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Abstract - This paper proposes a descriptive method for an open problem in time series

analysis : determining the number of regimes in a switching autoregressive model. We will

translate this problem into a classification one and define a criterion for hierarchically clus-

tering different model fittings. Finally, the method will be tested on simulated examples and

real-life data.
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1 Introduction

In the past few years, several nonlinear autoregressive models have been proposed for time

series analysis. Some of these models are based on the idea that the process is characterized

not by a unique autoregression, but by the fact that two or more regimes are driving the series

behaviour. In each regime, an autoregressive function is fitted. We are interested in the case

where the autoregressive functions are linear in every regime. The most classical examples are

TAR (Threshold Autoregressive) models introduced by Tong (1978) with regimes switching

according to the magnitude of a threshold variable, the smoothed version of TAR models

(STAR), or the more recent Markov switching autoregressive models, first used by Hamilton

(1989) to model the U.S. Gross National Product.



Estimating the parameters of these models is usually done by maximizing the likelihood

function, but under a very strong hypothesis: a fixed number of regimes. Choosing the

“true” number of regimes is still an open problem, as this is equivalent to testing with lack

of identifiability under the null hypothesis. This leads to a degenerated Fisher information

matrix and thus the chi-square theory and the likelihood ratio tests fail to apply. An empirical

method to detect this kind of non-linearity using Kohonen maps and hierarchical clustering

of linear regressions is given below. The second section describes the method and places

it among the existing literature on this subject. In the third part, we give examples on

simulated and real-life data and, finally, a conclusion will follow.

2 The Method

The problem of finding the “true” number of regimes can be rewritten as a classification

problem by using a sliding window as follows. Suppose that we have observed the values of

a time series {yt}t=1,T and we decide to fit an autoregressive model. Once the order of the

model has been determined (with an AIC criterion, for example), we can consider the data

set of dimension (T −p)x(p+1), {yt, yt−1, ...yt−p}t=p+1,T
. Looking for the number of regimes

is actually equivalent to looking for the number of regression lines (or hyperplanes) which

will best fit the data.

The idea is simple and is based on the possibility of finding patterns in data which will

identify the regression hyperplanes. Given the data set in Figure 1, fitting one regression line

to the data is clearly not the good choice. If we now suppose that we managed to cluster the

data into two groups and we perform a regression within each of these groups, we get two

lines which seem to describe the sample better. This is confirmed by the “within-squared

error”, which is equal to the sum of squared residuals if there is only one regime and, if there

are several, to the total sum of squared residuals within each group.

Now, let us remark that a classification that would find a good separation and, implicitly, the

regression lines which best fit the data will be strongly connected to the underlying model

from which the observations were sampled. Although the number of existing methods for
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Figure 1: Fitting clustered data

clustering is very large, hundreds of algorithms being available, most of them emphasize the

characteristics of the sample instead of the model generating it. Still, the idea of classifying

data using conditions referring rather to the model underlying them is not new in the litera-

ture. The concept of probabilistic clustering is present in some clustering methods, whether

we speak of fixed-partition methods such as regression-type clustering, principal component

clustering, projection pursuit or convex support, the mixture models or the high-density

clusters.

The method we propose here is close to the regression-type clustering, the concept behind it

being the same : identify the hyperplanes which will best fit the data in the sense of a sum of

squared-residual criterion or a sum of norms of the orthogonal projections of the points onto

the subspace. Introduced by Charles [1977] and developed afterwards by Spath [1979], De

Sarbo [1988], Lou, Jiang and Keng[1993], this type of clustering assumes, for a fixed number

of classes, that each of them is characterized by a specific regression line. The algorithm is

then an extension of k-means, the centroids being replaced by the regression hyperplanes. If

a “good” number of classes is needed, one should perform this modified k-means for a number

of classes going from 1 to a sufficiently large N and pick the configuration which minimizes

the chosen criterion.

In our case, we would like to start with some “good” initial clusters which will then be

classified hierarchically using some squared-error criterion and we would expect to have an

important break in the increasing values of this criterion, once we pass from the true number



of regimes to a smaller one. A “good” cluster should contain observations belonging to the

same regime and, at the same time, have enough points to estimate a regression line.

2.1 Initial clustering

For the initial clustering, self-organizing maps were used. Introduced by Kohonen (see, for

instance Kohonen [1997]), the algorithm performs a clustering job and also a nonparametric

regression at the same time and in a natural manner. Besides, contrary to k-means or other

unsupervised classification methods, it has the advantage of preserving the topology of the

data. Thus, not only will similar observations be in the same cluster, but close clusters on

the map will contain similar data in the initial p + 1-dimensional space. This will be helpful

in the hierarchical classification afterwards as it will fasten the algorithm by considering only

the neighbouring classes.

One problem arises once we get the clusters and try to fit a regression within each one : are

there enough points in every cluster? No cluster will be allowed to have less points than the

number of lags or regressor variables. To achieve this, either we eliminate from the analysis

those which do not verify this condition, or we force the points to move to a different cluster,

by assigning them to the closest sufficiently large cluster. Since very few observations are

concerned with this problem and in order to shorten the computing time, the first approach

was preferred.

The assumption we make here is that the property of homogeneity of self-organizing maps

manages to create clusters in which observations belong to one regime. This could be justified

by the fact that the variables used for the classification contain information concerning the

regime of the observation and similar profiles will belong to the same cluster. Indeed, in the

simulated examples where the different regimes are known, we will see that the map clusters

are generally homogeneous from this point of view. This property will no longer apply if the

regression hyperplanes are too close and the noise is important.



2.2 Hierarchical classification

As we actually need to compare different data fits, which is also equivalent to different

numbers of hyperplanes, we need to adapt a hierarchical classification to our case (let us first

make the convention to call “clusters” the result of the Kohonen map and “classes” two or

more “clusters” joined together by the hierarchical method). We will choose a new “distance”

between classes by developing a squared-error criterion.

A very popular method used in classification is to minimize a within-class variation criterion,

the variation within a class being defined as the sum of squared distances from the individuals

to the barycentre. In hierarchical classification, this principle was adapted by Ward and the

algorithm consists in joining together the individuals which minimize the increase of the

within-class variation. Our idea was to build an algorithm similar to Ward’s, but, as our

interest is to estimate the number of hyperplanes characterizing the data, we replace the

barycentres by regression lines and the within-class variation becomes the within sum of

squared errors. Obviously, in this case, the between-class variation cannot be defined.

For a fixed number of classes k, the within sum of squared errors is defined as

SSEw,k =
k

∑

l=1

SSECl
,

where SSECl
=

∑

t∈Cl
(yt − ŷt)

2 is the sum of squared residuals and ŷt is the predicted value

of yt by the linear regression of order p fitted in class Cl, l = 1, k. Now, in the frame of

hierarchical classification, when passing from k to k−1 classes, if classes i and j are grouped,

the within sum of squared errors becomes :

SSE
i,j
w,k−1 =

k
∑

l=1,l 6=i,l 6=j

SSECl
+ SSECi∪Cj

Following the same principle as Ward’s, we want to minimize the increase in the within

inertia, which in this case is defined by the within sum of squared errors. This is equivalent

to finding i and j which minimize



∆S
i,j
w,k,k−1 = SSE

i,j
w,k−1 − SSEw,k = SSECi∪Cj

− SSECi
− SSECj

2.2.1 The within sum of squared-error criterion

Now, let us take a closer look at the criterion we have chosen to consider and justify our

choice. Newt, we will see, by giving an explicit expression of it as a function of the data and

the residuals, that the increase in the within variation is close to zero when two classes with

the same underlying model are grouped together and that there is a significant jump when

the opposite situation occurs.

Suppose that the case where classes Ci and Cj are grouped is being investigated and we

wonder if they are from the same ”regime”. We will consider the following notations :

- Yi = {Yt}t∈Ci
∈ R

ni , Yj = {Yt}t∈Cj
∈ R

nj , where ni and nj are the cardinalities of Ci and,

respectively, Cj , are the observed values of the explained variable.

- Xi = {1, Yt−1, ..., Yt−p}t∈Ci
∈ R

ni×(p+1), Xj = {1, Yt−1, ..., Yt−p}t∈Cj
∈ R

nj×(p+1) are the

regressors or the explaining variables.

The linear regressions fitted in classes Ci and Cj can be written as :

Yi = Xi · βi + ui = Xi · β̂i + ei

Yj = Xj · βj + uj = Xj · β̂j + ej ,

where βi, βj , β̂i, β̂j ∈ R
p+1, β̂i and β̂j are the least-square estimates of βi and βj , ui, ei ∈ R

ni

and uj, ej ∈ R
nj are the error and, respectively, the residual vectors, ui ∼ N(0, σ2

i Ini
) and

uj ∼ N(0, σ2
j Inj

). Now, the linear regression fitted in the joint class Ci ∪ Cj is written as :

Y = X · β + u = X · β̂ + e,

where Y =







Yi

Yj






∈ R

ni+nj , X =







Xi

Xj






∈ R

(ni+nj)×(p+1), β, β̂ ∈ R
p+1, β̂ is the least-



square estimate of β, u, e ∈ R
ni+nj are the error and the residuals vector and u ∼ N(0,Ω),

Ω =







σ2
i Ini

0

0 σ2
j Inj






. Then, we can compute ∆S

i,j
w,k,k−1 as :

∆S
i,j
w,k,k−1 = SSECi∪Cj

− SSECi
− SSECj

= eT e −
(

eT
i ei + eT

j ej

)

Remark 1 :

Using this form, Toyoda (1974) proved that ∆S
i,j
w,k,k−1 is approximately distributed as σ2χ2 (p + 1),

where σ2 is any well-chosen weighted average of σ2
i and σ2

j and p is the number of lags con-

sidered.

∆S
i,j
w,k,k−1 = SSECi∪Cj

−SSECi
−SSECj

=
∥

∥

∥
Y − X · β̂

∥

∥

∥

2
−

∥

∥

∥
Yi − Xi · β̂i

∥

∥

∥

2
−

∥

∥

∥
Yj − Xj · β̂j

∥

∥

∥

2
(1)

But

Y − X · β̂ =







Yi − Xi · β̂

Yj − Xj · β̂






=







Yi − Xi · β̂i

Yj − Xj · β̂j






+







Xi · β̂i − Xi · β̂

Xj · β̂j − Xj · β̂






(2)

and thus

∥

∥

∥
Y − X · β̂

∥

∥

∥

2
=

∥

∥

∥

∥

∥

∥

∥

Yi − Xi · β̂

Yj − Xj · β̂

∥

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥

Yi − Xi · β̂i

Yj − Xj · β̂j

∥

∥

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

∥

∥

Xi · β̂i − Xi · β̂

Xj · β̂j − Xj · β̂

∥

∥

∥

∥

∥

∥

∥

2

since it can easily be seen that the cross-product on the right term in (2) is zero, we get :

∥

∥

∥
Y − X · β̂

∥

∥

∥

2
=

∥

∥

∥
Yi − Xi · β̂i

∥

∥

∥

2
+

∥

∥

∥
Yj − Xj · β̂j

∥

∥

∥

2
+

∥

∥

∥
Xi · β̂i − Xi · β̂

∥

∥

∥

2
+

∥

∥

∥
Xj · β̂j − Xj · β̂

∥

∥

∥

2
(3)

and by replacing (3) in (1) :

∆S
i,j
w,k,k−1 =

∥

∥

∥Xi · β̂i − Xi · β̂
∥

∥

∥

2
+

∥

∥

∥Xj · β̂j − Xj · β̂
∥

∥

∥

2
=



= (β̂i − β̂)T XT
i Xi(β̂i − β̂) + (β̂j − β̂)T XT

j Xj(β̂j − β̂) (4)

Using the form of the least-square estimators β̂i, β̂j and β̂

β̂i − β̂ = βi − β +
{[

(

XT
i Xi

)−1
XT

i , 0
]

−
(

XT
i Xi + XT

j Xj

)−1 [

XT
i , XT

j

]

}

·







ei

ej







β̂j − β̂ = βj − β +
{[

0,
(

XT
j Xj

)−1
XT

j

]

−
(

XT
i Xi + XT

j Xj

)−1 [

XT
i , XT

j

]

}

·







ei

ej







and (4) becomes

∆S
i,j
w,k,k−1 = (βi − β)T XT

i Xi(βi − β) + (βj − β)T XT
j Xj(βj − β)+

+(βi − β)T
{

XT
i ei − XT

i Xi

(

XT
i Xi + XT

j Xj

)−1 (

XT
i ei + XT

j ej

)

}

+

+
{

eT
i Xi −

(

eT
i Xi + eT

j Xj

) (

XT
i Xi + XT

j Xj

)−1
XT

i Xi

}

(βi − β)+

+(βj − β)T
{

XT
j ej − XT

j Xj

(

XT
i Xi + XT

j Xj

)−1 (

XT
i ei + XT

j ej

)

}

+

+
{

eT
j Xj −

(

eT
i Xi + eT

j Xj

) (

XT
i Xi + XT

j Xj

)−1
XT

j Xj

}

(βj − β)+

+eT
i Xi

(

XT
i Xi

)−1
XT

i ei + eT
j Xj

(

XT
j Xj

)−1
XT

j ej−



−
(

eT
i Xi + eT

j Xj

) (

XT
i Xi + XT

j Xj

)−1 (

XT
i ei + XT

j ej

)

If classes i and j come from the same regime, that is βi = βj = β, the increase in the within

sum of squared errors is only

∆S
i,j
w,k,k−1 = eT

i Xi

(

XT
i Xi

)−1
XT

i ei + eT
j Xj

(

XT
j Xj

)−1
XT

j ej−

−
(

eT
i Xi + eT

j Xj

) (

XT
i Xi + XT

j Xj

)−1 (

XT
i ei + XT

j ej

)

This quantity is very close to zero if the classes contain enough points. Thus, together with

Remark 1, we obtain that if the joint classes are from the same regime, the within sum of

squared errors should be close to zero and if the classes are from different regimes, the larger

the difference between the parameters of the two regimes, the larger the increase in the within

sum of squared errors should be.

2.3 The algorithm

Now, we can write the steps of the algorithm which, at the same time, classifies the data and

models the dependencies within each class.

Step 1 : Decide upon the explanatory variables and choose the time lag p using some infor-

mation criterion

Step 2 : Build the data set to be used in the analysis by a sliding window of size p

Step 3 : Choose a lattice form for the Kohonen map - we have restricted ourselves to the

rectangular grid case - and a convenient dimension and perform the self-organizing map

algorithm. As we have mentioned earlier, the dimension of the map should be chosen

as a compromise between the size of the sample and the number of regressors, that is to



say one should have enough points in a cluster to estimate the regression hyperplane,

but not too many, in order to avoid mixing regimes in one cluster. Of course, there is no

theoretical answer to this problem and avoiding mixing becomes impossible when the

regression hyperplanes are very close, but that leads to another interesting question:

when they are close, does it make sense in practice to consider that the underlying

model has two regimes? As a practical rule, the maps used in this paper were squared

rectangles with M 2 neurons such that, in average, each cluster contain about five times

more observations than the number of explanatory variables.

Step 4 : Classify hierarchically the resulting M 2 clusters

For k going from M 2 to 2 :

Step 4.1 Compute the k regression hyperplanes within each class

Step 4.2 Find (i0, j0) which minimize ∆S
i,j
w,k,k−1

Step 4.3 Join together classes i0 and j0, put k = k − 1 and go to step 4.1.

At the last step all points are joined together and there is a single regression line. The next

thing to do is draw the dendrogram and look how the within sum of squared errors increases

over the classification. As mentioned earlier, one might expect an important break when the

number of classes is smaller than the real number of regimes.

3 Examples and Results

The method was tested on several nonlinear autoregressive regime-switching models. Histor-

ically, the first introduced were the threshold models (we will not speak here about the other

variants of these models, smoothed, etc.), followed by the Markov switching and next we will

consider both examples. Concerning the software for the self-organizing maps we have used

the tools developed at the SAMOS laboratory by P. Letremy(2000) in SAS language, while

the hierarchical classification was written in R.



3.1 TAR Models

The example is a TAR of order two and the coefficients were taken from the paper of Gonzalo

& Pitarkis(2002).

yt =











−3 + 0.5yt−1 − 0.9yt−2 + εt

2 + 0.3yt−1 + 0.2yt−2 + εt

, yt−2 ≤ 1.5

, yt−2 > 1.5
,

where {yt} is the observed series and εt are i.i.d.-standard gaussian.

Three samples containing 200, 400 and 800 points, respectively, were simulated. Let us

examine the 200-point sample. The dimension of the self-organizing map was fixed equal to

5x5 and {yt, yt−1, yt−2} were the variables used for clustering. The results are displayed in

Figure 2. The left part of the graphic contains the individuals, as clustered by the algorithm

on the grid. We have chosen to show the corresponding curves for each data point in the

sample - namely {yt, yt−1, yt−2}- as a confirmation for the use of self-organizing maps : the

clusters are homogeneous, similar profiles are joined together on the map and, moreover, due

to the topology preservation, neighbouring clusters contain data with similar curves which

are thus supposed to belong to the same underlying model.

On the right part, crossing the map with a boolean variable which distinguishes whether yt−2

is above or below the threshold value and representing the pie charts in each cluster allows

to see that all the points from one cluster belong to the same regime and that there is no

crossing between regimes on the map, they are well separated topographically.

Then, when the hierarchical clustering algorithm is run on the twenty-five clusters, the

squared-error criterion increases as in Figure 3 and suggests that a good choice would be

a two-regime model. The hierarchical classification also provides good estimates for the

parameters of the model when choosing two regimes as shown in Table 1.

The threshold value was not estimated and we will see that the decision on the type of the

model (TAR, Markov switching) cannot be made on this basis only. For the 400 and the 800

samples, the results were very similar and in both cases the hierarchical algorithm suggested

a two-regime model.



Figure 2: Initial clustering with a Kohonen map for TAR model
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Figure 3: Squared-error criterion for TAR model

3.2 A Two-Regime Markov Switching Model

For this example, let us first define a two-regime autoregressive Markov-switching process

of order p. If {yt}t∈N
is the observed time series, there also exits a two-state Markov chain

{xt}t∈N
with transition probability matrix A =







p 1 − p

1 − q q






which controls the evolu-

tion in time of yt as follows :

- If xt is in the first state, yt can be modelled by a regression function f1 (yt−1, ..., yt−p)



Regime 1 Regime 2

Intercept yt−1 yt−2 Intercept yt−1 yt−2

value -2.82 0.59 -0.89 1.4 0.37 0.32

t-value -19.15 13.09 15.89 8.24 5.96 4.79

Table 1: Coefficients for the TAR model

and an independent gaussian noise of variance σ1

- If xt is in the second state, yt can be modelled by a regression function f2 (yt−1, ..., yt−p)

and an independent gaussian noise of variance σ2

In one line, this can be written as :

yt = fxt (yt−1, ..., yt−p) + σxtεt

The data used here were simulated with the parameters below (a globally stationary process

was chosen):











f1 (yt−1, yt−2) = 0.2 + 0.5yt−1 + 0.1yt−2

f2 (yt−1, yt−2) = 0.3 + 0.9yt−1 − 0.1yt−2

,











σ1 = 0.03

σ2 = 0.02
and A =







0.9 0.1

0.2 0.8







As in the previous example, three samples of 200, 400 and 800 points were considered. We

will only list the results for the 400 sample and remark that the outputs for the other two

cases were very similar. The initial clustering was performed using a 6x6 Kohonen map and

{yt, yt−1, yt−2} as variables. Figure 4 shows that the map is well-organized, the clusters are

homogeneous and when crossing with the variable giving the regime, there is a good separation

in the initial clusters, although there are some small overlappings of the two regimes in four

of them. Then, from the hierarchical classification of these clusters, again we get a huge

jump when passing from two classes to one, as shown in Figure 5. The estimated coefficients

in each of the two classes are shown in Table 2 (we will also note that the two classes are

homogeneous, the percentage of explained variance being larger than 92% in each of them).



Figure 4: Initial clustering with a Kohonen map for two-regime Markov
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Figure 5: Squared-error criterion for two-regime Markov

Regime 1 Regime 2

Intercept yt−1 yt−2 Intercept yt−1 yt−2

value 0.3 0.88 -0.09 0.18 0.39 0.24

t-value 41.56 32.89 -3.64 20.91 12.07 8.87

Table 2: Coefficients for the two-regime Markov model

3.3 A Three-Regime Markov Switching Model

Now let us see what happens if we add a new regime to the model, which will moreover

be explosive and drive the process into a nonstationary one. The following example was



considered :

yt = fxt (yt−1, yt−2) + σxtεt , fxt (yt−1, yt−2) ∈ {f1, f2, f3}, σxt ∈ {σ1, σ2, σ3}, εt is i.i.d.

standard gaussian and






















f1 (yt−1, yt−2) = 0.2 + 0.5yt−1 + 0.1yt−2

f2 (yt−1, yt−2) = 0.3 + 0.9yt−1 − 0.1yt−2

f3 (yt−1, yt−2) = 0.5 + 1.2yt−1 + 0.5yt−2

,























σ1 = 0.03

σ2 = 0.02

σ1 = 0.03

and A =













0.8 0.1 0.1

0.1 0.8 0.1

0.6 0.2 0.2













The following results are from a 400-point sample, with an initial 8x8 map. By crossing the

map with the regime variable, there is a relatively good separation, although we can notice

that the first two regimes seem to come closer together compared to the third one.

Figure 6: Initial clustering with a Kohonen map

Here, a first conclusion would be that there are four regimes. But let us take a closer look

at the hierarchical classification. One of the four final classes contains only one cluster, one

cell of the map. Moreover, this cell (bottom-left) is isolated from the rest of the map and

it contains only four observations with very high values. If we project the data on a two or

three-dimensional space, the same four observations are far from the rest. The algorithm has

identified a small class of outliers which are considered as a separate regime and from this

point of view the method is close to Ward’s which is also sensitive to this kind of observations.

We cannot continue with the examples without making an important remark. We have

seen that this method of identifying the number of regression lines works quite good in the

examples above. Concerning the parameter estimation and the choice of the model (TAR or
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Figure 7: Squared-error criterion for three-regimes Markov

Markov switching?, for instance), the hierarchical classification only provides the estimates for

the regression lines, a likelihood approach should be used instead, once we fixed the number

of regimes, to estimate the rest of the parameters : threshold value, transition matrix etc.

As for the second question, no theoretical result is available yet, econometricians preferring

to rely on other criteria (economic, social etc).

3.4 What about Real Life Data?

The results of the simulated examples being encouraging, we decided to run the algorithm

on real data sets. Three examples were chosen, the first two are the benchmarks Old Faithful

Geyser Data and Santa Fe Competition Laser Data, and the third is the U.S. GNP (Gross

National Product) series, used by Hamilton to introduce the switching Markov models.

3.4.1 Old Faithful Data

The first set of data is the classical Old Faithful Geyser in Yellowstone National Park, con-

sisting of 299 pairs of measurements referring to the waiting time between two successive

eruptions, wt, and the duration of the subsequent eruption, dt. The data were collected

between August 1st and August 15th, 1985 and the two variables are recorded in minutes.



Several studies of this sample are available, most authors trying to assess either the clustering

of the data, either the dependency between successive events. A literature overview, as well

as an analysis using time series while “a priori” assuming the existence of two patterns of

dependency, can be found in Azzalini and Bowman (1990) paper. Although there are no

autoregressors in this case, the problem is the same : finding the number of clusters and

fitting a regression within each one.

Our approach would be to detect the clustering of the data and, at the same time, model

the dependency within each class. The idea of addressing clustering and dependency at the

same time was also used by Hennig (2000) with regression fixed point clusters. Here, the

duration of the eruption was modelled as a linear function of the waiting time before the

eruption. When plotting the duration against the waiting time, one can see that there are at

least two classes of points, depending on the waiting time. Let us make one last remark on

the data, which is that, due to inexact observations during the night, there are 53 points with

duration=4 (long eruption) and 20 with duration=2 (short eruption). The medium eruptions

(duration=3) appear only once.

For the Kohonen clustering the data set {wt, dt}t=1,299 was considered (no time lags were

introduced). The map was chosen to be a 6x6 grid and 1000 iterations were performed.

Afterwards, a hierarchical classification minimizing the within sum of squared-error criterion

was applied to the 33 “valid” clusters (one cluster was void and two others contained only

one point).

In Figure 8, the within sum of squared errors as well as the difference ∆SSEk,k−1 are plotted.

The heterogeneity of the data is obvious and one can see that at least two classes should be

considered. On the contrary, passing from three classes to two is less obvious and we shall

see next that there is overlapping of the classes and that the regression coefficients are very

close.

Once we get the hierarchical classification, we go back to the self-organizing map to see how

the classes spread over the grid. On the first graph in Figure 9, the tree-cut at two classes

is presented : the first class in the right upper corner in light-grey circles and the second
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Figure 8: Squared-error criterion for the Old Faithful Data

beyond the diagonal of the grid in dark-grey circles. Clusters 7 and 28 do not contain enough

points and were not considered in the classification.

Figure 9: The self-organizing map for the Old Faithful Data

While the 2-classe model is meaningful, in the 3-classe case things seem to be more com-

plicated : the first class is the same, well-isolated in the right upper part of the grid, while

classes 2 and 3 are mixed on the grid. This is even more obvious if we plot the duration dt

against the waiting time wt and identify the classes as shown in Figure 10.

The same situation as in the Kohonen map occurs. In both cases, 2-classe and 3-classe model,

a first class (the right upper part of the self-organizing map) is well-isolated from the rest and

is concentrated around the duration=2 points. This class corresponds to short-time eruptions

preceded by rather long waiting times. The second class on the first graph contains all the
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Figure 10: 2-classe and 3-classe of the Old Faithful Data

long-duration points including all duration=4 points. This class is splitted into two when

considering the 3-classe case : one sub-class is formed by the duration=4 points and the long

time eruptions preceded by long waiting times, while the second contains the data with a

moderately decreasing tendency in the duration for increasing waiting times.

Although there is an interpretation for the 3-classe model, the within squared-error criterion

used for the classification suggests a 2-classe model, because it corresponds to an important

break in the increase of the squared error. Besides, in the discussion of Azzalini and Bowman

(1990) geological evidence for the existence of two distinct patterns of eruptions is given and

thus our conclusion is enhanced.

3.4.2 Santa Fe Competition Laser Series

For the laser series, a highly nonlinear data set, the algorithm selects three classes as shown in

Figure 11. In order to compare the results with the existing literature, ten time lags were used.

The 10,000 observations were initially clustered on a 9x9 map. Once the number of regimes

was fixed, the three regimes were supposed to be the states of a discrete Markov chain and

the parameters were estimated using the EM algorithm as described in Rynkiewicz (1999).

The prediction results are weaker than those obtained by Weigend (1995) or Rynkiewicz

(1999), but the number of estimated parameters is much smaller. But, as the nonlinearities

of the series are not entirely explained by a mixture of linear regressions, an adaptation of

the method by replacing the linear functions with nonlinear ones could be more interesting



for this kind of data.
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Figure 11: Squared-error criterion for the laser series

3.4.3 GNP Series

Concerning the GNP series, Hamilton’s approach was based on the assumption that the mean

growth rate is subject to occasional, discrete shifts. We have 136 trimestrial observed values

of the series at our disposal, from 1952 until 1984. The maximal lag to be considered was

determined with the AIC criterion and was fixed at 3. The data was initially clustered with a

4x4 map and considering {yt, yt−1, yt−2, yt−3} as variables. The sixteen clusters were grouped

hierarchically by the squared-error criterion and the results are displayed in Figure 12.

The first graph contains the within sum of squared errors plotted against the number of classes

and the second its percentage increase. A first break appears when considering six classes

instead of seven, but this can be interpreted as being due to possible strongly homogeneous

clusters from the same regime which get mixed. There is a second break (13%) when passing

from two classes to one but this is less obvious than in previous cases and the decision to

model this series by a two-regime model is questionable from our point of view.
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Figure 12: Squared-error criterion for GNP data

4 Conclusion and Future Work

We have introduced a descriptive method to assess the presence of regime changes in nonlinear

time series analysis. As there is no theoretical answer and no statistical test to solve this

problem for the moment, this method may be used, but with precaution. Indeed, self-

organizing maps could mix the regimes if the regression hyperplanes are too close and the

squared-error criterion seems to be sensitive to outliers.

Thus, several improvements should be made in the future, such as considering a different
distance that would take into account the temporal dependency of the data for the initial
clustering or looking for a smarter initial clustering that would avoid mixing regimes in the
same cluster. Replacing the linear regressors by nonlinear functions could also be a possibility,
but then the number of parameters would become larger and the liability of the estimates
would decrease.
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