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Abstract

We consider the multiple change–point problem for multivariate time series, including strongly

dependent processes, with an unknown number of change–points. We assume that the covariance

structure of the series changes abruptly at some unknown common change–point times. The proposed

adaptive method is able to detect changes in multivariate i.i.d., weakly and strongly dependent series.

This adaptive method outperforms the Schwarz criteria, mainly for the case of weakly dependent data.

We consider applications to multivariate series of daily stock indices returns and series generated by

an artificial financial market.

1 Introduction

Detecting changes in multivariate time series is of interest if we believe that these series are correlated,
and/or that the components of the multivariate vector processes are generated by the same process.
This assumption is relevant for financial markets where correlated assets are traded. Empirical evidence,
reported e.g., in Teyssière [36, 37], shows that several time series, i.e., Foreign Exchange (FX) rates
returns, display the same degree of persistence in their volatilities and co–volatilities, a property that
might be caused by a common non–stationarity of these series. The presence of strong dependence in asset
price volatilities is still a matter of debate, although numerous works, see e.g., Mikosch and Stărică [33],
Kokoszka and Teyssière [26], Lavielle and Teyssière [30], have shown that the strong persistence in
volatility is likely to be a statistical artefact, i.e., mainly an effect of the concatenation of processes with
different unconditional variances; see also Giraitis et al. [14] for a survey on volatility models.

From the point of view of the practitioner, change–points detection procedures are of interest, as we
do not know which process does actually generate the data under investigation. Furthermore, economic
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data are usually not stationary, and then it may be of interest to approximate an unknown and possibly
nonstationary process with locally stationary processes; see e.g., Dalhaus [12].

The literature on change-point detection is rather huge: reference monographs include Basseville and
Nikiforov [1], Brodsky and Darkhovsky [7], Csörgö and Horváth [11], Chen and Gupta [8]. The journal
articles by Giraitis and Leipus [16, 15], Hawkins [19, 20], Chen and Gupta [9], Mia and Zhao [32], Sen
and Srivastava [35] among others, are also of interest.

The statistical theory for weakly dependent volatility processes with a change–point was developed
more recently; see, e.g., Chu [10], Kokoszka and Leipus [24, 25], Horváth, Kokoszka and Teyssière [21],
Kokoszka and Teyssière [26], Berkes et al. [2]. The processes considered in these works are no longer
i.i.d., but weakly dependent. For the case of strongly dependent time series, the reader is referred to the
paper by Giraitis, Leipus and Surgailis [17], Lavielle [27], and the chapter by Kokoszka and Leipus [23]
in the book on long-range dependence edited by Doukhan et al. (2003), which reviews the recent works
on the issue of change–point detection for univariate dependent time series.

The occurrence of a single change–point in real data is rather rare, as data in economics, finance, hy-
drology, biology, electrical engineering, etc., display multiple changes, see e.g., Schechtman and Wolfe [34],
Braun et al. [6], Lavielle and Moulines [29], Lavielle and Teyssière [30]. Thus, a statistical procedure able
to reliably detect multiple changes is of practical interest. It has been often claimed that the testing proce-
dure for single change–point can be extended to the multiple change–point case by using Vostrikova’s [39]
binary segmentation procedure, which consists in applying the single change–point detection procedure
on the whole sample, split the sample at the detected change–point, and then apply iteratively the
change–point detection procedure on the resulting two segments until no further change–point is found.

In Lavielle and Teyssière [30], we addressed the issue of global procedure vs local procedure, and
found that the extension of single change–points procedures to the case of multiple change–point using
Vostrikova’s [39] binary segmentation procedure is misleading and yields an overestimation of the number
of change–points.

A global approach means that all the change–points are simultaneously detected. These change–
points are estimated by minimizing a penalized contrast J(τ , y)+βpen(τ ) (see [3, 27, 40]). Here, J(τ , y)
measures how the model obtained with the change–points sequence τ fits the observed series y. Its role
is to locate the change–points as accurately as possible. For detecting changes in the mean and/or the
covariance matrix of a multivariate series, we propose to define the contrast J(τ , y) from the logarithm
of a Gaussian likelihood, even if the observed series is not Gaussian. The penalty term pen(τ ) only
depends on the dimension K(τ ) of the model τ and increases with K(τ ). The penalization parameter
β adjusts the trade-off between the minimization of J(τ , y) (obtained with a high dimension of τ ), and
the minimization of pen(τ ) (obtained with a small dimension of τ ).

Asymptotic results have been obtained in theoretical general contexts in [27], extending the previous
results of Yao [40]. We shall see that this approach is also very useful for practical applications, for
detecting changes in the mean and/or variance of multivariate time series, with the restriction that the
series have a common segmentation τ . An adaptive method is proposed for estimating the number of
change–points. Numerical experiments show that the proposed method outperforms the Schwarz criterion
and yields very good results.

For a multivariate time series, the algorithm of the detection procedure will be of order O(mn2),
where m is the dimension of the vector process, instead of the O(n2) order as in the univariate case.
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2 A penalized contrast estimate for the multivariate change–

point problem

2.1 The contrast function

We assume that the m–dimensional process {Y t = (Y1,t, . . . , Ym,t)
′} is abruptly changing and is char-

acterized by a parameter θ ∈ Θ that remains constant between two changes. We will strongly use this
assumption to define our contrast function J(τ , Y ).

Let K be some integer and let τ = {τ1, τ2, . . . , τK−1} be an ordered sequence of integers satisfying
0 < τ1 < τ2 < . . . < τK−1 < n. For any 1 6 k 6 K, let U(Y τk−1+1, . . . , Y τk

; θ) be a contrast function
useful for estimating the unknown true value of the parameter in the segment k. In other words, the
minimum contrast estimate θ̂(Y τk−1+1, . . . , Y τk

), computed on the kth segment of τ , is defined as a
solution to the following minimization problem:

U
(
Y τk−1+1, . . . , Y τk

; θ̂(Y τk−1+1, . . . , Y τk
)
)

6 U(Y τk−1+1, . . . , Y τk
; θ) , ∀θ ∈ Θ. (1)

For any 1 6 k 6 K, let G be defined as

G(Y τk−1+1, . . . , Y τk
) = U

(
Y τk−1+1, . . . , Y τk

; θ̂(Y τk−1+1, . . . , Y τk
)
)

. (2)

Then, define the contrast function J(τ , Y ) as

J(τ , Y ) =
1

n

K∑

k=1

G(Y τk−1+1, . . . , Y τk
), (3)

where τ0 = 0 and τK = n.

We consider in this paper changes in the covariance matrix of the sequence {Y t}. More precisely,
we assume that there exists an integer K⋆, a sequence τ ⋆ = {τ⋆

1 , τ⋆
2 , . . . , τ⋆

K⋆} with τ⋆
0 = 0 < τ⋆

1 <
... < τ⋆

K⋆−1 < τ⋆
K⋆ = n and K⋆ (m × m) covariance matrices Σ1,Σ2, . . . ,ΣK⋆ such that Cov (Y t) =

E(Y t − E (Y t))(Y t − E (Y t))
′ = Σk for τ⋆

k−1 + 1 6 t 6 τ⋆
k .

Model M1: There exist a m-vector µ such that E (Y t) = µ for t = 1, 2, ..., n. Furthermore, Σk 6= Σk+1

for 1 6 k 6 K⋆ − 1.

For this simple case of changes in the covariance matrix without changes in the mean, which is of
interest for multivariate volatility processes, the following contrast function, based on a Gaussian log–
likelihood function, can be used:

J(τ , Y ) =
1

n

K∑

k=1

nk log |Σ̂τk
|, (4)

where nk = τk − τk−1 is the length of the segment k, Σ̂τk
is the (m × m) empirical covariance matrix

computed on that segment k:

Σ̂τk
=

1

nk

τk∑

t=τk−1+1

(Y t − Ȳ )(Y t − Ȳ )′. (5)

Here Ȳ = n−1
∑n

t=1 Y t is the empirical mean of the m–dimensional series Y t computed on the complete
series.
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Model M2: There exist K⋆ m-vectors µ1, . . . µK⋆ such that E (Y t) = µk for τ⋆
k−1 + 1 6 t 6 τ⋆

k .
Furthermore, (µk,Σk) 6= (µk+1,Σk+1) for 1 6 k 6 K⋆ − 1.

For the detection of changes in the mean vector and/or the covariance matrix of a multivariate
sequence of random variables, this contrast also reduces to

J(τ , Y ) =
1

n

K∑

k=1

nk log |Σ̂τk
| (6)

but the (m × m) empirical covariance matrix Σ̂τk
is computed on segment k as

Σ̂τk
=

1

nk

τk∑

t=τk−1+1

(Y t − Ȳ τk
)(Y t − Ȳ τk

)′ (7)

where Ȳ τk
= n−1

k

∑τk

t=τk−1+1 Y t is the empirical mean of the m–dimensional series Y t computed on that
segment.

Asymptotic results for the minimum contrast estimate of τ ⋆ can be obtained within the following
asymptotic framework:

A1 For any 1 6 i 6 m and any 1 6 t ≤ n, define ηt,i = Yt,i − E (Yt,i). There exists C > 0 and 1 6 h < 2
such that for any u ≥ 0 and any s ≥ 1,

E

(
u+s∑

t=u+1

ηt,i

)2

6 C(θ)sh. (8)

(A1 holds with h = 1 for weakly dependent sequences and 1 < h < 2 for strongly dependent sequences)

A2 There exists a sequence 0 < a1 < a2 < . . . < aK⋆−1 < aK⋆ = 1 such that for any n > 1 and for any
1 6 k 6 K⋆ − 1, τ⋆

k = [nak].

When the true number K⋆ of segments is known, we have the following result concerning the rate of
convergence of the minimum contrast estimator of τ ⋆:

Theorem 2.1 Assume that conditions A1-A2 are satisfied. Under model M1 (resp. model M2), let
τ̂n be the time instants that minimize the empirical contrast J(τ , Y ) defined in (4) (resp. (6)). Then,
the sequence {n‖τ̂n − τ ⋆‖∞} is uniformly tight in probability:

lim
n→∞

lim
δ→∞

P( max
16k6K⋆−1

|τ̂n,k − τ⋆
k | > δ) = 0. (9)

(Here, J(τ , Y ) is minimized over all possible sequences τ of length K⋆)

Proof: The proof is a direct application of Theorem 2.4 by Lavielle [27]. We can easily check that
hypotheses H1-H2 of [27] are satisfied under models M1 and M2 and under hypotheses A1-A2. �

This result means that the rate of convergence of τ̂ n does not depend on the covariance structure
of the sequence {Y t}. For strongly mixing sequences, as well as for strongly dependent sequences, the
optimal rate is obtained since ‖τ̂n − τ ⋆‖∞ = OP (1).
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2.2 Penalty functions for the change–point problem

When the number of change–points is unknown, we estimate it by minimizing a penalized version of
the function J(τ , Y ). For any sequence of change–point instants τ , let pen(τ ) be a function of τ that
increases with the number K(τ ) of segments of τ . Then, let {τ̂n} be the sequence of change–point
instants that minimizes

U(τ ) = J(τ , Y ) + βpen(τ ). (10)

The procedure is intuitively simple: the adjustment criteria must be compensated so that the over-
segmentation would be penalized. However, this compensation must not be very important as a too large
penalty function yields an underestimation of the number of segments.

If β is a function of n that goes to 0 at an appropriate rate as n goes to infinity, the following theorem
states that the estimated number of segments converges in probability to K⋆ and that (9) still holds.

Theorem 2.2 Let {βn} be a positive sequence of real numbers such that

βn −→
n→∞

0 and n2−hβn −→
n→∞

∞, 1 6 h < 2. (11)

Then, under A1-A2, the estimated number of segments K(τ̂n), where τ̂ n is the minimum penalized
contrast estimate of τ ⋆ obtained by minimizing J(τ , Y ) + βnpen(τ ), converges in probability to K⋆.

(Here, J(τ , Y ) is minimized over all possible sequences τ and over all possible 1 ≤ K ≤ Kmax, where
Kmax is some known upperbound of K⋆)

Proof: the proof is a direct application of Theorem 3.1 by Lavielle [27]. �

In practice, asymptotic results are not very useful for selecting the penalty term βpen(τ ). Indeed,
given a real observed signal with a fixed and finite length n, the parameter β must be fixed to some
arbitrary value. When the parameter β is chosen to be very large, only the more significant abrupt changes
are detected. However, a small value of β produces a high number of estimated changes. Therefore, a
trade-off must be made, i.e., we have to select a value of β which yields a reasonable level of resolution
in the segmentation.

Various authors suggest different penalty functions according to the model they consider. For example,
the Schwarz criterion is used by Braun et al. [6] for detecting changes in a DNA sequence.

Consider first the penalty function pen(τ ). By definition, pen(τ ) should increase with the number
of segments K(τ ). Following the most popular information criteria such the AIC and the Schwarz
criteria, the simplest penalty function pen(τ ) = K(τ ) can be used. Furthermore, Yao [40] has proved
the consistency of the Schwarz criterion for some models.

Remark 2.3 For the multivariate i.i.d. case, the penalization parameter for the Schwarz criterion is

β =
m(m + 1)

2

log n

n
. (12)

In order to reduce the computational cost of the algorithm and according to the required precision in the
estimation, the change-points can be detected on a sub-grid d, 2d, 3d, . . . of 1, 2, . . . , n (we used d = 10 in
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the numerical experiments). For the multivariate i.i.d. case, where the function J(τ , Y ) is estimated on
a grid of length d, the penalization parameter for the Schwarz criterion is

β =
m(m + 1)

2

log(n/d)

n
. (13)

In the GARCH framework, the series are weakly dependent. For the univariate strongly dependent
case, Lavielle and Moulines [29] suggest to use

β =
4 log n

n1−ϑ
, (14)

where ϑ ∈ (0, 1) is the scaling parameter of the process. For weakly dependent data, ϑ = 0. However,
a practitioner dealing with real data does not know ϑ, and has to estimate it from the observed data.
If the process is not stationary, spectral based methods yield incorrect results that overestimate ϑ and
then artificially increase β. One possibility might be to use wavelet based methods, but a large sample
is required; see Teyssière and Abry [38].

Remark 2.4 Precise results have been recently obtained by Birgé and Massart [3] in the following model:

Yi = s⋆(i) + σεi, 1 6 i 6 n, (15)

where s⋆(i) =
∑K⋆

k=1 mk1{τ⋆
k−1

+16i6τ⋆
k
} is a piecewise constant function. The sequence {εi} is a sequence

of Gaussian white noise, with variance 1. Then, Y is a Gaussian sequence with constant variance σ2

and mean mk in segment k. A penalized least-squares estimate is obtained by minimizing

J(τ , Y ) =
1

n

K(τ )∑

k=1

τk∑

i=τk−1+1

(Yi − Ȳk)2 + βpen(τ ). (16)

In a non asymptotic context, Birgé and Massart [3] have shown that a penalty function of the form

pen(τ ) = K(τ )

(
1 + c log

n

K(τ )

)
, β =

2σ2

n
, (17)

is optimal for minimizing E
(
‖ŝτ − s⋆‖2

)
, where the estimated sequence of means {ŝτ (i)} is defined as

ŝτ (i) =
∑K(τ)

k=1 Ȳk1{τk−1+16i6τk}. Based on some numerical experiments, the authors suggest to use
c = 2.5 for this model. Note that when the number K⋆ of segments is small in comparison with the length
n of the series, this optimal penalty function is an almost linear function of K.

2.3 An adaptive choice for the penalization parameter

For a given contrast function J and a given penalty function pen(τ ), the problem now reduces to the
choice for the parameter β.

Let KMAX be an upper bound on the dimension of τ . For any 1 6 K 6 KMAX , let TK be the set of
all the models of dimension K:

TK = {τ = (τ0, . . . , τK) ∈ N
K+1, τ0 = 0 < τ1 < τ2 < . . . τK−1 < τK = n}.

By definition the best model τ̂K of dimension K minimizes the contrast function J :

τ̂K = arg min
τ∈TK

J(τ , Y ). (18)
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Note that the sequence {τ̂K , 1 6 K 6 KMAX} can easily be computed. Indeed, let G be the upper
triangular matrix of dimension (n×n) such that the element (i, j), for j > i is Gi,j = G(Y i, Y i+1, . . . Y j),
where G(Y i, . . .Y j) is the contrast function computed with (Y i, Y i+1, . . . Y j). Thus, for any 1 6 K 6

KMAX , we have to find a path τ0 = 0 < τ1 < τ2 < . . . , < τK−1 < τK = n that minimizes the total cost

J(τ , Y ) =
1

n

K∑

k=1

Gτk−1,τk
. (19)

A dynamic programming algorithm can recursively compute the optimal paths (τ̂K , 1 6 K 6 KMAX),
see Kay [22]. Since we consider that the elements of the m–dimensional vector process {Y t} share the
same segmentation τ , this algorithm requires O(n2) operations as in the unidimensional case.

Assuming that the penalization pen(τ ) only depends on the dimension of the model, that is on the
number K of segments, let

JK = J(τ̂ K , Y ), (20)

pK = pen(τ ), ∀τ ∈ TK (21)

p̂K = pen(τ̂K). (22)

Thus, for any penalization parameter β > 0, the solution τ̂ (β) minimizes the penalized contrast:

τ̂ (β) = arg min
τ

(J(τ , Y ) + βpen(τ )) (23)

= τ̂
K̂(β) (24)

where
K̂(β) = arg min

K>1
{JK + βpK}. (25)

The solution K̂(β) is a piecewise constant function of β. More precisely, if K̂(β) = K,

JK + βpK < min
L 6=K

(JL + βpL). (26)

Thus, β satisfies

max
L>K

JK − JL

pL − pK

< β < min
L<K

JL − JK

pK − pL

. (27)

Then, there exists a sequence {K1 = 1 < K2 < . . .}, and a sequence {β0 = ∞ > β1 > . . .}, with

βi =
JKi

− JKi+1

pKi+1
− pKi

, i > 1, (28)

such that K̂(β) = Ki, ∀β ∈ [βi, βi−1). Furthermore, the subset {(pKi
, JKi

), i > 1} is the convex hull of
the set {(pK , JK), K > 1}.

The estimated sequence τ̂ (β) should not strongly depend on the choice for the penalization coefficient
β. In other words, a small change of β should not lead to a radically different solution τ̂ . This stability
of the solution with respect to the choice for β will be ensured if we only retain the largest intervals
[βi, βi−1), i > 1.

In summary, we propose the following procedure:

1. for K = 1, 2, . . . , KMAX , compute τ̂K , JK = J(τ̂ K , Y ) and p̂K = pen(τ̂ K),
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2. compute the sequences {Ki} and {βi}, and the lengths {lKi
} of the intervals [βi, βi−1),

3. retain the greatest value(s) of Ki such that lKi
≫ lKj

, for j > i.

Remark 2.5 Choosing the largest interval usually underestimates the number of changes. Indeed, this
interval usually corresponds to a very small number of change–points and we only detect the most drastic
changes with such a penalty function. This explains why we should better look for the highest dimension
Ki such that lKi

≫ lKj
, for any j > i, to recover the smallest details.

Instead of computing only one configuration of change–points, this method allows us to put forward
different solutions with different dimensions. Indeed, it would be an illusion to believe that a completely
blind method can give the “best” solution in any situation. If two dimensions Ki and Kj satisfy the
criteria suggested in step 3, it is more suitable to propose these two solutions to the user, instead of
removing one of them with an arbitrary criterion.

Remark 2.6 A classical and natural graphical method for selecting the dimension K can be summarized
as follows:

i) examine how the contrast JK decreases when K (that is, pK) increases,

ii) select the dimension K for which JK ceases to decrease significatively.

In other words, this heuristic approach looks for the maximum curvature in the plot (pK , JK). The
second derivative of this curve is directly related to the length of the intervals ([βi, βi−1), i > 1). Indeed, if
we represent the points (pK , JK), for 1 6 K 6 KMAX, βi is the slope between the points (pKi

, JKi
) and

(pKi+1
, JKi+1

). Thus, looking for where JK ceases to decrease means looking for a break in the slope of
this curve. Now, the variation of the slope at the point (pK , JK) is precisely the length lKi

of the interval
[βi, βi−1).

2.4 An automatic procedure for estimating K

The proposed method requires a careful inspection of the sequence of lengths {li} but is difficult to
automate. We propose another approach for model selection which yields very good results and which is
much more easier to automate for practical applications.

The idea of this method is to model how the sequence {JK} decreases when there is no change-points
in the series {Y t} and to look for which values of K this model fits the observed contrast sequence.

Without any changes in the variance, the joint distribution of the sequence {JK} is very difficult
to compute in a closed form, but some Monte-Carlo experiments show that this sequence decreases as
c1K + c2K log(K).

A numerical example is displayed in Figure 1. We have simulated ten sequences of i.i.d. Gaussian
variables and computed the series {JK} for each of them. The fit with a function c1K + c2K log(K) is
always almost perfect (r2 > 0.999). Nevertheless, the coefficients c1 and c2 are different for each of these
series.
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Figure 1: Ten sequences of contrast functions {JK} computed from ten sequences of i.i.d. bivariate
Gaussian variables, with correlation coefficient ρ = 0.5

Thus, we propose the following algorithm:

Algorithm 1 For i = 1, 2, . . .,

1. fit the model
JK = c1K + c2K log(K) + eK ,

to the sequence {JK , K > Ki}, assuming that {eK} is a sequence of i.i.d. centered Gaussian random
variables,

2. evaluate the probability that JKi−1 follows also this model, i.e., estimate the probability

PKi
= P

(
eKi−1 > JKi−1 − ĉ1(Ki − 1) + ĉ2(Ki − 1) log(Ki − 1)

)
, (29)

under this estimated model.

Then, the estimated number of segments will be the largest value of Ki such that the P–value PKi
is

smaller than a given threshold α. We set α = 10−7 and KMAX = 20 in the numerical examples.

Remark 2.7 A new method was introduced by Lavielle and Ludeña in [28] for estimating the number of
significant coefficients in non ordered model selection problems. The contrast used for this thresholding
problem is based on a convenient random centering of the partial sums of the ordered observations. This
contrast also behaves as c1K + c2K log(K) but the constants c1 and c2 can be computed in a closed form
in this case. Indeed, it is shown in this paper that this contrast decreases as −K − K

∑n
k=K+1 1/k ≈

−K − K log(n/K).
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3 Numerical experiments with simulated data

3.1 The i.i.d. case

We evaluate the performance of the change–point detection procedure with different penalty functions
by considering the case of a bivariate i.i.d. Normal process (m = 2) {Y t = (Y1,t, Y2,t)

′}. Under the null
hypothesis of constant covariance matrix, the process is defined as

(
Y1,t

Y2,t

)
∼ N

[(
0
0

)
,

(
σ2

1 σ1,2

σ1,2 σ2
2

)]
, (30)

where Στk
=

(
σ2

1 σ1,2

σ1,2 σ2
2

)
is constant over all intervals [τk, τk+1].

We study the size and power of the procedure for samples of size n = 500 and n = 1000, under the
null hypothesis of no change–point and two alternative hypotheses with changes in Σt

1. DGP 0: no change in the parameters of Σt

Σt =

(
σ2

1 σ1,2

σ1,2 σ2
2

)
, t = 1, . . . , n, σ2

1 = σ2
2 = 1, σ1,2 = 0.5, | Σ |= 0.75, (31)

We consider as alternatives two Data Generating Processes with double change–points in the co-
variance matrix at times τ1 and τ2,

2. DGP 1: two large changes in the parameters of Σt

Σt =

(
σ2

1 σ1,2

σ1,2 σ2
2

)
, t = 1, . . . , τ1, σ2

1 = σ2
2 = 1, σ1,2 = 0.5, | Σt |= 0.75,

Σt =

(
σ̄2

1 σ̄1,2

σ̄1,2 σ̄2
2

)
, t = τ1 + 1, . . . , τ2, σ̄2

1 = 1, σ̄2
2 = 2, σ̄1,2 =

1√
2
, | Σt |= 1.5,

Σt =

(
σ̃2

1 σ̃1,2

σ̃1,2 σ̃2
2

)
, t = τ2 + 1, . . . , n, σ̃2

1 = 2, σ̃2
2 =

1√
2
, σ̃1,2 = 1, | Σt |=

√
2 − 1,

3. DGP 2: one large change and one small change in the parameters of Σt

Σt =

(
σ2

1 σ1,2

σ1,2 σ2
2

)
, t = 1, . . . , τ1, σ2

1 = σ2
2 = 1, σ1,2 = 0.5, | Σt |= 0.75,

Σt =

(
σ̄2

1 σ̄1,2

σ̄1,2 σ̄2
2

)
, t = τ1 + 1, . . . , τ2, σ̄2

1 = 1, σ̄2
2 = 2, σ̄1,2 =

√
1.3, | Σt |= 0.7,

Σt =

(
σ̃2

1 σ̃1,2

σ̃1,2 σ̃2
2

)
, t = τ2 + 1, . . . , n, σ̃2

1 = 1.5, σ̃2
2 = 2.2, σ̃1,2 =

√
1.5, | Σt |= 1.5.

Remark 3.1 What really matters is the magnitude of the change in the components of Στk
and not

in the determinant | Στk
|: | Στk

| might remain constant but changes are detected provided that the
components of Στk

substantially change.
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3.2 The weakly dependent case: non-homogeneous multivariate GARCH

processes

We consider here the constant conditional correlation bivariate GARCH, introduced by Bollerslev [4],
and defined as:

(
Y1,t

Y2,t

)
= Σ

1
2

t

(
ε1,t,
ε2,t,

)
,

(
ε1,t,
ε2,t,

)
∼ N

[(
0
0

)
,

(
1 0
0 1

)]
, (32)

where the diagonal components of Σt are time varying and are univariate GARCH(1,1) processes, i.e.,

Σt =

(
σ2

1,t ρσ1,tσ2,t

ρσ1,tσ2,t σ2
2,t

)
, ρ ∈ (−1, 1),

σ2
1,t = ω1 + β1σ

2
1,t−1 + α1Y

2
1,t−1

σ2
2,t = ω2 + β2σ

2
2,t−1 + α2Y

2
2,t−1

. (33)

The coefficient of correlation ρ is constant. This simple specification imply that the conditional covariance
matrix is always positive definite. Readers interested in the formal statistical properties of multivariate
ARCH–type processes are referred to Boussama [5] and Doukhan, Teyssière and Winant [13].

We study the performance of the change–point procedure for two cases

1. DGP 3: the null hypothesis of constancy of the parameters of the GARCH(1,1) components of
Σt. We set ω1 = 0.1, β1 = 0.3, α1 = 0.2, ω2 = 0.15, β2 = 0.2, α2 = 0.2 and ρ = 0.5.

2. DGP 4: the alternative hypothesis that the parameters of the functional form of the diagonal
elements of Σt are constant only on some intervals. This locally stationary bivariate GARCH
process is defined as

σ2
1,t = ω1 + β1σ

2
1,t−1 + α1Y

2
1,t−1

σ2
2,t = ω2 + β2σ

2
2,t−1 + α2Y

2
2,t−1

, ρ = 0.5, t = 1, . . . , τ1, (34)

σ2
1,t = ω̄1 + β̄1σ

2
1,t−1 + ᾱ1Y

2
1,t−1

σ2
2,t = ω̄2 + β̄2σ

2
2,t−1 + ᾱ2Y

2
2,t−1

, ρ = 0.3, t = τ1 + 1, . . . , τ2, (35)

σ2
1,t = ω̃1 + β̃1σ

2
1,t−1 + α̃1Y

2
1,t−1

σ2
2,t = ω̃2 + β̃2σ

2
2,t−1 + α̃2Y

2
2,t−1

, ρ = 0.7, t = τ2 + 1, . . . , n. (36)

We set ω1 = 0.1, β1 = 0.3, α1 = 0.2, ω2 = 0.15, β2 = 0.2, α2 = 0.2, ω̃1 = ω̄1 = 0.2, β̃1 = β̄1 = 0.1,
α̃1 = ᾱ1 = 0.1, ω̃2 = ω̄2 = 0.05, β̃2 = β̄2 = 0.3, α̃2 = ᾱ2 = 0.2, i.e., at time τ1 all parameters of the
process change, while at time τ2, only the coefficient of correlation ρ changes.

For n = 500, we set τ1 = 200 and τ2 = 350, while for n = 1000, we set τ1 = 400 and τ2 = 700.

Tables 1, 2 and 3 below report the performance of the change–point procedure using the Schwarz
criteria, equation (13), for DGP0 to DGP 4.

Remark 3.2 For the bivariate GARCH case with a single change–point, we made a simulation based
comparison between this procedure and the extension to the multivariate case of univariate change–point
procedures, e.g., the Generalized Likelihood Ratio (GLR) test; see Kokoszka and Teyssière [26]. The
Gaussian semiparametric procedure considered here appears largely faster as estimating the paramaters
of a bivariate GARCH(1,1) model on a moving window for the GLR test is computing time consuming.
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Table 1: Average number of detected change–points and their location using the Schwarz criteria, n =
500, τ1 = 200, τ2 = 350 (based on 5000 replications). Standard errors are between parentheses

DGP Number of change–points τ̂1 τ̂2

DGP 0 0.2590 (0.59) — —
DGP 1 2.3148 (0.67) 191.1580 (52.11) 324.4140 (59.33)
DGP 2 2.3310 (0.66) 187.6320 (41.33) 325.5490 (62.23)
DGP 3 2.1626 (1.47) — —
DGP 4 3.8324 (1.55) 145.6920 (73.07) 243.7830 (100.99)

Table 2: Average number of detected change–points and their location using the Schwarz criteria, n =
1000, τ1 = 400, τ2 = 700 (based on 5000 replications). Standard errors are between parentheses

DGP Number of change–points τ̂1 τ̂2

DGP 0 0.1354 (0.43) — —
DGP 1 2.2102 (0.51) 385.6060 (70.00) 666.3900 (97.71)
DGP 2 2.2010 (0.50) 385.5100 (63.74) 670.5840 (94.02)
DGP 3 2.4684 (1.68) — —
DGP 4 4.2904 (1.83) 287.1220 (143.60) 466.998 (208.85)

Table 3: Average number of detected change–points using the Schwarz criteria for n = 100 (based on
5000 replications). Standard errors are between parentheses

DGP Number of change–points

DGP 0 1.2678 (1.39)
DGP 3 2.1618 (1.68)

Remark 3.3 In the weakly dependent case, i.e., DGP 3 and DGP 4, the use of the Schwarz criteria
defined by equation (13) yields an overestimation of the number of change–points.

Remark 3.4 For the weakly dependent case DGP 4, if the parameters ωj, βj and αj change so that the
unconditional variances σ2

j of the corresponding GARCH(1,1) process, equal to ωj/(1−βj −αj), j = 1, 2,
remains constant as well as ρ before and after the change, then the number of detected change–points tends
to the number of change–points detected under the null hypothesis of DGP 3. This is similar to what
is observed for change–points tests in the univariate case; see Kokoszka and Teyssière [26]. However, in
the multivariate case, we expect that such configuration of constancy of the unconditional variance does
not occur for all components of Σt, so that the procedure remains useful.

Tables 4, 5 and 6 below report the performance of the adaptive method. Although this automatic
procedure is not suitable for a simulation exercise, as it requires some interaction with the user for
selecting the segmentation, it has a better performance than the BIC criteria, mainly for the case of
weakly dependent data, which is of interest for analyzing financial data. A comparison between the results
reported in tables 3 and 6 show that for very small samples (n = 100) generated by an homogeneous
process, the use of the Schwartz criteria yields an overestimation of the number of change–points, while the
adaptive method provides reliable results. For larger sample sizes, the adaptive method yields accurate
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estimates of the change–point times: the bias and standard errors of the estimated change-point locations
are far smaller when using the adaptive method than when using the Schwartz criteria.

Table 4: Average number of detected change–points and their location using the adaptive method,
n = 500, τ1 = 200, τ2 = 350 (based on 5000 replications). Standard errors are between parentheses

DGP Number of change–points τ̂1 τ̂2

DGP 0 0.1248 (0.62) — —
DGP 1 1.7974 (0.52) 236.1160 (69.32) 345.6080 (27.48)
DGP 2 1.8290 (0.61) 196.7920 (25.61) 342.9910 (43.26)
DGP 3 0.2962 (0.90) — —
DGP 4 1.5650 (0.83) 217.1770 (64.31) 330.1390 (61.25)

Table 5: Average number of detected change–points and their location using the adaptive method,
n = 1000, τ1 = 400, τ2 = 700 (based on 5000 replications). Standard errors are between parentheses

DGP Number of change–points τ̂1 τ̂2

DGP 0 0.1312 (0.62) — —
DGP 1 1.9968 (0.19) 405.4200 (47.37) 697.6540 (29.17)
DGP 2 2.0508 (0.32) 396.2610 (33.38) 693.3310 (57.41)
DGP 3 0.3130 (0.84) — —
DGP 4 2.0554 (0.74) 402.9410 (83.95) 671.697 (103.005)

Table 6: Average number of detected change–points using the adaptive method for n = 100 (based on
5000 replications). Standard errors are between parentheses

DGP Number of change–points

DGP 0 0.1442 (0.66)
DGP 3 0.1314 (0.59)

4 Application to multivariate financial time series

Since the method works well for detecting changes in multivariate GARCH processes that are widely used
for modeling multivariate series of asset returns, we apply this method to multivariate series of returns
from real and artificial financial markets.

4.1 The bivariate series of returns on FTSE 100 and S&P500 indices

We consider the bivariate process of daily returns (r1,t, r2,t), where ri,t = 100 × log(Yi,t/Yi,t−1), where
Yi,t are observed on a common time scale between January 1986 and November 2002, i.e., n = 4225.

The results obtained with the adaptive method and d = 1 are summarized in Table 7 and Figure 2.
The possible number of segments obtained by penalization are 1, 4, 6, 11, 19 and 24. The estimated
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number of segments is clearly K̂ = K3 = 6. Indeed, this solution is obtained for β ∈ [85.57, 203.22): the
length of this interval is l3 = 117.65. Furthermore, the P -value for K3 = 6 is P3 = 8.81e-10 which is
much smaller than the P -values obtained with largest values of K. We see that the fit obtained for the
series (JK , 6 ≤ K ≤ 30) is excellent, but this model yields an underestimated prediction of J5.

Ki βi βi−1 li Pi

1 692.97 Inf Inf –
4 203.22 598.20 394.98 1.76 e-011
6 85.57 203.22 117.65 8.81 e-010
11 41.46 65.88 24.42 0.0134
19 29.68 37.03 7.35 0.2808
24 22.18 27.60 5.42 0.0068

Table 7: FTSE 100 and S&P 500 indices: intervals of the penalization parameter and the P -values
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Figure 2: FTSE 100 and S&P500 indices: adaptive detection with α = 10−7. Above: the contrast
sequence {JK , 1 6 K 6 30}; Below: • : the contrast sequence {JK , 6 6 K 6 30}; − : the fitted model
for {JK , 6 6 K 6 30}; ∗ : the predicted value of J5 with this fitted model

Using the adaptive method, we obtain 6 segments and τ̂ = {448, 508, 1715, 2826, 4119} while with
the Schwarz criteria, τ̂ = {447, 457, 508, 672, 951, 962, 1152, 1224, 1580, 1715, 2466, 2750, 2967, 2978, 3161,
3215, 3995, 4116}. Very similar results are obtained with a sub-grid (d = 5 or d = 10).

The segmentation selected by the adaptive method matches the following events:
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• τ̂1 = 448, τ̂2 = 508: the increase and decrease of volatility after October 1987 stock market crash,

• τ̂4 = 2826: the Asian crisis of Summer 1997,

• τ̂5 = 4119: May 2002, an increase in volatility due to the collapse of the Internet bubble, and the
Enron and WorldCom fraudulent bankruptcies, which cast doubts on the actual accounting position
of several firms, and increased the level of uncertainty.
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Figure 3: Adaptive detection. Above: The series of returns on FTSE 100 with the estimated change–
points represented by vertical lines; Below: The series of returns on S&P 500 with the estimated change–
points represented by vertical lines
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Figure 4: Schwarz criteria. Above: The series of returns on FTSE 100 with the estimated change–points
represented by vertical lines; Below: The series of returns on S&P 500 with the estimated change–points
represented by vertical lines
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It appears that the adaptive procedure detects only majors changes, i.e., crashes in stock market
volatility.

As a simple illustration of the segmentation, figure 5 below displays the sample autocorrelation func-
tion (ACF) of the series of absolute returns on S&P 500 (|rS |), FTSE 100 (|rF |), and the co–volatility
of the two series

√
|rSrF |, for the whole sample and for the segment [508 : 1715]. The apparent strong

dependence of these three series, observed on the whole sample, appears to be a statistical artefact: there
is indeed a form of strong dependence, as the sample ACF does not vanish to zero for higher lags, but
the ACF behaviour is different from the one of the whole sample.
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Figure 5: Left column: From top to bottom the sample autocorrelations on absolute returns on S&P
500 (|rS |), absolute returns on FTSE 100 (|rF |), and the sequence of their co–volatility

√
|rSrF | for the

whole sample.
Right Column: The sample ACF of these series for the time interval [508 : 1715]
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4.2 A trivariate series of stock returns in the financial sector

We consider here three series of log of returns on shares of three banks: Citybank (City), Bank of America
(BoA) and Banque Nationale de Paris (BNP) observed at daily frequency from April 8 1999 until April
2002; i.e., 752 observations. These series have been studied in the univariate framework by Kokoszka
and Teyssière [26]. With the adaptive method we obtain τ̂ = {512, 612, 634}, the last two change–points
matching the huge variations caused by the events of September 11, 2001.
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Figure 6: Adaptive method:
Above: The series of returns on BNP with the estimated change–points represented by vertical lines;
Middle: The series of returns on BoA with the estimated change–points represented by vertical lines;
Below: The series of returns on City with the estimated change–points represented by vertical lines.
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4.3 Artificial financial markets

In the two previous examples, the change–point process is unknown, and the explanation of these changes
looks exogenous, i.e., caused by external events. We consider here a multivariate process with known
and endogenous change–point process. We study simulated multivariate series from an artificial financial
market, i.e., a dynamic system which models financial markets with interacting agents. This bivariate
process (P1,t, P2,t) of Foreign Exchange (FX) rates has been introduced by Teyssière [36], a framework
which could be used for all univariate artificial markets.

This multivariate processes generates common breaks in the volatility process, and displays the same
type of dependence as the one observed in multivariate financial time series; see Teyssière [36]. Note that
[18] suggested that common breaks might explain the common persistence of asset prices volatility.

The main hypothesis of these models is that agents are heterogeneous, they differ by their forecast
functions of asset prices, but have a herding behavior, as they tend to follow the “market opinion”, i.e.,
the predominant forecast about asset prices.

Since Bachelier, the classical hypothesis is that financial markets are “efficient”, i.e., conditionally on
the information set It at time t, the best forecast of a asset price is

E(Pt+1|It) = Pt. (37)

Furthermore, prices are assumed to be independent. If the first claim, equation (37), is acceptable, the
second assumption on independence is wrong: Mandelbrot [31] gives numerous examples of ”traders”
using this dependence for building their strategies. Note that forecasting prices does not make much
sense, although forecasting their volatility does; see e.g., Mandelbrot [31].

We consider a market with two types of traders, chartists and fundamentalists, who differ by their
forecast function of the future price of the Foreign Exchange (FX). This forecast function for an agent i
of the future price of the Foreign Exchange j, j = 1, . . . , m, is a function of the information set It, and
is denoted by Ei(Pj,t+1|It). Chartists extrapolate the next price Pj,t+1 by using a linear function of the
previous prices:

Ec (Pj,t+1|It) =
Mc∑

l=0

hj,lPj,t−l, j = 1, . . . , m, (38)

where hj,l, l = 0, . . . , M c are constants, M c is the ’memory’ of the chartists, while fundamentalists
forecast that this next price does not depart too much from a series of “fundamentals” prices P̄j,t:

Ef (Pj,t+1|It) = P̄j,t +

Mf∑

l=1

νj,l(Pj,t−l+1 − P̄j,t−l), j = 1, . . . , m, (39)

where νj,l, l = 1, . . . , Mf are positive constants, representing the degree of reversion to the fundamentals,
Mf is the ’memory’ of the fundamentalists. We assume that the series of ‘fundamentals’ P̄j,t, which can
be thought as the price if it were only to be explained by a set of relevant variables, follows a random
walk:

P̄j,t = P̄j,t−1 + εj,t, εj,t ∼ N(0, σ2
εj

), j = 1, . . . , m. (40)

Agents have the possibility of investing at home in a risk free asset or investing abroad in risky assets.
We denote by ρj,t the foreign interest rate, by di

j,t the demand by the ith agent for foreign currency j,
and by r the domestic interest rate, with ρj,t > r. The exchange rate Pj,t and the foreign interest rate
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ρj,t are considered by agents as independent random variables, with Eρj,t = ρj and Var(ρj,t) = σ2
ρj

. We

denote by W i
j,t+1 the cumulated wealth of individual i at time t + 1, with the asset j:

W i
j,t+1 = (1 + ρj,t+1)Pj,t+1d

i
j,t + (W i

j,t − Pj,td
i
j,t)(1 + r), j = 1, . . . , m. (41)

Agents i have a standard mean–variance utility function:

U(W i
j,t+1) = E(W i

j,t+1) − λjVar(W i
j,t+1), (42)

where λj denotes the risk aversion coefficient, then

E(W i
j,t+1|It) = (1 + ρj)E

i(Pj,t+1|It)d
i
j,t + (W i

j,t − Pj,td
i
j,t)(1 + r), (43)

Var(W i
j,t+1|It) = (di

j,t)
2ζj,t, ζj,t = Var (Pj,t+1(1 + ρj,t+1)) , (44)

where Ei(.|It) denotes the forecast of an agent of type i.

Let kt be the proportion of fundamentalists at time t. We assume that the opinion process {kt}
is the same for both markets, as structural changes in opinions do not affect a particular market: the
same swing in opinions from chartists to fundamentalists, and vice versa, affects linked markets, e.g., FX
markets. Agents are trading several FX rates, and a fundamentalist (resp. chartist) on one market will
act as fundamentalist (resp. chartist) on the others markets. Then, ktE

f (Pj,t+1|It)+(1−kt)E
c(Pj,t+1|It)

is the forecast for market j.

Demand di
j,t of agent i for market j is found by maximizing the expected utility function. First order

condition for each market j gives:

dj,t =
(1 + ρj)

(
ktE

f (Pj,t+1|It) + (1 − kt)E
c(Pj,t+1|It)

)
− (1 + r)Pj,t

2ζj,tλj

. (45)

Denote by Xj,t the exogenous supply of foreign exchange, then the equilibrium condition for each market
j requires that this supply matches the demand, i.e., Xj,t = dj,t, so that

Pj,t =
1 + ρj

1 + r

(
ktE

f (Pj,t+1|It) + (1 − kt)E
c(Pj,t+1|It)

)
− 2ζj,tλjXj,t

1 + r
. (46)

From equation (46), the dynamics of the price process {Pt} depends on the evolution of the process
{kt}, i.e., the proportion of fundamentalists, which governs the transition between the two forecast
functions Ef (Pj,t+1|It) and Ec(Pj,t+1|It). Several mechanisms for the evolution of the opinion process
{kt} have been proposed in the literature: {kt} might be either the outcome of an epidemiologic model
for the diffusion of opinions, or a learning process based on the comparison of accuracy of the forecast
functions using Theil’s U -statistic (see [36]), or a decision based on the accumulated profit gained with
each forecast function, etc.

If we assume that m = 2, i.e., agents are trading two foreign currencies, the bivariate foreign exchange
rate process depends on a pair of foreign interest rates (ρ1, ρ2). We assume that 2ζj,tλjXj,t/(1 + ρj) =
γjP̄j,t for j = 1, 2, and Mf = M c = 1, the equilibrium price for the bivariate model is given by

(
P1,t

P2,t

)
=

(
kt−γ1

A1
P̄1,t − ktν1,1

A1
P̄1,t−1 +

(1−kt)h1,1

A1
P1,t−1

kt−γ2

A2
P̄2,t − ktν2,1

A2
P̄2,t−1 +

(1−kt)h2,1

A2
P2,t−1

)
, (47)

with

Aj =
1 + r

1 + ρj

− (1 − kt)hj,0 − ktνj,1. (48)

19



We assume that the bivariate process of fundamentals (P̄1,t, P̄2,t) is positively correlated as follows:

(
P̄1,t

P̄2,t

)
=

(
P̄1,t−1

P̄2,t−1

)
+

(
ε1,t

ε2,t

)
,

(
ε1,t

ε2,t

)
∼ N

[(
0
0

)
,

(
σ2

1 σ1,2

σ1,2 σ2
2

)]
, (49)

with σ1,2 > 0. In the example considered here, we set σ1,2 so that the coefficient of correlation between
the two processes ε1,t and ε2,t is equal to 0.75, a choice motivated by empirical results; see [37, 36].

The parameters of the process are set as follows: the three annual interest rates are equal to ρ1 = 0.07,
ρ2 = 0.08, r = 0.04, γj = 0.90− (1+ r)/(1+ρj), j = 1, 2, h1,0 = 0.63, h2,0 = 0.65, hj,1 = 1−hj,0, j = 1, 2,
ν1,1 = 0.60, ν2,1 = 0.55. The choice for γj is such that the process is more volatile when chartists’ opinion
is predominant, while fundamentalists are stabilizing the market. With another choice of the parameters,
e.g., γj = 1 − (1 + r)/(1 + ρj), we obtain the reverse result, as chartists are now stabilizing the market.
We consider the former choice as it looks more sensible.

We simulate a bivariate series (P1,t, P2,t)
′

and detect the changes in the covariance matrix Σ of the

bivariate series of returns (r1,t, r2,t)
′

, with rj,t = 100 × log(Pj,t/Pj,t−1), j = 1, 2. With the adaptive
method we find the segmentation τ̂ = {409, 1016, 2115, 2657, 3431}, illustrated by Figure 7 below, while
with the Schwarz criteria for i.i.d. observations, equation (12), we found the following segmentation τ̂ =
{112, 169, 463, 1016, 1947, 2115, 2656, 2727, 2830, 3036, 3431}. Note that we obtain this adaptive segmen-
tation without resorting to the grid. Using a grid with d = 10, we obtain τ̂ = {410, 1020, 2120, 2660, 3440},
which is not a too bad approximation.

Figure 7 shows that the adaptive change–point detection procedure is able to pick up the changes
in the volatility generated by the variation of the opinion process {kt} governing the evolution of the
volatility of the bivariate price process.
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Figure 7: Above: The series r1,t with the estimated change–points represented by vertical lines; Middle:
The series r2,t with the estimated change–points represented by vertical lines; Below: the series kt with
the estimated change–points.
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