︸ ︷︷ ︸
N−k

N∏
j=1

QH(zj)
ε·e

− s

z2H

zHd
e−ssλ−1(log

s

γ
)N−1dzds,

because the function

N∏
j=1

QH(zj)
ε · e

− s

z2H

zHd
,

is symmetric in z.
Now estimating QH and the exponential by 1 in the integrals between 1− δ and

1, we obtain

Bε(γ) ≤ cγ−λ

∫ ∞

γ

N∑
k=0

(
N

k

) ∫ 1−δ

0

· · ·
∫ 1−δ

0

δN−k

(1− δ)dH(N−k)

×
k∏

j=1

QH(zj)
ε · e

− s

(z1···zk)2H

(z1 · · · zk)Hd
e−ssλ−1(log

s

γ
)N−1dz1 · · · dzk)ds

≤ cγ−λ

∫ ∞

γ

N∑
k=0

(
N

k

) ∫ 1−δ

0

· · ·
∫ 1−δ

0

( δ

(1− δ)dH

)N−k
c(H, δ)kε
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×
k∏

j=1

zεG−dH
j e

− s

(z1···zk)2H e−ssλ−1(log
s

γ
)N−1dz1 . . . dzkds,

where we have used section 2 of Lemma 5.
Now, choosing ε < dH

G
, we can use Lemma 4 with a = 2H, b = −εG + dH, γ =

s, N = k and α = dH−εG−1
2H

, to bound the right hand side of the last inequality by

cγ−λ

∫ ∞

γ

N∑
k=0

∫ ∞

s

(log
t

s
)k−1s

λ
2
+ εG

2H
−1t

λ
2
− εG

2H
−1e−te−s(log

s

γ
)N−1dtds,

where c is a constant that depends on H, d,N, ε, k, δ.
Using the fact that for any n ≥ 1 and for t ≥ s we have

log
t

s
≤ n

( t

s

) 1
n
,

and taking n = M(k − 1) for a big M , we obtain

Bε(γ) ≤ cγ−λ

N∑
k=0

∫ ∞

γ

∫ ∞

s

s
λ
2
+ εG

2H
−1− 1

M t
λ
2
− εG

2H
−1+ 1

M e−te−s(log
s

γ
)N−1dtds,

where c depends also on M. From now on in each expression c will be the suitable
constant.

As ε < m < λH
G

, we have λ
2
− εG

2H
+ 1

M
> 0 and

Bε(γ) ≤ cγ−λ

N∑
k=0

c

∫ ∞

γ

s
λ
2
+ εG

2H
−1− 1

M e−sΓ(s,
λ

2
− εG

2H
+

1

M
)(log

s

γ
)N−1ds.

Controlling the truncated Gamma function by the corresponding Gamma func-
tion we obtain

Bε(γ) ≤ cγ−λ

∫ ∞

γ

s
λ
2
+ εG

2H
−1− 1

M e−s(log
s

γ
)N−1ds

= cγ−λgN−1(γ,
λ

2
+

εG

2H
− 1

M
).

Observe that for M sufficiently large

λ

2
+

εG

2H
− 1

M
> 0.

Finally for the m = 0 case, using Lemma 4, we have immediately, as α = λ
2

B0(γ) =
1

((N − 1)!)2

1

(2H)2N
γ−λgN−1(γ,

λ

2
)2.
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Therefore we have to separate the cases λ ≥ 0 and λ < 0.
For λ ≥ 0 we have

‖L(1̃, x)‖2
α,2 =

∞∑
m=0

(1 + m)αAm(x)

• The terms Am with m = 1, . . . , [λH
G

] are controlled by

cγ−λgN−1(γ,
λ

2
+

εG

2H
− 1

M
)md(1− 8β−1

6
)−1

where γ = (1
2
− β)|x|2, and ε and M satisfy

λ

2
+

εG

2H
− 1

M
> 0.

Then, by Lemma 6, part 1, this is asymptotically, when γ ↓ 0, as

cγ−λ
(
log

1

γ

)N−1

• The terms Am with m ≥ [λH
G

] + 1 are controlled by

cmd(1− 8β−1
6

)−1γ−λgN−1(γ, λ)m− N
2H .

Then∑
m> λH

d

(1 + m)αAm(x) ≤ c
[ ∑

m> λH
d

md(1− 8β−1
6

)−1m− N
2H (1 + m)α

]
γ−λgN−1(γ, λ),

and using the fact that α < N
2H

− d
2
, we have that the series between keys is

convergent and the asymptotic behavior of the last expression is, by lemma 6,
as

cγ−λ
(
log

1

γ

)N−1
.

Finally,

A0(x) =
1

(2π)d
B0(

1

2
|x|2) =

1

(2π)d

1

((N − 1)!)2

1

(2H)2N
γ−λgN−1(γ,

λ

2
)2,

where γ = |x|2
2

. When γ ↓ 0, this goes to ∞ as γ−λ
(
log 1

γ

)2N−2
, and as the

exponent of the logarithm is 2N-2, this term dominates the asymptotical be-

havior. Note that we consider A
1
2
0 in place of A0, to get the functions that

appear in the theorem.
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The λ < 0 case follows directly. As we have seen before,∑
m≥1

(1 + m)αAm(x)

is controlled by γ−λgN−1(γ, λ), and by Lemma 6, part 3, this term goes to a constant
when γ ↓ 0.

In this case the norm ‖L(t, x)‖α,2 is continous. Therefore we don’t have an ex-
plosion, and

lim
|x|→0

‖L(1, x)‖α,2 = ‖L(1, 0)‖α,2 =
( ∞∑

m=0

(1 + m)αAm(0)
) 1

2 ,

where

Am(0) =
1

(2π)d
(

∑
n1+···+nd=m

d∏
i=1

ni!Hni
(0)2)Bm(0),

and

Bm(0) = 2N

∫
[0,1]N

(

∫
[0,1]N

u1−2Hddu1 · · · duN))
N∏

j=1

RH(1, zj)
m

zj
H(m+d)

dz1 · · · dzN .

= 2N(

∫ 1

0

u1−2Hddu)N(

∫ 1

0

QH(z)m dz

zdH
)N

= (
1

1−Hd
)N(

∫ 1

0

QH(z)m dz

zdH
)N

Note that as λ < 0, 1− 2Hd > −1.
Finally,

‖L(1̃, 0)‖2
α,2 =

1

(2π)d
(

1

1−Hd
)N

∞∑
m=0

(1+m)α(
∑

n1+···+nd=m

d∏
i=1

ni!·Hni
(0)2)(

∫ 1

0

QH(z)m dz

zdH
)N

=
1

(2π)d
(

1

1−Hd
)N

∞∑
r=0

(1 + 2r)α(
∑

r1+···+rd=r

d∏
i=1

((2ri)!)

(ri!)222ri
)(

∫ 1

0

QH(z)m dz

zdH
)N ,

because H2n(0) = 1
22n(n!)2

and H2n+1(0) = 0.
By the continuity of the norm, it is not necessary to prove the convergence of this

series.

Remark 9 Xiao and Zhang proved that when Hd < 1, that is λ < 0, BH has a
jointly continuous local time.
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5 Renormalization of the local time when the time

tends to infinity

We can also deduce the behavior of the local time L(t, x) when t = t1 · · · tN →∞
and |x| → 0. We also have to distinguish the three cases, namely λ > 0, λ = 0 and
λ < 0.

The precise result is the following:

Theorem 10 Let {L(t, x) : t ∈ [0,∞)N , x ∈ Rd} be the local time of the (N, d)–fBm
BH . Let λ = d− 1

H
. Then the following limits hold for any α < N

2H
− d

2
:

1) For λ > 0,

lim
t→∞,|x|→0

‖L(t, x)‖α,2

(
2

λ
2 ( 1

2H
)N |x|−λ

(2π)
d
2 (N − 1)!

(log
2t2H

|x|2
)N−1Γ(

λ

2
)

)−1

= 1.

2) For λ = 0,

lim
t→∞,|x|→0

‖L(t, x)‖α,2

( ( 1
2H

)N

(2π)
d
2 N !

(log
2t2H

|x|2
)N

)−1

= 1.

3) For λ < 0,

lim
t→∞,|x|→0

‖L(t, x)‖α,2

(
t(1−dH)‖L(1̃, 0)‖α,2

)−1
= 1.

Proof: From the scaling property of the (N, d)–fBm with all the elements Hi,j of
the matrix of Hurst parameters equals to H, one can show that the two processes

{L(t, x) : t ∈ [0,∞)N , x ∈ Rd}
and

{
N∏

j=1

t1−dH
j L(1̃, (t1 . . . tN)−Hx) : t ∈ [0,∞)N , x ∈ Rd}

have the same law.
Hence we have

‖L(t, x)‖2
α,2 = t2(1−dH)‖L(1̃, t−Hx)‖2

α,2.

and the conclusion follows from the results of the previous section. �
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