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WEAKLY DEPENDENT CHAINS WITH INFINITE
MEMORY

By Paul Doukhan, Olivier Wintenberger

LS-CREST and University Paris 1 Panthéon-Sorbonne

The main objective of the paper is to define Lm (m ≥ 1) strictly
stationary solutions of infinite memory recurrence equations such as
Xt = F (Xt−1, Xt−2, Xt−3, . . . ; ξt), where (ξt)t∈Z denotes an inde-
pendent and identically distributed sequence. To this end, we use an
appropriate Lipschitz condition which also entails weak dependence
properties defined in Dedecker and Prieur (2004). Such models are
proved to provide continuous state space and nonlinear extensions of
various examples of well known classes of times series.

1. Introduction. Times series analysis is a main research field for ap-
plication sake. The statistical analysis of times series deeply relies on the
underlying model, e.g. selection of models is now very popular in statistics.
The choice of a model balances several antagonist criteria. We focus here on
the principle of parsimony which consists on reducing as much as possible
the set of parameters in a model. We apply this principle bearing in mind
that the models must not be too restrictive.

Regular stationary second order times series are traditionally represented
as infinite autoregressive processes

(1.1) Xt =
∞∑

j=1

ajXt−j + ξt, t ∈ Z

with (ξt)t∈Z a second order stationary white noise. This representation has
motivated the introduction of ARMA processes. In Econometrics, Industry
e.g. those models are widely used.

The expression of a process from its own history motivates a lot of fore-
cast attempts. Assuming linearity in the representation (1.1) induces that
innovations are second-order stationary but not strictly stationary. On the
contrary, non-linearity allow the use of strictly stationary inputs. Markov
models first introduce non-linearity. Various applications (e.g. Finance, Hy-
drodynamics, Physics, Electromagnetism, see Landau and Lifschitz (1969),
or Dobrushin and Kusuoka (1993)) use such representations.
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Dobrushin (1970)’s conditions are widely used to define random fields
from their conditional distributions; we defer the reader to Georgii (1988) for
details. Such conditions need regularity of the marginal distributions. They
are closely related with sharp mixing conditions (see Doukhan, 1994). To
allow weaker dependence behavior, the Markov property is relaxing. Berbee
(1987) obtained an existence condition for discrete state spaces in such non
Markovian context. Comets et al. (2002) and Fernandez and Maillard (2006)
improved this condition. Iosifescu and Teodorescu (1969) introduced the un-
derlying stationary model. General random systems with complete connec-
tions (RSCC) are defined through their marginal conditional distributions in
an extended Markovian way. Bühlmann and Wyner (1999) introduce Vari-
able Length Markov Chains (VLMC) as an alternative model: triangular
arrays X1,n, . . . , Xn,n ∈ Pn, are considered for some set Pn set of pn-Markov
chains (here ergodicity replaces the condition of stationarity). Omitting both
linearity and Markov assumptions for the representation of a random phe-
nomenon, those models are widely used in the fields of particle systems or
in DNA data analysis.

We place us in the different context of continuous state spaces. Models
both non Markovian and non linear already exist. In the following, (ξt)t∈Z is
called the innovations or inputs of the system. It is a sequence of independent
and identically distributed (iid) random variables with values in a probability
space E. Attractive examples of weakly dependent processes are Bernoulli
shifts defined as (cf. [13], and also [26] for references)

Xt = H(ξt−j , j ∈ N), for t ∈ Z and H : EN → Rd measurable.

Such Bernoulli shifts look general (see [7]) and this was even conjectured by
Wiener that any stationary sequence writes this way. However, those models
do not fit any idea of parsimony, e.g. Volterra chaotic models

H(x0, x1 . . .) = a0 +
∞∑

k=1

∞∑
j1,...,jk=0

ak;j1,...,jk
xj1 · · ·xjk

involve a very large family of parameters (ak;j1,...,jk
)k,j1,...,jk≥0. Moreover,

even if the functional H exists, it remains often not explicit.
We introduce a new and general class of models corresponding to the dy-
namic behavior of most of the known times series which extends on the
Markov property. Chains with infinite memory are stationary solutions of
equations

(1.2) Xt = F (Xt−1, Xt−2, Xt−3, . . . ; ξt), F :
(
Rd)N × E → Rd measurable.
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Such models may be seen as an extension of bilinear models in [14] or
LARCH(∞) models in [15]. Examples in § 3 prove that parsimony is now
present for such representations, reducing considerably the family of model
parameters.

After some notations we shall motivate more accurately the introduction
of such models. Existence, uniqueness and weak dependence properties are
derived in our main theorem. Our proof is given in two steps. We first
describe the properties of a Markov approximating system in order to prove
our main result in two distinct sections.

2. Main results.

2.1. Definitions. We need to introduce some notations in order to define
the weak dependence coefficients used below.

• The sequence (ξt)t∈Z is iid and takes values in a probability space E.
• In the paper we shall consider a norm ‖ · ‖ on Rd (d ≥ 1 is a fixed

integer). If any confusion is possible, it will be more precisely written
with a subscript, e.g. the norm on Rd may also be written ‖ · ‖Rd .

• For a random variable Z ∈ Rd we denote ‖Z‖m =
(
E‖Z‖m

Rd

)1/m
.

• For h : Rd → R we set ‖h‖∞ = supx∈Rd |h(x)| and

Lip (h) = sup
x 6=y

|h(x)− h(y)|
‖x− y‖

.

• Λ1
(
Rd
)

is the set of functions h : Rd → R such that Lip (h) ≤ 1.

We now recall the notion of weak dependence used in our model.

Definition 2.1 (Dedecker, Prieur, 2004). Let (Ω,A, P) be a probability
space, M a σ-algebra and X be a random variable with values in Rd. Assume
that E‖X‖ < +∞, we define the coefficient τ
(2.1)

τ(M, X) =
∥∥∥∥sup

{∣∣∣∣∫ f(x)PX|M(dx)−
∫

f(x)PX(dx)
∣∣∣∣ , f ∈ Λ1

(
Rd)}∥∥∥∥

1

An easy way to calculate this coefficient is based on a coupling argument
(see [8] for details); assume that the probability space (Ω,A) is rich enough,
then there exists X∗ distributed as X, independent of M, and such that
τ(M, X) = E‖X −X∗‖; the relation τ(M, X) ≤ E‖X −X∗‖ always holds.

Consider an Rd valued stationary time series (Xt)t∈Z. The definition of τ
allows to evaluate the dependence between the past of the sequence (Xt)t∈Z
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and its k-tuples in the future. More precisely, consider the norm ‖x− y‖ =

‖x1 − y1‖+ · · ·+ ‖xk − yk‖ on
(
Rd
)k

, we set Mp = σ(Xt, t ≤ p) and

τk(r) = max
1≤l≤k

1
l

sup{τ(Mp, (Xj1 , . . . , Xjl
)), p + r ≤ j1 < · · · < jl},

τ∞(r) = sup
k>0

τk(r).

For simplicity sake we will denote below τ∞(r) = τr avoiding any confusion.
Firstly, remark that those coefficients do not depend on the value of p thanks
to stationarity. Secondly, we quote that those coefficients are causal ones
because of the non symmetric role played by the past and the future of the
process. We say that a time series (Xt)t∈Z is τ -weakly dependent when the
sequence of its coefficients τr tends to 0 as r tends to infinity. We refer to
Dedecker and Prieur (2005) for asymptotic results in this setting.

2.2. The model. We recall the weak dependence properties of Bernoulli
shifts

Proposition 2.1 (Dedecker, Prieur, 2004). Let (ξ′j)j∈Z be distributed as
(ξj)j∈Z and independent of it. Assume that H : EN∗ → Rd is mesurable and
that there exists a sequence δr ↓ 0 as r →∞ such that

(2.2) E
∥∥H (ξr−j , j ∈ N∗)−H

(
ξr−1, . . . , ξ1, ξ

′
0, ξ

′
−1, . . .

)∥∥ ≤ δr,

then (Xt)t∈Z = H(ξt−j , j ∈ N) is τ -weakly dependent with τr ≤ δr.

The function H is usually unknown and we claim that the equation (1.2)
is physically more significant.

Below F : (Rd)N×E → Rd denotes a measurable function and m ≥ 1 is a
real number. In order to prove existence of a solution of the equation (1.2),
we assume that there exists a sequence {aj}j∈N∗ with

∑∞
j=1 aj = a < 1 such

that

µ0 = ‖F (0, 0, 0, . . . ; ξ0)‖m < ∞,(2.3)

‖F (x1, x2, x3, . . . ; ξ0)− F (y1, y2, y3, . . . ; ξ0)‖m ≤
∞∑

j=1

aj‖xj − yj‖,(2.4)

for any (x1, x2, x3, . . .), (y1, y2, y3, . . .) ∈ (Rd)N∗ . Note that from Hölder in-
equality the previous conditions (2.3) and (2.4) always hold also for m = 1.
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This value of m = 1 is the only one required to prove weak dependence; how-
ever higher order moments are needed to derive limit theorems (see [6] and
[16]). Assumptions (2.3) and (2.4) are respectively a moment assumption on
the variable F (0, 0, 0, . . . ; ξ0) and a contraction condition on F (·; ξ0).

Theorem 2.1. Assume properties (2.3) and (2.4) for some m ≥ 1, then
there exists a stationary solution (Xt)t∈Z of Eq. (1.2) such that ‖Xt‖m < ∞
that is τ -weakly dependent with

τr ≤ C ·

ar/p +
∞∑

k=p

ak

 for some constant C only depending on µ and a.

We distinguish two cases
- If aj ≤ ce−βj with 0 < c < β then τr ≤ Ce−

√
(log β−log c)βr.

- If aj ≤ cj−β with β > 1 and 0 < c < (β − 1)/β then τr ≤ C
(

log r
r

)β
.

Remarks..

• As mentioned in the introduction, RSCC are defined through their
marginal conditional distributions. We quote here that using such
strong conditions as well as an additional irreducibility condition,
Iosifescu and Grigorescu (1990) control the coefficient of φ-mixing of
an RSCC, theorem 2.1.5, page 42 of [19]. This bound has exactly the
same form as our bound for τr. For this, the authors first control the
rate of convergence of such a system to its limit distribution w.r.t.
the norm of total variation, in theorem 2.1.3, page 40 of [19]. Here
we do not assume any regularity on the inputs (like absolute conti-
nuity) which justifies the point that Iosifescu and Grigorescu (1990)’s
result cannot be expected here. Andrews (1984) counter-example is a
non mixing sequence of some equation like (1.2). We recall here that
(τr)r∈Z ensures most of the limit theorems obtained in the φ−mixing
setting, see [8].

• Let (Xt)t∈Z be a time series only depending on its past, a solution of the
Eq. (1.2). Then our conditions (2.3) and (2.4) for m = 1 are equivalent
to the Dobrushin (1970)’s condition of uniqueness of the stationary
measure (if it exists) for (Xt)t∈Z. We prove that in our causal context,
Dobrushin (1970)’s condition of uniqueness of a stationary solution
also implies its existence. In the case of finite state space, Fernandez
and Maillard (2004) denote the same behavior that they call the one-
sided Dobrushin condition.



6 P. DOUKHAN AND O. WINTENBERGER

The proof involves a p-Markov approximation stated below. In the following
corollary, we propose another way to approximate the stationary measure.
Such a constructive result is of independent interest. Set X̃

(0)
i = 0 for 1 ≤

i ≤ n with n fixed, and define recursively for each k > 0

(2.5) X̃
(k)
i = F (X̃(k−1)

i , . . . , X̃
(k/2)
i , 0, . . . ; ξi).

Corollary 2.1. Assumes that conditions (2.3) and (2.4) hold, then the
distributions of trajectories X̃(k)

n = (X̃(k)
1 , . . . , X̃

(k)
n )′ converge to those Xn =

(X1, . . . , Xn)′ of the stationary solution (Xt)t∈Z of Eq. (1.2) as k →∞.

More precisely, ‖X̃(k)
n −Xn‖m ≤ C log−b k where C > 0 and b > 0 is equal to

- If aj ≤ ce−βj with 0 < c < β then b = (log β − log c)/ log 2.
- If aj ≤ cj−β with β > 1 and 0 < c < 1− 1/β then b = β − 1.

Depending only on finite number of variables, approximations
{
X̃(k)

n
}

k>0
can be simulated. In order to mimick the behavior of a chain with infinite
memory we see from Eq. (2.5) that approximations depend on their own
past. Remark that X̃(0)

n is chosen arbitrarily: thus it does not approximate
the trajectory. To forget the first steps error, the approximations

{
X̃(k)

n
}

k>0
do not depend on their complete past in Eq. (2.5), contrarily to the chain
with infinite memory (Xt)t∈Z.

3. Examples. This section states precisely some examples. We aim to
prove here that many applications may be considered with such class of
models.

3.1. Markov models. The first example is the standard and well known
p-Markov system

Xt = F (Xt−1, . . . , Xt−p; ξt).

Kallenberg (1997) stresses the fact that such equations describe all the p
Markov processes.

Non linear autoregressive models have this form with F (x1, . . . , xp; s) =
R(x1, . . . , xp) + s; in this case E = Rd and condition (2.3) follows from
ξ0 ∈ Lm while condition (2.4) writes as

‖R(y1, . . . , yp)−R(x1, . . . , xp)‖ ≤
p∑

j=1

aj‖xj − yj‖.

The fact that the series does not depend of all its past leads to better asymp-
totic results than those implied by the weak dependence result of Theorem
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2.1 (see Duflo in [5] for detailed results).

As soon as
∑p

j=1 aj = a < 1, Dedecker and Prieur prove the existence of
α < 1 such that τr ≤ αr in [8]. We improve this rate setting τr ≤ ar/p (see
section 4 for more details).

Example: Random AR(1) models. Such models, solutions of the equation
Yt = AtYt−1+ζt, occur naturally as iterated random functions; Diaconis and
Freedmann (1999) show that fractal behaviors appear for those models. Here
Xt = Yt and ξt = (At, ζt) with F (x1, . . . ; (a, ζ)) = a1x1 + ζ. The iid input
sequence writes ξt = (At, ζt) with At a d × d-matrix and ζt an Rd-valued
sequence. This model satisfies ‖F (x; ξ)−F (x′; ξ)‖m ≤ ‖A0‖m‖x1 − x′1‖ and
the condition (2.4) is satisfied as soon as ‖A0‖m < 1.

3.2. Random AR(∞) models. Let us consider the iid sequence {ξt =
((Aj,t)j>0, ζt)}t∈Z with Aj,t a d × d random matrix for all j > 0 and ζt

an Rd-valued sequence. Here E = Mk,d(R)N∗ × Rd. An infinite memory
extension of random AR(1) models is the solution to the equation

Xt =
∞∑

j=1

Aj,tXt−j + ζt.

If ζ0 ∈ Lm and
∑∞

j=1 ‖Aj,0‖m < 1, conditions (2.3) and (2.4) hold.

3.3. Robust bilinear models. Here d = 1 and E = R. Solutions of the
equation Xt = Atξt + Bt, where

At =
∞∑

j=1

αj(Xt−j), Bt =
∞∑

j=1

βj(Xt−j).

extend on the bilinear models in [14] which correspond to linear functions,
αj , βj . Classical models like ARCH or GARCH processes take this form. As-
sume

∑∞
j=1 Lipαj < 1,

∑∞
j=1 Lipβj < 1 and ξ0 ∈ Lm, then conditions (2.3)

and (2.4) are satisfied. A simple class of such models is provided with a fixed
Lipschitz function h and αj(x) = ajh(x) and βj(x) = ajh(x) for sequences
of constants {aj}j>0, {bj}j>0. We consider bounded approximations of iden-
tity such that h(x) = x∨M ∧ (−M) to introduce robustified versions of the
models in [14].
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3.4. NLARCH(∞) models. A generalization of LARCH(∞) models in
[15] is given by equation

Xt = ξt

α +
∞∑

j=1

αj(Xt−j)

 .

where now Xt ∈ Rd, ξt is a d × k matrix (here E = Mk,d(R)), α ∈ Rk and
αj : Rd → Rk are Lipschitz functions; in [15] linear functions αj(x) = cjx
are considered for k × d matrices cj . Assumption (2.4) holds as soon as
‖ξ0‖m

∑∞
j=1 Lipαj < 1.

3.5. Models with linear inputs. Let f : Rk × E → Rd be measurable an
satisfy ‖f(t, ξ0)−f(s, ξ0)‖m ≤ L‖t−s‖ for some finite constant, we consider

Xt = f(At, ξt), At =
∞∑

j=1

cjXt−j ,

here cj denote k × d matrices. Then the previous relation (2.4) holds with
aj = L‖cj‖. This is a very nonlinear case for which one only needs to produce
a function of two variables and a sequence of constants. Kac (1959) used such
type of mean field models in statistical mechanics in [21].

3.6. Threshold models. Setting ξt = (ζt, νt), threshold models may be
written as

Xt =
J∑

j=1

11νt∈EjFj(Xt−1, Xt−2, . . . ; ζt)

for a measurable partition of (Ej)1≤j≤J of the space of values E′ of νt.
More complicated threshold models are given by a measurable partition
E1, . . . , EJ of Rk × E′ and

Xt =
J∑

j=1

11{(G(Xt−1,Xt−2,...),νt)∈Ej}Fj(Xt−1, Xt−2, . . . ; ζt)

for a given function G of the past of the process with value in Rk. It is simple
to explicit sufficient conditions for (2.3) and (2.4) to hold.

3.7. Affine models. Let us consider the special case of chains with infinite
memory that can be written in a bilinear form

(3.1) Xt = ξtKt + Ht,
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where Kt = K(Xt−1, . . .) and Ht = H(Xt−1, . . .) are both functions of the
past values of (Xt−1, Xt−2, Xt−3, . . .). This case covers several of the previous
examples. Using ideas from [14] we prove the existence of marginal densities
involving only regularity assumptions on the innovations (and additional
conditions on the process (Kt)).

Proposition 3.1 (regularity of affine models). Assume that innovations
(ξt)t∈Z in the model (3.1) admit a common bounded marginal density fξ, then
if moreover K ≥ 0, the marginal densities fX1,...,Xn of (X1, . . . , Xn) exist for
all fixed n > 0 and satisfy for a suitable constant c

‖fX1,...,Xn‖∞ ≤ c‖fξ‖n
∞.

By integration we obtain the existence and the boundary of the marginal
density of X0 and of the joint densities of the couples (X0, Xk)k>0. Such
results are useful to obtain non parametric estimators behavior under weak
dependence (see [24] for more details).
Proof of Proposition 3.1. The sequences Kj ,Hj may be rewritten as func-
tions of the past of the innovations

Kj = kj(ξj−1, . . . , ξ1, T ),
Hj = hj(ξj−1, . . . , ξ1, T ),

where T denotes the past of the innovations. Then we can compute easily
that for all continuous and bounded function f

Ef(X1, . . . , Xn) = Ef((ξjKj + Hj)j=1,...,n)
= Ef((ξjkj(ξj−1, . . . , ξ1, T ) + hj(ξj−1, . . . , ξ1, T ))j=1,...,n)

=
∫
· · ·
∫

fξ(s1) · · · fξ(sn)Ef((sjkj(sj−1, . . . , s1, T )

+ hj(sj−1, . . . , s1, T ))j=1,...,n)ds1 . . . dsn.

We change the variables sj as

xj = sjkj(sj−1, . . . , s1, T ) + hj(sj−1, . . . , s1, T )

in order to find the density of (X1, . . . , Xn)

fX1,...,Xn(x1, . . . , xn) = E
n∏

j=1

fξ

(
xj − hj(sj−1, . . . , s1, T )

kj(sj−1, . . . , s1, T )

)
1

kj(sj−1, . . . , s1, T )
. �
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4. Proofs of the main results. We firstly prove a useful algebraic
result, see Lemma 4.1. We then approximate the solution of the Eq. (1.2)
by a process with the p−Markov process. Existence of the infinite memory
chain is obtained with p →∞ in subsection 2.1. Weak dependence properties
are derived from both a sharp control of the coefficient τ for the p−Markov
approximations (see Lemma 4.4) and the use of coupling techniques. In
corollary 2.1 we derive a way to simulate trajectories of our model.

4.1. An algebraic preliminary.

Lemma 4.1. Let u0 ≥ 0 and (un)n∈Z be a real sequence such that |un| ≤
u0 if n < 0. Assume that

(4.1) un =
p∑

i=1

αiun−i, ∀n ≥ 0,

where (α1, . . . , αp) are fixed nonnegative numbers with α =
∑p

i=1 αi. Then,

un ≤ αn/pu0, ∀n ≥ 0.

Proof. Let us denote by Q(x) = xp − α1x
p−1 − . . . − αpx

0 and by ρ the
largest modulus of a root for the polynomial Q. We may bound this modulus
ρ of the largest zero of Q, this zero is real and non negative as this is proved
in ([23], exercice 20, page 106) and

ρ ≤ max
1≤i≤p

(
αi

ci

)1/i

,

for all c1, . . . , cn ≥ 0 such that c1 + · · · + cn ≤ 1. With the special choice
ci ≤ αi(1 + ε) where 1/(1 + ε) ≥ α, we obtain ρ ≤ α1/p.

Set now U
(p)
n = (un, . . . , un−p+1)′ and Cα the companion matrix associ-

ated to Q(x). We define a norm on Rp by ‖(z1, . . . , zp)‖b = max1≤i≤p |zib
i−1|,

for some b ∈]0, 1] to be fixed later. Then∥∥∥U (p)
n

∥∥∥
b
=
∥∥∥CαU

(p)
n−1

∥∥∥
b
.

Simple calculations yield

‖Cα‖b = sup
‖z‖b≤1

‖Cαz‖b

= sup
‖z‖b≤1

∣∣∣∣∣
p∑

i=1

αib
i−1zi

∣∣∣∣∣ ∨ max
1≤i≤p−1

bi|zi|.

≤
p∑

i=1

αib
1−i ∨ b.
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Choose now b = ρ, then
‖Cα‖ρ ≤ ρ ≤ α1/p.

We write to conclude

un ≤
∥∥∥U (p)

n

∥∥∥
ρ
≤ ‖Cα‖n

ρ

∥∥∥U (p)
0

∥∥∥
ρ
≤ αn/p

∥∥∥U (p)
0

∥∥∥
ρ
≤ αn/pu0. �

4.2. Markov stationary approximation. In order to construct a solution
to the equation (1.2) we consider, for each fixed p ≥ 0 and q > 0 the p-
Markov process (Xp,q,t)t≥0 defined by Xp,q,t = 0 for t ≤ −q and through the
recurrence equation for t > q

(4.2) Xp,q,t = F (Xp,q,t−1, . . . , Xp,q,t−p, 0, . . . ; ξt).

We first notice that X0,q,t = F (0, . . . ; ξt) for t > −q is an iid sequences. The
Lipschitz condition (2.4) implies

‖Xp,q+1,0 −Xp,q,0‖m ≤
p∑

i=1

ai ‖Xp,q+1,−i −Xp,q,−i‖m

≤
p∑

i=1

ai ‖Xp,q+1−i,0 −Xp,q−i,0‖m .

The second inequality derives from that Xp,q,−i and Xp,q−i,0 have the same
law from definition for each triplet of positive integers (p, q, i). Let us con-
sider the sequence vn = ‖Xp,n+1,0 −Xp,n,0‖m for n ∈ Z. Here vn = 0 if
n < 0. For n > 0

vn ≤
p∑

i=1

aivn−i.

Then, vn ≤ un for any real sequence (un)n∈Z verifying equation (4.1) with
αi = ai, un = 0 for n < 0 and u0 = v0. Then, using Lemma 4.1, we achieve
to the bound

vn ≤ an/pv0 ≤ an/p‖Xp,1,0‖m ≤ an/p‖F (0, . . . ; ξt)‖m ≤ an/pµ0.

Hence, for each p, the sequence (Xp,n,0)n∈N has the Cauchy property in
Lm; it converges thus in Lm to some Xp,0 ∈ Lm. It is also clear that
Xp,n,0 is measurable w.r.t. the σ−algebra generated by {ξt, t ≤ 0}. The
Lm-convergence ensures that this is also the case for Xp,0. Hence we may
write Xp,0 = Hp(ξ0, ξ−1, . . .) for some measurable function Hp. The same
argument for each t ∈ Z proves that Xp,t = Hp(ξt, ξt−1, ξt−2, . . .).
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Set Xp,n,t = (Xp,n,t, . . . , Xp,n,t−p) for each t ∈ Z. As previously, the
(
Rd
)p+1

-

valued sequence (Xp,n,0)n∈N converges in Lm (as n →∞). Its marginals sat-
isfy the relation (4.2). Let now n ↑ ∞, a continuity argument (on F ) implies
Xp,0 = F (Xp,−1, . . . , Xp,−p, 0, . . . ; ξ0). For each t ∈ Z we apply the same
argument to Xp,n,t. Then the sequence (Xp,t)t∈Z is a stationary solution of
the recurrence equation (4.2) for each p ≥ 0.
Consider now

µp = ‖Xp,t‖m, µ = sup
p≥0

µp,(4.3)

∆p,t = ‖Xp+1,t −Xp,t‖m, ∆p = sup
t∈Z

∆p,t,(4.4)

note that this definition of µp set here for p > 0 also extends to p = 0 since
X0,t = F (0, . . . ; ξt) satisfies by definition ‖X0,t‖m = µ0 from (2.3). Then
from (2.4) we first derive

µp ≤ ‖Xp,t −X0,t‖m + µ0,

≤
p∑

j=1

aj‖Xp,t−j‖m + µ0,

≤ µp

p∑
j=1

aj + µ0, hence

µp ≤ 1
1− a

· µ0.

We have thus proved the following useful bound:

Lemma 4.2. Assume properties (2.3) and (2.4) for some m ≥ 1, then
the expression defined by (4.3) satisfies the bound

µ = sup
p≥0

µp ≤
µ0

1− a
.

We now estimate analogously

∆p,t = ‖F (Xp+1,t−1, . . . , Xp+1,t−p−1, 0, . . . ; ξt)
− F (Xp,t−1, . . . , Xp,t−p, 0, . . . ; ξt)‖m

≤
p∑

j=1

aj‖Xp+1,t−j −Xp,t−j‖m + ap+1‖Xp+1,t−p−1‖m

≤
p∑

j=1

aj∆p,t−j + ap+1‖Xp+1,t−p−1‖m
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The previous equation implies ∆p ≤
ap+1

1− a
·µ, thus with lemma 4.2 we derive

the following lemma

Lemma 4.3. Assume properties (2.3) and (2.4) for some m ≥ 1, then
the expression defined by (4.3) satisfies the bound

∆p ≤ ap+1 ·
µ0

(1− a)2
.

4.3. Proof of existence in Theorem 2.1. Quote first that lemma 4.3 im-
plies that Xp,t → Xt in Lm since this space is complete. The continuity of
F ensures that Xt is a solution of equation (1.2). Furthermore, as a limit in
Lm of stationary process, Xt is also stationary (in law). Finally, as a limit
in Lm of a process admitting a moment of order m, ‖Xt‖m < ∞. �

4.4. Proof of weak dependence in Theorem 2.1. Previous assumptions
with m = 1 are enough for this section. We first need:

Lemma 4.4. Assume that (2.4) and (2.3) hold with m = 1, then the
Markov chain (Xp,t)t in Eq. (4.2) is weakly dependent with

τp,r ≤ ar/p.

Proof of the lemma 4.4. We follow here the proof of Duflo [5], as Dedecker
and Prieur in [8]. We improve their result by using the lemma 4.1. As quoted
in section (2), we use coupling in order to evaluate the τ -coefficient. Let (ξ′t)t

be a process distributed as (ξt)t and independent of the innovation. We define
the process (X∗

p,t)t as

X∗
p,t =

{
F (X∗

p,t−1, . . . , X
∗
p,t−p, 0, . . . ; ξ′t), for t ≤ 0;

F (X∗
p,t−1, . . . , X

∗
p,t−p, 0, . . . ; ξt), for t > 0;

Using the approximation of the section 4.2, we equivalently find a sequence
of measurable variables w.r.t. the σ−algebra generated by ξ′t, t ≤ 0 denoted
(X∗

p,n,0)n∈N such that it converges in Lm to X∗
p,0 ∈ Lm. The Lm-convergence

ensures this is also the case for Xp,0. Then, by definition of ξ′t, t ≤ 0, X∗
p,0 is

independent of Xp,0. Due to the coupling property of the coefficient τ , we
obtain τp,r ≤ ‖Xp,r −X∗

p,r‖1.

It is easy to check that assumption (2.4) leads to

‖Xp,r −X∗
p,r‖1 ≤

p∑
i=1

ai‖Xp,r−i −X∗
p,r−i‖1.
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Denoting wr = ‖Xp,r − X∗
p,r‖1 for r ∈ Z, we use again the lemma 4.2 and

we obtain

τp,r ≤ wr

≤ ar/pw0

≤ 2µpa
r/p

≤ 2
‖F (0, . . . ; ξ0)‖1

1− a
· ar/p

Indeed if m = 1, ‖F (0, . . . ; ξ0)‖1 = µ0. �

Let us now define the process (X∗
t )t by

X∗
t =

{
F (X∗

t−1, X
∗
,t−2, . . . ; ξ

′
t), for t ≤ 0;

F (X∗
t−1, X

∗
t−2, . . . ; ξt), for t > 0;

We remark that (X∗
t )t is also a stationary chain with infinite memory.

Lemma 4.3 gives us

‖Xr −Xp,r‖1 ≤
∞∑

k=p

∆k ≤ C
∞∑

k=p

ak+1.

The same bound also holds for the quantity ‖X∗
r −X∗

p,r‖1. For each integer
p

τr ≤ ‖Xr −X∗
r ‖1,

≤ ‖Xr −Xp,r‖1 + ‖Xp,r −X∗
p,r‖1 + ‖X∗

r −X∗
p,r‖1,

≤ A

ar/p +
∞∑

k=p

ak+1

 .

We now choose p such that both terms in this sum have the same decay
rate. If aj ≤ ce−βj then we choose p =

√
αr/β where e−α = a < 1, and

then we found the bound τr ≤ C
(
e−
√

αβr
)

for a suitable constant C > 0.

If aj ≤ cj−β we find τr ≤ C

((
log r

r

)β
)

. �

4.5. Proof of corollary 2.1. We define recursively the process
(
X̃

(n)
0

)
n∈N

by X̃
(0)
0 = 0 and by the relation

X̃
(n)
0 = F

(
X̃

(n−1)
0 , . . . , X̃

(n−pn)
0 , 0, . . . ; ξ0

)
,
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here, the sequence (pn)n∈N will be precisely set later. Then, the Lipschitz
assumption (2.4) leads to∥∥∥X̃(n+1)

0 −X0

∥∥∥
m
≤

pn∑
i=1

ai

∥∥∥X̃(n+1−i)
0 −X0

∥∥∥
m

+
∑
i>pn

ai ‖X0‖m , n ≥ 1

Fix some integer N > 0. Then, denoting by vn =
∥∥∥X̃(n+1)

0 −X0

∥∥∥
m

for
0 ≤ n ≤ N , this sequence satisfies the recursion

vn ≤
pn∑
i=1

aivn−i + εpn ,

with εpn = ‖X0‖m
∑

i>pn
ai → 0 as soon as pn →∞ with n. Let us choose a

sequence qn ≤ pn and denote eN = max{εk; k ≥ qN}. Then for all n′ ≤ n ≤
N such that qN ≤ pn′ we have

vn ≤
pN∑
i=1

aivn−i + eN .

Then, vn ≤ un−n′ for any real sequence (un)n∈Z verifying equation

un =
pN∑
i=1

aiun−i + eN ,

un = 0 for n < 0 and u0 = vn′ for i = 0. The solution of this equation is the
sum of the solution of the homogeneous equation (4.1) with αi = ai and a
special solution. eN/(1−

∑pN
i=1 ai) is a solution and we obtain for n′ ≤ n ≤ N :

vn ≤ un−n′ ≤ a(n−n′)/pN u0 +
eN

1− a
≤ a(n−n′)/pN vn′ +

eN

1− a
.

We choose n = N to get vN ≤ a(N−n′)/pN vn′ + eN/(1− a).
Taking qn = [qn] and pn = −[−pn] for 0 < q < p we obtain n′ ≤ Nq/p and

vN ≤ a1/p−q/p2
vNq/p + eN/(1− a).

The special choices q = 1/4 and p = 1/2 lead to vN ≤ avN/2 + eN/(1− a).
Then, for the integers n satisfying 2n−1 < N ≤ 2n, we derive

vN ≤ anv1 +
1

1− a

n−1∑
i=0

aieN/2i ,

≤ N log a/ log 2µ0 +
log N

1− a
max

0≤i≤n−1
aieN/2i .

We check precisely two special cases
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• ai = (a/(1 + a))i, then max
0≤i≤n−1

aieN/2i ≤ ‖X0‖mN log a/ log 2.

• ai = i−β, here max
0≤i≤n−1

aieN/2i ≤ ‖X0‖mN1−β. �
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