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Abstract

In order to interpret and explain the physiological signal behaviors, it can be inter-
esting to find some constants among the fluctuations of these data during all the
effort or during different stages of the race. These different stages can be detected
using a change points detection method. Then, the Hurst parameter of long-range
dependence could be a new way for deducing some explanations. Several common
estimators of this parameter, so-called scaling behavior exponents, consist in per-
forming a linear regression fit of a scale-dependent quantity versus the scale in a log-
arithmic representation. This includes the Detrended Fluctuation Analysis (DFA)
method and wavelet analysis method. This second method provides more robust
results and can be applied to more general models. Then, it permits us the con-
struction of the semi-parametric process which could be more relevant than other
for modelling HR data. It also shows an evolution of the Hurst parameter during
the race, what confirms results obtained by Peng et al. in their study concerning
recorded HR time series during the exercise for healthy adults (where the estimated
parameter is close to that observed in the race beginning) and heart failure adults
(where the estimated parameter is close to that observed in the end of race). So,
this evolution, which can not be observed with DFA method, may be associated
with fatigue appearing during the last phase of the marathon.
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1 Introduction

Fifty athletes were followed during a marathon (Paris Marathon 2004) and
for each one, various physiological parameters are measured. Each heart rates
(HR) signal, recorded instantaneously on cardio-frequency meter (CEM), cor-
responds to an endurance type effort observed on a course of 42km realized,
on average, in 3h14mn. For each runner, the periods (in ms) between the suc-
cessive pulsations (see Fig. 1) are recorded. The HR signal in number of beats
per minute (bpm) is then deduced (the HR average for the whole sample is of
162 bpm).
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Fig. 1. Heat rate signals of Athlete 1 in ms, Hertz and BPM (up), of Athletes 2, 3
and 4 in BPM (down)

During effort, one or more phases can be observed, which evolve and change
differently from an athlete to another. Moreover, data depend in particular on
the installation of the CFM. So, as a first step of this study, a pretreatment of
these data is proposed for ”cleaning” them of outliers and detecting different
significative stages during the race. In Section 3, two methods are presented for
estimating the regularity parameter : the DFA method and wavelet analysis
which is developed for a more general models. The last of section is devoted
to applications of both methods to generated data and HR data.

2 Data processing

2.1 Abrupt change detection

HR data of each athlete may show various modes: before the race beginning,
during a transition step (recorded between the race beginning and the stage of
HR reached during the effort), the main stage during the exercise, an arrival
phase until the race end and sometimes a recovery phase. For distinguish-
ing these different steps, a method of change points detection developed by



Lavielle (see for instance [20]) is adapted and applied.

To begin with, a first treatment consists in detecting the beginning and the
end of the race. The main idea is to consider that the signal distribution de-
pends on a vector of unknown characteristic parameters in each stage. The
different stages (before, during and after the race) and therefore the different
vectors of parameters, change at two unknown instants (here the number of
change points is known, but the method can be also used even if its number is
unknown by adding a penalization term, see above). For instance and it will
be our choice, changes in mean and variance can be detected.

General principle of the method of change detection

Assume that a sample of a time series (Y (i),i = 1,...,n) is observed. Assume
also that it exists 7 = (7,72, ...,7Tk—1) With 0 =T <7y < 7o < ... < Tg_1 <
n = 7k and such that for each j € {1,2,..., K}, the distribution law of Y (4)
is depending on a parameter ; € © C R? (with d € N) for all 7, <i < 7.
Therefore, K is the number of segments to be deduced starting from the series
and 7 = (71,7, ..., Tk_1) is the ordered change instants.

Now, define a contrast function
Up(Y (75 +1),Y (1 +2),..., Y (551)),

of # € R? applied on each vector (Y(Tj +1),Y(r; +2),... ,Y(Tj+1)) for all
j€{0,2,..., K —1}. A general example of such a contrast function is

Up (Y (rj41), Y (1j42), ..., Y (1341)) = —2log Ly (Y (7;+1), Y (;+2), ..., Y (1311)),
where Ly is the likelihood. Then, for all j € {0,2,..., K — 1}, define:

f. = Argmin Uy (Y7 +1),Y(542),....Y(71))

Now, set:

~

K—1
G(m, ..., Tk—1) = Y U@ (Y(Tj +1),Y(r;+2),... ,Y(Tj+1))
=0

As a consequence, an estimator (7, ...,7x_1) can be defined as:

Py, To1) = Argmi (T, Tr-1). 1
Fooo i) = Argmin | G- 7im) M

The principle of such method of estimation is very general (it can be also de-
voted to estimate abrupt change in polynomial trends) and different asymp-
totic behavior of the estimator (71,...,7x_1) can be deduced under general



assumption on the time series Y (see for instance Bai Perron, Lavielle Moulines
and Lavielle).

For HR data, it is obvious that the beginning and the end of the race implies
respectively an increasing (respectively decreasing) of the mean of HR. How-
ever, for avoiding all confusion linked for instance to the stress of the runner or
other harmful noises, it was chosen to detect a change in mean and variance.

Change detection in mean and variance
Therefore, for all j € {0,1,..., K — 1}, consider the following general model:
Y (i) =pj+oje; forallie{r,+1,..., 751},

where 0; = (mj,0;) € R x (0,00) and (g;) is a sequence of zero-mean random
variables with unit variance.
In the case of changes in both mean and variance, and it is such a framework
we consider for the heart rates series, a "natural” contrast function is defined
by:
Tit1 2
U, (Y(r; +1),....Y (121)) = 3 w

l=7;+1 0-.7

an therefore the well-known estimator of 60, is:

-~

0; = (mj,0;) = ( Tjil Y T]il (Y (o) )2>

Ti+1 = 75 4=r;+1 TJ+1 75 t=r;+1

Now, the estimator (73, ...,7x_1) can be deduced from (1).
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Fig. 2. Detection of the race beginning and end from HR data (in BPM)

This method was applied to the different HR data for detecting the beginning
and the end of the race. For avoiding the possibility of estimate an abrupt
change during the race (explained for instance by a stop for drinking and



eating), both 77 (instant of the beginning) and 7, were assumed to satisfied
71 < 1500 and n — 75 < 1500, nearly corresponding to less than 10mn after
the beginning of data record and before the end of data record. The Fig. 2
exhibits an example of an application of the method to HR data.

The final race time of each athlete (that is known) can be compared to the
aggregation of beats periods between 7; and 7,. For all athletes, the differ-
ence between those two ways of measuring the same time is very often smaller
than 1mn. However, for several athletes, an important difference appears cor-
responding to truncated HR series or athlete forgetting to start their ECF at
time.

2.2 Data smoothing

After this first step of detection of race beginning and end, a correction of
aberrant data (due very often to a temporal bad contact between the athlete
skin and the ECF) was needed. During exercise, the variation between two
successive beats should not exceed £10% (see for instance ([5], [26])). This
can be also justified by observing the empirical distribution of HR data (see
histograms in Fig. 3). Thus, for such an histogram, its form should not be
spread out on both sides of £10%. The detection of aberrant data consists to
observe the increments series (C'())1<;<, of the signal (Y (7))i<i<, as well as
the decrements series (C'(7))1<ij<pn, with:

Y(i+1) - Y(i)
Y (i) ’

Y(i—1)—Y(i)
Y@)

C(i) = C'(i) =
and to find the observation of which the relative increments exceed +£10%. For
example (see Fig. 3) for a HR series of 26380 observations, it was found 32

observations which have to be corrected (186 was found for another HR series
with 27077 observations).
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Fig. 3. Plot of the increments of observed HR series for Athl (top) and Ath2 (bot-
tom)



For ”cleaning” HR data, abnormal observations have to be replaced by suitable
others. For determining these new values, various procedures were applied.
First, an exponential smoothing is applied. It consists in replacing an abnormal
observation by a linear combination of all the past observations affected by
decreasing weights. However, this method is not able to correct every abnormal
observation and there remain always some increments of frequencies which
exceed £10% (see Fig. 4).
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Fig. 4. (a) Increments in HR time series after exponential smoothing (b) Incre-
ments in HR time series after Kalman smoothing (c) Histogram of increments after
processing

For improving these results, a recursive method was considered: the Kalman
smoothing (see for instance [22]). It is a problem of smoothing on a fixed time
interval where one seeks to calculate the optimal approximation of a series
value knowing the observations in the selected interval. This problem like the
filtering and forecast ones is solved recursively [19].

Contrary to a simple exponential smoothing, the Kalman smoothing, applied
in this example on an interval of 260 observations, presents a clear improve-
ment of the results. Often, only one iteration of the Kalman smoothing was
needed to correct the whole signal (in the sense that increments do not exceed
+10%). In the other cases, the procedure is repeated for different selected
intervals. For example (see Fig. 4), one iteration was needed to correct 31
observations and a second one for the remaining observation. In a second HR
series, after the first iteration, there remain 10 observations to be corrected
and it was done after 6 other iterations.

Detection of the different stages of a race

It is also interesting to distinguish the different stages during the race in
order to unveil if a change of behavior was happened. These stages can be
detected using the previous method of change points detection (see Fig. 5). The
procedure is exactly the same except that the number of changes is unknown
and can be also estimated. Thus, a new contrast V' is built by adding to the



previous contrast U an increasing function depending on the change number
K, i.e. more precisely,

~

Vim,...,7x-1, K) = @(7’1, oo TK-1) + 0 X pen(K),

with 8 > 0. As a consequence, by minimizing V' in 71, ..., 7x—1, K, an estima-
tor K is obtained which varies with the penalization parameter (.

For HR data, the choice of pen(K) was K. Let Gx = G(7,...,7x_1), for
K =K,,...,Kyax we define

Gk, — G,
ﬁ and l; = 3; — Biy1 with i > 1.

Bi =
Then the retained K is the greatest value of K; such that {; >> [; for j > i.
Applied to the whole set HR data, the number of abrupt changes is estimated
at 4 or 3. Three phases were selected to be studied, which are located in
the beginning of the race, in the middle and in the end. However for certain
recorded signals the first or the last phase can not be distinguished probably
for measurements reasons.

Fig. 5. The estimated configuration of changes in a HR time series of an athlete

3 HR data modelling with a long range dependent process and
estimation of the Hurst parameter

In this section, a first model is proposed for modelling HR data. After a statis-
tic study showing a badness-of-fit of this model to the data, a more suitable
model is defined. Then, using a wavelet based procedure, some physiologic
conclusions can be obtained from HR data.



3.1 A first model: the fractional Gaussian noise

When we observe entire or partial (during the three phases) HR time series,
we remark that it exhibits a certain persistence and the related correlations
decays very slowly with time what characterizes trajectories of a long memory
Gaussian noise. Moreover, the aggregated signals (see for example Fig. 9)
present a certain regularity very close to that of fractional Brownian motion
simulated trajectories with a parameter close to 1 (Fig. 7). So, one first model
which could correspond to our data is the fractional Gaussian noise.

The following Figure 6 presents a comparison between the graphs of HR data
during a stage (detected previously) and a fractional Gaussian noise (FGN in
the sequel) with parameter H = 0.99 (see the definition above). Before using
statistical tools for testing the similarities of both these graphs, let us remind
some elements concerning the FGN.
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Fig. 6. Comparison of HR data in the middle of race (Ath4) and generated
FGN(H=0.99) trajectories

The FGN is one of the most famous example of stationary long range de-
pendent (LRD in the sequel) process. The LRD phenomenon was observed in
many fields including telecommunication, hydrology, biomechanic, economy...
A stationary second order process Y = {Y'(k), k € IN} is said to be a LRD
process if:

> Iry (k)| = 00 with ry(k) = E[Y(0)Y (k)].

kEN
Thus Y (k) is depending on Y'(0) even if k is a very large lag. Another way for
writing the LRD property is the following:

ry (k) ~ K*P72L(k) | as k — oo,

with L(k) a slowly varying function (i.e. Vt > 0, L(xt)/L(x) — 1 when = —
00) and the Hurst parameter H € (3,1).

The LRD is closely related to the self-similarity concept. A process X =
{X(t),t > 0} is so called a self-similar process with self-similarity exponent



H, if Ve > 0:

(X(ct))t £ CH<X(t))t.
Now, if we consider the aggregated process {X (), t > 0} defined by X (k) =
S V(i) with Y a LRD process, then under weak conditions (for instance Y’
is a Gaussian or a causal process), it can be proved that, roughly speaking,
for k — oo, the law of {X(t),t > k} is a self-similar law (see Doukhan et al.,
2003, for more details).
The FGN is an example of a LRD Gaussian process. More precisely, Y =
{YH(k), k € N} is a FGN,

2
ryn (k) = %(vg F 1P ok 4 |k — 1) Vk € N,

with H € (0,1) and o > 0 (it can be proved that such a Gaussian time series
exists, i.e. all covariance matrix of any vector is a Toeplitz positive definite
matrix, see for instance more details in Samorodnitsky and Taqqu, 1994). As
a consequence, for H € (%, 1), a usual Taylor formula implies

ryn(k) ~o?H(2H — 1)k**~? | when k — oo.

For a zero-mean FGN, the corresponding aggregated process, denoted here
X is so-called the fractional Brownian motion (FBM) and X* is a self-
similar Gaussian process with self-similar parameter H and therefore satisfies,

Var(X#(k)) = o?|k[* Yk e N

(it can be even proved that X# is the only Gaussian self-similar process with
stationary increments). It is obvious that Y# (k) = X# (k) — X (k — 1), the
sequence of the increments of a FBM, is a FGN.
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Fig. 7. Generated FGN trajectories and corresponding aggregated series (FBM)
for H = 0.2 < 0.5 anti-persistant noise (left), H = 0.5 white noise (center) and
H = 0.8 > 0.5 LRD process (right)

Several generated trajectories of FGN and corresponding FBM are presented
in Fig. 7 for different values of H.



For testing if a HR path can be suitably model by a FGN, a first step consists
in estimating H. Here we chose to use two estimators (but there exist many
else, see for instance Doukhan et al., 2003) that are known to be unchanged
to the presence of a possible trend.

3.2 Two estimators of the Hurst parameter: DFA and wavelet based estima-
tors

For estimating H, a frequently used method in the case of physiological data
processing is the Detrended Fluctuation Analysis (DFA). The DFA method
was introduced by Peng et al. [23]. The DFA method is a version for trended
time series of the method of aggregated variance used for long-memory sta-
tionary process. It consists briefly on:

(1) Aggregated the process and divided it into windows with fixed length,

(2) Detrended the process from a linear regression in each windows,

(3) Computed the standard deviation of the residual errors (the DFA func-
tion) for all data,

(4) Estimated the coefficient of the power law from a log-log regression of
the DFA function on the length of the chosen window (see Fig. 8).

After the first stage, the process is supposed to behave like a self-similar pro-
cess with stationary increments added with a trend (see previously). The sec-
ond stage is supposed to remove the trend. Finally, the third and fourth stages
are the same than those of the aggregated method (for zero-mean stationary
process). An example of the DFA method applied to a path of a FGN with
different values of H is shown in Fig. 8.

*
o~ ° . %
o ol P N |
* *
o R *&
%, He
o ™ e ,
*:* *,

log10(F(ni))

o
9]
log. of IN
s A
FF
o~
H
**é j

*ﬁk&*
LY b
-8 % K,
e
-10 43% *:6
e e

I . . I . I .
1.5 2 2.5 3 3.5 -3 -2 -1 o 1 2
log10(ni) log. of chosen frequencies (Hz)

Fig. 8. Results of the DFA method and wavelet analysis applied to a path of a
discretized FGN for different values of H = 0.2, 0.4, 0.5, 0.7, 0.8, with N = 10000
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In [10], the asymptotic properties of the DFA function in case of a FGN path
(Y(1),...,Y(N)) are studied. In such a case the estimator Hppa converges
to H with a non-optimal convergence rate (N'/3 instead of N'/? reached for
instance by maximum likelihood estimator). An extension of these results for
a general class of stationary Gaussian LRD processes is also established. In
this semi-parametric frame, we showed that the estimator Hpr4 converges to
H with an optimal convergence rate (following the minimax criteria) when an
optimal length of windows is known.

The processing of experimental data, and in particular physiological data,
exhibits a major problem that is the non-stationarity of the signal. Hu, Chen,
Ivanov and stanley (2001) have studied different types of non-stationarity as-
sociated with examples of trends and deduced their effect on an added noise
and the kind of competition who exists between this two signals. They have
also explained (2002) the effects of three other types of non-stationarity, which
are often encountered in real data. In [10], we proved that H pra does not con-
verge to H when a polynomial trend (with degree greater or equal to 1) or
a piecewise constant trend is added to a LRD process: the DFA method is
clearly a non robust estimation of the Hurst parameter in case of trend.

For improving this estimation at least for polynomial trended LRD process, a
wavelet based estimator is now considered. This method has been introduced
by Flandrin (1992) and was developed by Abry et al. (2002) and Bardet et
al. (2000). In Wesfreid et al. (2005), a multifractal analysis of HR time series
is presented for trying to unveil their scaling law behavior using the Wavelet
Transform Modulus Maxima (WTMM) method.

Let ¢ : R — R a function so-called the mother wavelet. Let (a,b) € R} x R
and denote A = (a,b). Then define the family of functions ¢ by

wnit) = Z=v (£ -b)

Parameters a and b are so-called the scale and the shift of the wavelet trans-
form. Let us underline that we consider a continuous wavelet transform. Let
dz(a,b) be the wavelet coefficient of the process Z = {Z(t), t € R} for the
scale a and the shift b, with

dy(a,b) = \;a /}R¢(Z — D) Z(H)dt =< ¥r, Z >paw) -

For a time series instead of a continuous time process, a Riemann sum can
replace the previous integral for providing a discretized wavelet coefficient
ez(a,b). The function 1) is supposed to be a function such that it exists M € IN*
satisfying ,

11



/Rt%(t)dt —0 forallm e {0,1,..., M)}. 2)

Therefore, v has its M first vanishing moments. Note that it is not necessary
to choose Y to be a "mother” wavelet associated to a multiresolution anal-
ysis of L?(R). The whole theory can be developed without resorting to this
assumption. The choice of ¢ is then very large.

The wavelet based method can be applied to LRD or self-similar processes
for respectively estimating the Hurst or the self-similarity parameter. This
method is based on the following properties: for Z a stationary LRD process or
a self-similar process having stationary increments, for all @ > 0, (dz(a,b))per
is a zero-mean stationary process and

e If 7 is a stationary LRD process,
E(d%(a,b)) = Var(dz(a,b)) ~ C(1, H)a*'~* when a — oo
e If 7 is a self-similar process having stationary increments,
E(d%(a,b)) = Var(dz(a,b)) ~ K(¢, H)a** for all a > 0

with C(¢, H) and K (v, H) two positive constants depending only on 1) and H
(those results are proved in Flandrin, 1992, and Abry et al., 1998). Therefore,
in both these cases, the variance of wavelet coefficients is a power law of a, and
a log-log regression provides an estimator of H. From a path (Z(1),..., Z(N)),
the estimator will be deduced from the log-log regression of the "natural”
sample variance of discretized wavelet coefficients, i.e.,

L
Sy(a) = m Z:ZI ey (a,i). (3)

A graph (log a;, log Sn(a;))1<i<e is drawn from a priori family of scales and the
slope of the least square regression line provides the estimator ﬁW Ay of H.
For a FGN (respectively a FBM), Bardet et al. (2000) (respectively Bardet,
2002) proved that the Hy av converges to H with a non-optimal convergence
rate (N'/3 instead of N'/2 reached for instance by maximum likelihood esti-
mator). In the semi-parametric frame of a general class of stationary Gaussian
LRD processes, it was established by Moulines et al. (2006) that the estimator
Hy av converges to H with an optimal convergence rate (following the min-
imax criteria) when an optimal length of windows is known. The theoretical
asymptotic behavior of H pra and H wav are thus comparable for a Gaussian
LRD process.

This is not true any more when a polynomial trended LRD (or self-similar)
processes is considered. Indeed, Abry et al. (1998) remarked that every degree

12



M polynomial trend is without effects on ﬁw Ay since v ha/s\ its M first van-
ishing moments. Therefore, the larger M, the more robust Hyy 4y is.

Finally, Bardet (2002) established a Khi-squared goodness-of-fit test for a
path of FBM (therefore for aggregated FGN) using wavelet analysis. This test
is based on a (penalized) distance between the points (log a;,log Sy (a;))1<i<s
and a pseudo-generalized least square regression line (here the scales a; are
selected to behave as N'/3).

In the Table 1 appear the different estimations of H computed from the
DFA and wavelet analysis methods for 100 realizations of FGN paths with
N = 10000. We choose for these simulations the concrete procedure of wavelet
analysis developed by Abry et al. (2002) (a Daubechies wavelet is chosen and
a Mallat’s fast pyramidal algorithm is used to compute wavelet coefficients).

p-val MSE
Hygn H Hpra Hway 0Opra owav DFA WAV — DFA WAV
0.50 0.4936 0.5071 0.0263 0.0427  0.0152  0.0983 0.0187 0.0301
0.60 0.5908 0.6009 0.0290 0.0405 0.0017 0.8289 0.0204 0.0286
0.70 0.6859 0.6985 0.0317 0.0436 0.00001 0.7342 0.0223 0.0304
0.80 0.7875 0.8050 0.0326 0.0388 0.0002 0.1978 0.0230 0.0273

0.90 || 0.8821 0.8938 0.0366 0.0444 0.000002 0.1030 0.0258 0.0697
Table 1
Comparison of the two samples of estimations of H with 100 realizations of fGn
path (N=10000) with DFA and wavelets methods

In one hand, the wavelets method appear slightly more effective than DFA
method considering the p-value which is very low for the sample of the DFA
estimations compared to wavelet analysis estimations. This is essentially due
to the estimator bias which is more important in the case of DFA. In the other
hand, if we consider the root of MSE which is the sum of the squared bias and
the variance, the DFA estimator seems to be slightly more effective. Note that
for FGN processes (without trend), the Whittle maximum likelihood estimator
of H gives a "better” results (see for instance Taqqu et al., 1999).

3.8  Application of both the estimators to HR data

Both estimators of H can also be applied to the HR time series of the 9
athletes. The following figures 9 and 10 exhibit examples of applications of
both the estimation method to HR data.

For each athlete, it was first done to the whole time series, and then to the
different phases of the race (as it was obtained from the detection of abrupt

13
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Fig. 9. Two first steps of the DFA method applied to a HR series (up) and results
of the DFA method applied to HR series for two different athletes (down)
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Fig. 10. The log-log graph of the variance of wavelet coeflicients relating to the HR
series observed during the race and in the end of race (Ath2)

changes, see Section 2). The estimation results of H, for the different signals
observed during the three phases of the race, are recapitulated in the Table 2
using wavelets method and in Table 3 using DFA method.

rl;wo main problems resort from these different estimations. First, H pra and
Hyy av are often larger than 1. However, the FGN is only defined for H € (0, 1).

For defining a process allowing H > 1, three main assumptions of FGN have
to be changed:

(1) the assumption that the process is a stationary process;

(2) the assumption that the process is a Gaussian process;

(3) the assumption that only two parameters (H and ¢?) are sufficient to
define the process.

14



Phases
HR series Beginning Middle Race end

Athl 0.8931 1.1268 1.1064 1.2773
Ath2 1.1174 0.7871 1.0916 0.8472
Ath3 1.0208 1.0315 1.1797 -

Ath4 0.9273 - 1.0407 0.7925
Ath5 1.0986 1.3110 1.0113 1.3952
Ath6 1.0769 1.5020 1.1597 1.3673
Ath7 1.0654 1.4237 1.1766 1.0151
Ath8 0.9568 1.6600 0.9699 1.1948
Ath9 0.9379 1.5791 0.9877 0.7263

Table 2
Estimated H with wavelets methods for HR series of different athletes

In the sequel (see above), a new model is proposed. Both the first assumptions
are still satisfied and the third one is replaced by a semi-parametric assump-
tion.

The second problem is implied by the results of the goodness-of-fit test (for
wavelet analysis method). Indeed, this test is never accepted as well for the
whole time series as for the partial times series. An explanation of such a
phenomenon can be deduced from Figure 10: for the wavelet analysis, the
points (log a;,log Sn(a;))1<i<e are clearly lined for a; < a,,, but not exactly
lined for a; > a,,. Thus the HR time series seems to nearly behave like a FGN
for ”small” scales (or high frequencies), but not for ”large” scales (or small
frequencies). A process following this conclusion can not be the better fit of
HR time series...

Remark: this last conclusion leads also to a clear advantage of wavelet based
over DFA estimator. Indeed, the DFA algorithm measures only one exponent
characterizing the entire signal. Then, this method corresponds rather to the
study of "monofractal” signals such as FGN. At the contrary, the wavelet
method provides the graph (loga;,log Sy(a;))1<i<¢e which can be very inter-
esting for analyze the "fractal” behavior of data (see also Billat et al., 2005).

3.4 A second model: a locally fractional Gaussian noise

In Bardet and Bertrand (2007), a generalization of the FBM, so-called the
(M )-multiscale FBM, was introduced. The (M;)-FBM is a FBM with self-
similarity parameter H,. Roughly speaking, the (Mg)-FBM has the same
harmonizable representation (and therefore quite the same behavior as the
FBM) than a FBM with self-similarity parameter H; for frequencies |£| €
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[wi,wig1] for all i = 0,..., K (K € N). For instance, a (M;)-FBM behaves
as a FBM with self-similarity parameter H, for small frequencies and as a
FBM with self-similarity parameter H; for high frequencies. Such a model
was fruitfully used for modeling biomechanical signals (position of the center
of pressure on a force platform during quiet postural stance measured at a
frequency of 100 Hz for the one minute period).

20
251

l *
*

*

*

*
= I
[} ]
T

Logarithm of IN
=
o
*
*
Logarithm of IN
P N
N B
%

201

._.
S
*
*
*
=
o

'
**
¥
-

Logar_ltz‘ltm of th_ez‘chosen férequenclez‘s (Hz) Log;érlthm o;t‘lhe chosin frequiencles (‘ZHZ)
Fig. 11. The log-log graph of the variance of wavelet coefficients relating to the
HR series observed during the arrival phase (Ath6) with a frequency band of [0.01
12](right) and of [0.2 4](left).

Here, Fig. 11 suggests than a fitted model for aggregated HR data should
behave like a FBM with self-similarity parameter H for low frequencies and
differently for high frequencies (and not necessary like a FBM). Thus define a
locally fractional Brownian motion X, = {X,(t),t € R} as the process such
that:

ot _ 1
X,(0) = [ W

where the function p: R — [0, 00) is an even continuous function such that:

1
o p(€) = - E|FHY2 for |€] € [wo,wi] with H € R, 0 > 0 and 0 < wy < wy

N
o/]R(l/\lf\)pz(£>d§<oo.

and W(d¢) is a Brownian measure and W (d¢) its Fourier transform in the
distribution meaning. Cramér and Leadbetter (1967) proved the existence of
such Gaussian process with stationary increments. The main advantages of
such process compared to usual FBM are the following:

(1) X, "behaves” like a FBM only for local band of frequencies;
(2) In this band, the parameter H is not restricted to be in (0, 1): it is in R.
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From this definition, one deduces a possible model for HR data:

e sin(£/2)
p(&)

Note that Y, = {Y,(t),t € R} is a stationary Gaussian process and the func-
tion 2sin(€/2)p~1(€) is so-called the spectral density of Y.

Y,

()= X,(t+1) — X,(t) =2 Re(/R W(dg)) for t € R.

Let Ay — 0 and NAy — oo when N — oo. The wavelet based estima-
tor can provide a convergent estimation of H when a path

(Y;J(AN)aYp(QAN)a s >Y:0<NAN)>

and therefore a path (X,(An),..., X,(NAx)) is observed. Indeed, consider a
"mother” wavelet ¥ such that ¢ : R — R is a C* function satisfying :

o forall s >0, / [t5(t)| dt < oo
R

e its Fourier transform 12(5) is an even function compactly supported on
(-8, —a] U o, ] with 0 < o < 3.

Then, using results of Bardet and Bertrand (2007), for all @ > 0 such that
2 s B

| C [wo,w], i.e. a € [—,g], (dx,(a,b))er is a stationary Gaussian
a a W1 Wo

process and

B(d%,(a,.)) = K@, H,0) - a®*,
with K (¢, H,o) > 0 only depending on ¢, H and . However this property is
checked if and only if the function ¢ is chosen such that:
bown

0% wWo

a
Moreover, for a € [ﬁ, —, the sample variance Sy(a) computed from a path
w1 Wo

(X,(AN), ..., X,(NAp)) and defined in (3) converges to ]E(dg(p(a, )) and sat-
isfies a central limit theorem with convergence rate v NAy. Thus, with fixed
scales (aq,...,ap) € [u%, u%]f, a log-log-regression of (a;, Sy(a;))1<i<¢ provides
an estimation of H (and a central limit theorem with convergence rate NAy
satisfied by /FTW av can also be established). As previously, we consider also
Khi-squared goodness-of-fit test based on the wavelet analysis and defined as
a weighted distance between points (log(a;),log(Sn(a;)))1<i<¢ and a pseudo-
generalized regression line.

Remark: The main problem with these estimator and test is the localiza-
tion of the suitable frequency band [wp,w;| (wy and w; are assumed to be
unknown parameters). A solution consists in selecting a very large band of
scales and determining then graphically the "most” linear part of the set of
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points (log(a;),log(Sn(ai)))1<i<e- Another possible way may be to compute an
adaptive estimator of this band using a quadratic criterion (following a similar
procedure than in Bardet and Bertrand, 2007). Here, like 9 different paths of
HR data are observed, a common frequency band [wg, @] can be graphically
obtained and used for whole HR data (see above).

3.5  Application to HR data

First, one considers that a HR time series (Y'(1),...,Y(n)) can be written
(Y, (A),Y,(24A,),...,Y,(nA)), Y, = {Y,(t),t € R} a process defined as pre-
viously. Secondly, the wavelet analysis is applied to the 9 (whole or partial) HR
time series (the chosen "mother” wavelet is a kind of Lemarié-Meyer wavelet
such that § = 2«). Using first a very large band of scales for all HR time
series (for example [0.01, 12] in Fig. 12), one estimation of frequency band
is deduced: [y, wy] = [0.2,4] is the chosen frequency band for the whole and
partial signals.
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Fig. 12. The log-log graph of the variance of wavelet coefficients relating to the HR
series observed in the middle of the exercise (Athb)

The estimation results of H, for the different signals observed during the three
phases of the race, are recapitulated in the Table 3.

Both DFA and wavelet analysis methods provide estimations of Hurst expo-
nent which reflect the possible modeling of HR data with long range depen-
dence time series.

We also note that with a p-value of 0.64, both the samples (EDFA)L._,,Q and
The same comparison can also be done when the three characteristic stages
of the race (beginning, middle and end of the race) are distinguished. The re-
sult is different. Indeed, the corresponding p-values between (ﬁ DFA)1,...0 and
(I‘I\W Av)1,..9 are significatively different in the middle part of the race (and
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HR series Race beginning During the race End of race

Hpra Hwav Hpra Hwav Hpra Hwav Hpra Hwav
Athl 0.928 1.288* 1.032 1.192 1.060 1.214 0.429  1.400
Ath2 1.095 1.268* 0.905 0.973 1.126 1.108 1.240 1.452*
Ath3 1.163  1.048 0.553  0.898 1.130 1.172 - -
Ath4 1.193  0.916* - - 1.098  1.249* 1.172  1.260
Athb 1.239 1.110 1.267 1.117* 1.133 1.205 1.273  1.348*
Ath6 1.247 1.084* 1.237 1.106 1.091 1.172 1.436  1.338
Ath7 1.155 1.095 0.850 1.295 1.182  1.186* 1.129  1.209
Ath8 1.258 1.011 1.304 1.128* 0.995 1.134 1.122  1.247
Ath9 1.243 1.429* 0.820 1.019 1.127  1.535* 1.250 1.238*

p-value 0.6414 0.3723 0.0225 0.1260
F-stat 0.23 0.85 6.38 2.65
Table 3

Estimated H, with DFA and wavelets methods, for HR series of different athletes (*)
The series for which the test is rejected. Comparison of the two samples (Hpra)i,...9

and (fIW AV)1,....9 for whole and partial series (p-value).

relatively different in the stage of race end).

In spite of values relating to the estimator of H for all the athletes in the
different phases which are relatively large, the DFA has sometimes tendency
to under estimating this parameter like in the race beginning (Ath3) and the
end of race (Athl). Indeed, these value are clearly due to a certain trend sup-
ports by the fact that data points in log-log plot (Fig. 13) have not a straight
line form, and we have proved in [10] that the DFA method is not robust in
the case of trended long range dependent process. However in both the cases,
the wavelets method is more effective since it removes sufficiently this kind of
trend.
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Fig. 13. The results of the DFA method applied to records for race beginning (Ath3)
(left) and for end of race (Athl) (right)
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For HR data and when the goodness-of-fit test is accepted, the wavelet method
shows a fractal parameter H close to 1. According to the different studies (us-
ing DFA method) about physiologic time series for distinguishing healthy from
pathologic data sets (see [18], [24], [25]), an exponent H ~ 1 indicate a healthy
cardiac HR time series. Indeed, for the study concerning a 24 hours recorded
interbeat time series during the exercise for healthy adults and heart failure
adults, the following results are obtained: for healthy subjects, H = 1.0140.16,
for the group of heart failure subjects H = 1.24 4+ 0.22.

During the different stages of the marathon race, a small increase of the frac-
tal parameter H is observed especially at the end of races. This behavior and
this evolution may be associated with fatigue appearing during the last phase
of the marathon. This evolution can not be observed with DFA method. In-
deed, in one hand, when we observe the three 9-samples of wavelet estimators
(related to the 3 phases of the race), the p-value (see Fig. 14) indicates a sig-
nificantly difference due precisely to this evolution of the fractal parameter.
On the other hand, a large p-value (0.85) is obtained for the same test using
DFA estimation.

Boxplot of the three samples of estimations by applying wavelet analysis

1.5F

ﬁDFA EWAV rar H
p-value 0.8570 0.0158 & | -
F-stat 016  5.27 H =

-

Race beginning During the race End of race

Fig. 14. Comparison of the three samples constituting by estimations in the begin-
ning of race, during the race and then in the race end by the DFA and wavelet
methods

The representation given by Fig. 14, highlight a difference in the behaviors
of HR series in the beginning of the race and in the end of race. Indeed, the
dispersions in the first and last sample are more important than in the middle
of race and it seems that each athlete starts and finished the race at his own
rhythm but in the middle athletes seems to have the same rate.

4 Conclusion

As indicated in the beginning of the last section, our main goal is to see
whether the heart rate time series during the race have specific properties
that of scaling law behavior. The wavelet analysis and the DFA methods are
applied to 9 HR time series during the whole and also the different three
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phases of the race (beginning, middle and end of race) obtained by an auto-
matic procedure. Even if their results are not exactly the same, both methods
provide Hurst exponents which reflect the possible modeling of HR data by a
LRD time series. However, in [10], even if the DFA estimator of Hurst param-
eter is proved to be convergent with a reasonable convergence rate for LRD
stationary Gaussian processes, it is not at all a robust method in case of trend.
The wavelet based method provides a more precise and robust estimator of
the Hurst parameter. Thus, the results obtained from this wavelet estimator
seem to be more valid.

Moreover, a Khi-squared goodness-of-fit test can also be deduced from this
method. It seems to show that a classical LRD stationary Gaussian process
is not exactly a suitable model for HR data. Graphs obtained with wavelet
analysis also show that a locally fractional Gaussian noise, a semi-parametric
process defined in Section 3 could be more relevant for modelling these data.
A Khi-squared test confirms the goodness-of-fit of such a model. Thus, using
the wavelet estimation of a fractal parameter in a specific frequency band,
one obtains a conclusion relatively close to those obtained by other studies
(conclusion which can not be detected with DFA method): these fractal pa-
rameters increase through the race phases, what may be explained with fatigue
appearing during the last phase of the marathon. Thus this fractal parameter
may be a relevant factor to detect a change during a long-distance race.

Finally, for the 9 athletes and as the test is validated with significance level
around 0.65, we can estimate ﬁbeginning at 1.1, the f{\middle at 1.2 and ﬁend at
1.3 with a larger confidence interval at the beginning and the end of the race.
This behavior could bring a new way of understanding what is happening
during a race.
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