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Log-regularized periodogram regression

by F.Comte* & C. Hardouin

Abstract
We present an estimation method based on log-periodogram regression for general
non fractional stationary processes. The consistency and the asymptotic normality of the
estimators are established, provided that the periodogram is regularized. The results are
extended to the non gaussian case and compared with Whittle-type estimates. Simulation
experiments illustrate our results.
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1 Introduction

Among methods for estimation of stationary processes, the well-known procedure of Whittle
leads to strong consistent, asymptotically normal estimator. Besides, it is asymptotically effi-
cient in the Gaussian case. This procedure has been adapted to strongly dependent stationary
time series by Fox and Taqqu (1986) and Dahlhaus (1989). As an alternative to the Whit-
tle (pseudo) likelihood, Taniguchi (1979) defines the D, measure, equal to the integral of the
squared difference between the logarithms of two densities. Then, the estimators are the values
that minimize the distance between the parametric density and the periodogram. He proves
the consistency, asymptotic normality and some robustness properties of these estimates, under
summability conditions on the autocovariance sequence.

We consider here another method based on regression on log-regularized periodogram. We
differ from Taniguchi (1979) in that we use here a discrete average of the log periodogram
instead of a continuous integral.

Kashyap and Eom (1988), Geweke and Porter-Hudak (1983), have proposed in the frac-
tional framework an estimation by regression on the log periodogram. Their results have been
confirmed by Hassler (1993) in the Gaussian non long memory case ; but the obtained esti-
mates are not efficient. We have adapted this idea for an application to non fractional models.
Besides, we regularize the periodogram in order to obtain efficiency. The advantage is that
the specification of the model can be less precise; in particular, the exponent parameter if any
can be estimated alone. Besides, optimizations on the Whittle contrast are often computa-
tionally very slow, whereas this method is immediately faster, as soon as there is an exponent
parameter.
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We do not consider here fractional models, as ARIMA(p, d, q) or GARMA processes studied
by Gray, Zhang and Woodward (1989), for which the spectral density may be unbounded or
have zeros. But the models we study may nevertheless involve an exponent parameter: think
for instance of the model (1 — aB)!X; = &, |a| < 1,|d| < 3.

The model is the following:

X: = A(B) &, (&) 1.1.d. (0,1 =Y"a;B}, ap=1, Y a’<oo. (1)

j>0 Jj20

observedont = 1,---,n, where B is the usual lag operator (BX; = X;_;). (1) can be rewritten:

Xt = Z a;€¢—j.

320

Let X, ( E ,€n = Zet e'* be the discrete Fourier transforms of X and e

1 1
observed on {1,...,n}, and Ix()) = =|X,(A)?}, I()) = —|en(N)]? the periodograms of X
: n n
and €, Jux(A) = |A(eM)]? Lie(N) = 2nF(A)1.(X) that we call the pseudo-periodogram of X,
where F' is the spectral density of X.
We have:

InJox(A) =In27F(A) + Inl..()) (2)

The procedure “estimates” the parameters by considering regression (2) at frequencies Ay =
ok =0,... 5. This is the idea proposed by Kashyap and Eom (1988) for an ARIMA(0, d, 0).

Section 2 studies the estimation of parametric Gaussian models (1) based first on the pseudo-
periodogram. In order to keep efliciency results, we replace the pseudo-periodogram J,x by its
“regularized” version and consider regression (2) consequently modified. We recall results about
the approximation of I,,x by J,x; we can then study the regression procedure based on the true
periodogram. This second stage is important because J,x is unobservable. The proofs of the
results are gathered at the end of the section. Then section 3 studies the comparison of the log
periodogram regression and the Whittle estimators, under the Gaussian assumption. Section 4
gives extension of the convergence and asymptotic normality results in the non Gaussian case.

Lastly, section 5 gives some simulation results.

2 Gaussian regression

2.1 Pseudo Periodogram Regression
We consider the model (1) with
(H.) eiid. N(0,1),
(Hx)  the spectral density parametrization § — F(0,.) is injective, 0 € ©, the compact
set of IR? of the parameters and In F(6p, A)dX = 0 where g is the true value

-

of the parameter.



We consider Fourier frequencies Ay = 27%", where 1 < k£ < n/2. Assume n = mK (m
'_;._
cven) and let us divide n in m blocks, each of length K. Thercflore, {1,---,%} U 1, with

={l]\"+1,-~~,(l+1)1\'}.’ i
The midpoint of Z; is [ K + L;ﬂ and we denote F(0,]) = F(0, )\[1\,'+_}%ﬂ). We have:

Jnx (M) = 20 F(0, ) Le(Me) + 27 (F(0, M) — F(0, 1)) 1ie(Ai) (3)
Then we average (3) on the frequencies of Z;, and take the logarithm. Let J,x ({) =% E Jnx(Ak)

keI;

and I—M(l e Z I.e(A:). The regression equation is:

kEI[
InJox(1)=3(0,) + Wi +1In(1+ F), € A (4)
- - JAY] 1
ith §(0,1) = n2xF(0,1), W, = InL.(l), } = ————— A, = — S (F(0,\) —
with §(0,0) = In2xF(0,0), W, = InlL.(l), I FoLD M T ® kEZ;( (0, Ac)

F(O,0)) (M), Am = {l;1=0,...,2 —1}.
Assuming the two following conditions, -
(C1): Forall z € [0,7] and § € ©, F is differentiable w.r.t. z and of class C! (i.e.

differentiable with continuous derivative) w.r.t. § and there exist b and B such that:

F F
F0,z)>b>0, |=—(0,z)]< B<oo and ||%b-(0,m)||§B<oo

0
15
where ||.|| denotes the Euclidian norm on IR?.

vK
(C): — =0 and -F—-)O K>9
m
we obtain consistency and asymptotic normality for the least square estimator 0,, derived from

(4).
Theorem 1 Assume (H,), (Hx). Under (Cy) and (C,), the least square estimator 0, is

slrongly consistent.

Theorem 2 Under the assumptions of Theorem 1, and if F is of class C* w.r.t. §,
\/E(én - 00)11—)_0)0/\[(0’ 1(00)_1)
here 1(0) = i/’rg (0,0 26(0,2) &, where g(0,2) = In F(0,z), and u' denotes
where = 5= J. 3590 X 55900, , g(0,z) = ,x), and u’' denotes the

lranspose of u.

Remark: The asymptotic variance with J instead of J would be (72/6)(0y)" because of the
asymptotic variance of the /() (i.i.d, Exp(1)). This is the reason for the regularization.
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2.2 True Periodogram regression
Let é.71(/\) = nX(/\) - JnX(/\) = ‘}; ( thei/\t
t=1

proved by Priestley (1981), Theorem 6.2.2 p424:

2 .
— |A(eM)

n .
Z etez/\t
t=1

2
) . We first recall a result

Let b be a positive constant.
If S 3a;| < +oo, then IEYS,.(N)|? = O(:k), uniformly in A.
J

Let: 6,(l) = 71&;2 6n(Ak). Then: Lix(l) = Jux (D) + 6,(1). As Lix({) > 0, Jux(l) > 0, we

keI
- - Su(l
can take a log transform and write: In(/,x({)) = In(Jn.x({)) + In (1 + = ((3)
. nX
Then we find the new regression equation:
InLix(1) =§(6,) + W/ + U, L€ A, (5)

with still §(0,1) = In27F(8,1), W/ = In I,.(I) + In(1 + F) and now U; = In (1 + ;"(8)>.
nX .

To control the order of &,(l), we make the assumption:

(C3) 3Ja > 0 so that Zj%+“|aj| < 4o0.
J

Then we have the following results:

Theorem 3 Assume (H,), (Hx), (Ci), (C:) and (C3). Then the least square estimate 0,
of the regression (5) is strongly consistent.

Theorem 4 Under the assumptions of Theorem 3, and if I is of class C? w.r.t. 0, the least
square estimate 0,, of the regression (§) satisfies:

V0, — 00) — N (0,1(05)7")

n—+o00

where 1(0) is defined in Theorem 2.

Note that the result of Priestley can be applied to non constant frequencies A; (see the
proof in Priestley (1981)). The condition (C3) allows all ARMA(p, q) models but implies that
the processes considered here are non fractional in the usual understanding: indeed, in the
ARIMA(p, d, q) case, we know from Hassler (1993) that a; ~ Cj%~!, C constant, when |d| < 1.
But some models which involve an exponent parameter such as the FRAC(1) prescented in the
numerical examples satisfy the assumption (Cj) and therefore the assumptions of the former
theorem.



2.3 Proofs of Theorems

We will denote U® (or V{!)) the i** derivative of the contrast process U (or V) w.r.t. 0,7 =1,2.

2.3.1 Proof of Theorem 1:

Let Uy i (0) = — Z In Jox (1) —§(8,1))* be the OLS contrast. We verify the criteria of strong
IEAm

consistency given by Hardouin (1992), generalizing those of Dacunha-Castelle and Duflo (1986),
Theorem 3.2.8 p126, in the weak sense. See also Guyon (1995) Theorem 3.4.1 and Amemiya
(1986) Theorem 4.1.1.
We recall p € © which is compact under (Hy). The criterion is the following:

A) lim nf U, i(0) — U, (00) 2 K(0,60) Ps, a.s. where K(0,80) is a contrast function,
K(0,00) = 0 if and only if 0 = 6,.

B) 0 = Un k() and § — K(0,8,) are continuous.

C) Let Wi k(n) = sup |Uni(0) — Unx(8')] with ||0 — 0'|| < 5. Then there exists a

8,6'c

sequence €, decreasing to zero such that IPg, <lim sup Wm,;((%) > €k> = 1.

m,K—=o00

AU, k(0)=— E (ln Lie(1) + In(1 4 Fy 1) + §(00,1) — §(0,l))2 where we denote Fy; instead
IeA"l
of I to precise the dependence on the parameter. Then,

25 (3(00,1) - 36, — l/" (In F(6o,w) — In F(0,2))? dz := K (6o, 0)
m &5 % 1 Jo
and the convergence is uniform in K. So, we are going to show that

2 > (ln I..() + In(1 +F00,1)> — 0 Pya.s.

m I€EAm m,K—=o00

and this will give the announced result using the Cauchy-Schwarz inequality.

. K 7
- Flrst, ’)‘k — AIK-I'-!\’—;—ll S IA(I-{-I)I\’ — AIK_'_]_(g._lI < —n— = — fOI' k € I] and [ € A,n, and
-~ or , . .
P(0,0) = F(0,0) = 5—(0,1") (A = Ayeyscpn),  where |1 — Mpeq s | < = Aegaeaa |
~ Bm Br 1 2B
Hence |F(0,1) — F(0, \)] < g under (C;), and then |Fp;| < ZQEB< 3 form > mgy = —bz
Finally, as |In(1 + )| < 2|z] on [—3; 1], |In(1 + Fo,)| < 2|F75] < 7 Za.s. form > mo.
m
2 2bm .2
Then, |El§m In(1 + Fy)? < (bm) m,IT—:ooO le. ;1;;" In(1 + Fy,1)* mEmO Pyya.s.



- Again with the Cauchy-Schwa.rz inequality, it is sufficient to prove now that:

—_ Z (]n Ine ) =0 Poo(t.S. (6)

lEAm

Let Xy, = 2 ((m L)’ - [(m i"‘(l))zb’ E[X2] = %Var [(m im(l))”].

As |In%| = |1n(1 + 24| = |In(1 +422)| < 2l < k=l el o ) 4,y > 0,

— inf(z,y) —

1

i e (D)] < [ e(0) — |< ot 1) 113[(111 Le() ] < (m[(fn,_,(z)— 1)"] IE [(,m(,) +1) ])2
and IE[(ln fm(l))‘i] < (IE [(fne(l) - 1)8] E [(75(7) + 1)8])%. We use now the following lemma:

Lemma 1 Under (H.),

!

1-,15(1[)217 < oo for K >2p+1, E[(jm(l) — 1)4] = 0(%), IE[(_M(I) B 1)8} _ O(%)

Then, var[(lnfm( ))] 0(1{2) and E[X2] = O(=L;) = o(%) with (Cy).

So that IP(|X,n| > €) < —a§£l"—"1 < o(-5;) and this is summable in m independently of K. ‘
Finally, X, e 0 Pgoa s. independently of K and X, = 0 Ppa.s.

We have now — E In 7, 1)2 Xm + — Z IE[ In Ine ) } The second term on the
I€Am M eAm
right hand side is of order O() which tends to zero when n — co  Pg,a.s.. We get (6).

B: clear.
C: Um x(0) — Um k(0) = AL k + AZ i where

B = — Z (00, 1) — §(0,0) — g(0', 1)) (3(0",1) — (0, 1))

77L IGA"I
Bhge = 3 (10 ) + (1 + Fa) 3(0,1) ~ 50,0)
™ 1eAm
Let e(n) = sup |[§(¢',1) — §(0,1)|. Then &(n) — 0 by uniform continuity of § on a compact
0,6'eo K
llo—o0’||<n
set. And let M = sup |§(0,[)|. We obtain: |A} | < 4Me(n) and
0€0
1A2 kl <% > (I In L..())] + In(1 + Fgo,I)) xe(n) < @ if m, K great enough.
I€Am

~ J

-0 Pgya.s. as previously

Finally, IPg, (limsup sup |Am k| > -E-g-@) =1.
m,A =00 6,6/€0 2
llo=6’ll<n



2.3.2 Proof of Theorem 2:

We prove that we can replace the residual W, + In(1 + F;) by I,..(l) — 1.

¢ 0 = VAU (00) + UL (05)v/m(Ba — 00) with |10% = 0o < {10, — Oo|}. As 0, is strongly
consistent, the limit law of /(6 — o) is given by —[UL)(60)]= v/rUL K (6o).

m,K
o Study of UM (60) = _4 ) agw"’”(W, +10(1 4+ F)); VAU (06) = Ty + Ty where:
' m i o/}
4 95(0
T, = \/_ Z ga;, ) Le(D) = 14+ 1In(1 + F)) (7)
l€EAm
4 9 o 0, _
T = ‘f > 8D 7. - (1) - 1)), )
I€EAm

Lie(Ak) ~ Ezp(1) are i.i.d so the e = I, (1) —1 +In(l1+ F) afe independent too, and Varl,.({) =

16"‘ ag 007 3J(00,l) . 2
. Therefore: Var Ty = — ,g ( 50 > ( 50 Var ¢;. Then,

K’

Il

16 d§(00,1)\ [ 05(80,1)\’ -
VarT, ?';I; ( g(a; ))< g(ag )) (Var(L(1) - 1)
€Am
+ 2Cov(I(l) — 1,In(1 + F})) + Varln(1 + F'l))

_ l6n 95(%,1)\ (9509, ) Cov(] :
= mTK,eZA:m ( 50 50 (1 +2KCov(I.(l) — 1,In(1 + F) + KVarn(1 + Fl))
, 4B%n? K )
But KVarln(l + ) < K—— gLl for m > myg (see Proof of Theorem 1); as — — 0 with
m
(C;), we have:
. 16 34(00,1)\ [03(00, 1)\’
Jim VarTy = lllgo—rgl;:m( g(a; )> ( J(a; )) = 167(0o).
4 l
Applying the CLT to T) yields to: Ty = — = > 39(()00’ )(\/F ) N(0,161(0)).
leAm

e We have now to verify that T3 50 (p-dimensional null vector) i.e:

4f’ 2 aggg’l) (1o (1) = (Fue()) = 1)) 50

l€Am

We study this term’s limit in L! and need the following lemma:

Lemma 2 Under (H,), ||In I (I) = (In.(!) = ||, = O(3), where ||.||1 denotes the L*-norm.



Then:

4/n 94(0o,1) - - 4\/_ 99(00,1)|| C _ 4BC [m (Cy)
- — e Gy i
m ,GZA: a0 (In fue(®) = (Fe(h) = 1)} < m ,:/7:« “a0 |[F=5 Vi
1 m
that is 75 £
A 9?5(00,0) 1, 193(00, 1)y (95(00, 1)/
e Study of Um : Finally, we consider U — 1§m ( EYE W, — ( 50 )( 50 ) ,
2~
where W/ = In I,.()+1In(1+ F}) and 302 is the px p Hessian matrix. As the W/ are independent,
L?, with asymptotic mean zero, the Strong Law of Large Numbers gives:
4 0%9(0,,1)
m 2 o Wikl

where 0, is the p x p null matrix and the convergence is to be understood term by term.

Then, Um i(00)’s limit in probability is that of Z (ag(;’;, {)) (ag(aﬂg, l))l le. 41(6y). =
™ ca

m

2.3.3 Proof of Theorem 3:

We follow the proof of Theorem 1. We study now the contrast V,, x(8) = = > (ln Lx (1) = (0, 1))2.

) The study of A is the same, but we have to control another term:

() ) 15,01 18.(0)]
— U:—-—- In With |U;] < + = , we have
IE;nx l 16;,“ < J"X (l) | | IHA (l) Jn./\’(t)

s =2 [ S48 ) o] )

5.(1)? \ 1 1\? .
First, IE < (EB.()YE |= . Looking at the proof of Theorem 6.2.2 of
u/\ (l) ")\ (l)

Priestley (1981), and at equation 6.2.32 p424, we see that we can ecasily extend his result to:
IE[6,.(A)*] = O(n~*"**)uniformly in X

under (Csz). So we deduce, still under (Cj), that IE[6,(!)*] = O(n=27%); next, we use the
following lemma:

Lemma 3 Let (Z¢)x be a sequence of independent variables of law Exp(pui) and Z}: = T Z Zy,

2
K > 9. Then, IE[(-ZII;) < 4 (sup pue)*.

4
< 8(sup ui)’, and E{(zlg)

co



We apply this result to Z7} = Inx( ) which are asymptotically independent and of law Exp

2
with mean F(£) (see e.g. Davis and Jones (1968)), and then IE [16 (8) ] is of order O(n™1"2%).

tt remains E | 202 ] < (BE. 0 E——1)". Then, B[] < L[ L

R 10 Rl N AT i ()T B Tl P ()2
with Lemma 1 and (C,).

DESY I .

So we obtain IE[U?] = O(n~'2?). Then IP( S UE> ) < LLZ U] < gn_l"z“

l€Am € ¢

< o0

which is summable in m uniformly in K with (C,), so — E U} -0 Pa.s.
m IeA"l

e Conditions B and C are clearly fullfilled. =

2.3.4 Proof of Theorem 4:
The law of \/_(5 — bp) is given by —[V(zl\ (60)]7*/nV, (11}((00) with Themem 3. Vm x(0o) =
—— Z 90, )W/ + Up) gives: /n V., . ,\(90) =T +T,— " Z 00, YU, with T and

m leAn. leAu

T, given by (7) and (8). Then their limits are known: Ty - A/(0, 161(0p)) and T; Lhand P g
We can also write the last term of Vn(ll}((ﬁo):

m IEAm

As [In | < ki g Bl for all 2,y > 0, IB]||T3][] < IE[Z74] + IE[Z5], where

00, ( ) (10)
oo,z)l ( ) (1)

(C3) implies, with the result of Priestley (1981) that IE[6,(/)?] <

T4\/_Z

M cAm

and

T, = ‘MZ

M 1caAm

Moreover, since

1 1 ) nl+2a
IE [i"f(l)z] - (1 _%)(1 _72\_) <4 for K >4,
S[Ty) < ,ezA: [0x(1)?) Lne()? M <4n1+2a) =TE e




which implies that IE[T}] vl 0.

-

vV 1
We study Ts in a same way and then, IE[Ts] < 4Bb C% (IE [f (1)2]) . Then we apply
nX

Lemma 3 to I,x(Ak) again and this implies that IE[T5) w0
Therefore, we have: \/_V(l) (60) —=> N(0,161(6,)).

9% 4 9% 4 g dg !
Next, V(o) =2 5> 29 g, yw;— Joooui+ 2 5 (L0 (o)
o T lezA:m 06 R teZA:m 06 J &40 \ 00 90
%0, as in Theorem 2 o, as T3 =% 41(6o)

So that V%) (60) ©' 228 7 41(0y).

m

Collecting the terms gives the announced limit law for \/n(0, — 6,). =

_ I.r]\" . .
Proof of Lemma 1: fx the density of I,.(!) is equal to : fx(z) = (—I;X—l)'zl‘_le’]‘zlno.
' —1)! =

Let q an integer, ¢ > 1 - K ;

_ 1 o Mg+ K) _(¢+K-1)(g+K-2)...(K+1)
u ne l q e —/ q+1\ 1 u —p = .
Bl W= =i M= T 1) I

K%

Then, we calculate ]E[Tm(l)‘2”] = for I > 1 + 2p,

(K —1)(K —2)...(K — 2p)
F 6 = 105 2380 7308 5040

n 4] — —1)8] =

IE[(I" ( ) ) ] 1/2 1/3 and IE[(LIS(I) 1) ] 4 + 5 + 6 + K7 : .

Proof of Lemma 2: ¢ We have IE[],,.(!)] = 1, Varl,.(I) = L = and the density of L.(1) is given

above.
IE [I In I (l) = (Ine(1) = 1)|] = /Ooo |Inz — (2 = 1)|fx(2)dz = /Ooo (— Inz+(z - 1)>f1((z)dz

= —/oolnsz—(z dz
0

-1 _ du 1
-Kzp, _ -3 KK — 1)
./o Inz.z% dz = / In— ( ) s [(Jk-1 —In K.(K - 1)Y]

where Jy = fo Inu.uXe *du.

o We find Jy = KJg_1 + (I - 1) '—K'Z + JoK!.

=1

Then Jp = / Inze™*dz = —v and lLrn Inn— (14 -l-;) = —v where v is the Euler constant.
0 n—+oo
_ _ K-1 1
So ﬁnally IE [] In Ins(l) - (Ine(l) - l)l] = - Z ;1_ - Jo + In K = O(I_() |
=1

10



Proof of Lemma 3:

K

2
. 1 . K? K? a
J1D) ('"T) = IB—m— =/.../————-——2/1.;...;11(.exp{— > ket a0 150 >0d2y . dzy

SN R

= / / K 26:1:}7{ ZJk}lm >0-- 1y, >0(1J1 dyy
<Z Jk/Mk)
k=1
1 K?
< (sup ,“'k)zlE l:l- (1)2} < (sup /Jk)Z(I{ — 1)(1( - 2)

andm_f;’:T”SSassoonasKZ&

4
In the same way, IE [(21;—:> J < (sup u)IE [1,.,1(1)4] < (sup g )? e 2’;(1\ R which

is less than 4(sup ux)* assoon as K > 9. =

3 Comparison with Whittle’s estimate

A well known procedure for estimation is Whittle’s. Under rather general hypotheses it leads
to strongly consistent, asymptotically normal and asymptotically efficient estimates, in the
Gaussian case.

Let us compare those two methods: Whittle’s and the Log-Regularized Periodogram, which
we will denote now by LRP. Let 0, denote the LRP estimator and 0,, Whittle’s one. The asymp-
totic variance of /i, is also I~ 1(65). We show that the estimators are in fact asymptotically
equivalent under the previous assumptions and the following:

(C4): The second and third partial derivatives of F/(0,z) w.r.t. = and 0 exist, are continuous

and bounded.

Theorem 5 Assume (H.), (Hx). ) i
Under (Cy), (C:), (Cs3) and (C,), Whittle’s 0, and LRP 0,, estimators are asymptotically

equivalent: Lhe two methods are asymplolically similar.

Note that, in fact, the estimation is performed in two steps. If § = (g2, 0%), 0* is estimated
first, using that F(0,z) = o?F(0,,z) with 0, = (1,0*). The fisrt step gives then the two
estimates 0} and 0. The second step gives estimates of o2 with:

&121 = (2/"7') kZA Im\'( 1(071’ n
52 = e:z:p{(?/m) > In (I,,X(J)F—l((i;,z))}
l€EAm

11



Such a procedure is known to be consistent under regularity assumptions on the contrast,
condition which are satisfied here provided that the first step estimators are consistent (see

Hardouin (1992) and Guyon (1995)).
Proof of Theorem 5: Let A, = {k,\x = 2wk/n € [0, 7]}.

Whittle’s estimator is obtained by minimization of

Wa(0) = (4/n) 3 (InF(8, \e) + Lux (M) F2(0, X)) ,

keAn
and we have:
0 = vnW ) (6o) + WP(6%) v/(0a — 60) with |05 — 0ol < (|6, — bo]
On the other hand, we consider the contrast:

Vi (0) = (2/m) 3 (In Lux (1) = §(0,1))°

1€EAm

in the LRP method, and we also have:
= VnVk (00) + Viok (6) Vr(Ba — 60) with |85 — Oo]| < ([0 — Ool|

Then to prove Theorem 5 it is sufficient to show that:

Ivn W (00) — V/aVyk (6)|l — 0 in Py, — probability (12)
W®(6*) and V(z)» 9* have the same limit in probability 13
n n K
oF

e Let us denote h(0,z) = ( /F)(9 2nz). We have:

\/7-7’1/1/19)(00) Z h 009 n - Z 111/\ )\L F /F2)(00,)\k)

keAn kéAn
= Z h 00, n - n E I'ne )\k) h(gm n)
" keAn kEAn
—— % 8,00, M) (= F?)(
e

With Priestley’s (1981) Theorem 6.22, (C3) and (C;), we know that there exists a > 0 such
that 1B 5,1(00,)\;,) /F (00,/\L)|' < (CB)/(n'/***p?) and so, the third term of /W (0,)

tends to 0 in L.

On the other hand, \/— i, ,\( o) = Ty + Ty + T with T defined by (7), (8), (9).
We know from Theorem 4 that Tj - N(0,161(00)) where the part depending on In(1 + £7)

has null weight on the asymptotic variance and that 75,75 L &K}l "4,

12



- F .
Thus, the main term of Ty is —(4v/n/m) Y (Im(l) — l) (%—0/17)(00,277(1]\" + Ety/n).
1€Am
Besides, under (C;) and (Cy), ({K + L;'—‘)/n = ({ +1/2)/m + 1/2n can be replaced by
({4 1/2)/m. So we want now to compare:

VAWID(06) = == 5 (Ine(h) = 1) A8, £) and VAV, 3(00) = =22 5 (1) = 1) h(do, 2222)

4
n
The Taylor’s expansion gives:

h(00,5) = h(0p, E2L2Y (£ - HA2)Gh(g, LHUZY 4 Lk WLUZNE 2R, 7y )

m m

with |§Ik,[ - %El < |£- - I—%ﬁl
Then —y/a Wi 1 (60)/4 4 v/n V., ¢ (80)/4 = Ay + Az + A3/2, with:

Av = (Vafm) 3 h(bo, 552) = (1/v/n) 3 hibo, ),
IE€Am k€A
| A2=(1/vn) 3 @(OO,M) D (5 =) (M),
I€Am kEIz
A3 = 1/\/_ Z Z Ine(/\k)ax2(007xk 1)
l€Am k€T,
We have:
ol
- Ay = (1//n) { Z Z ( ﬂL h( o,f))} = —(2my/n)! Z al(()o’ 43 )+O(n-1/2)
1€Am ke, teAm 9%
because Y (£ -—-—L-) = 1/2m. Then 4; — 0.
keT,
- We know that the I,,.(A¢) are i.i.d Ezp(1). Then IE||A;|| — 0 still with 2(%—%2) =1/2m

kEI{
and with (C4): Var||Ao)| < (C/n) 3 S0 (& — Hl2yz
But |£—L'%Q| < 1/2m so Var ||As]| < (CmK)/(8nm?) — 0 so that A, — 0 in Py,-probability.

- In the same way, Az — 0 in Py, -probability.
So that finally we get (12).

e U7 tends to 6o (0, is consistent) so we can consider

W) = (@) D S0 = W) T ) (300 5) = h(00 00,2

k€A, h€EAn

—(4/n) Y & ao,Ak)aa ((5_‘.9_/}?2)(90, ’\k))

k€EAn

13



As previously, we use Theorem 6.22 of Priestley (1981): there exists a > 0 such that
IE [62(0o, M)} < Cn~'2* and assumptions (C;) and (C4) imply that all terms in the matrix

600 %g/F2> are bounded.

Then IEW?(0%) tends to

12 9l 12 (9 N e o
4/0 55 (00,2)- /0 (ao(o"’) h(Bo,x)h(Go,x)>dx_4/0 h(8o, 2)h (60, z)'dz = 41(6,).

2 Oh

R 1/
Besides, VarW2(0%) ~ (16/n)/ (30 (0o, z) — h(0o, z)h(0g, z)")* dz —2 0,
0 n—00

In the same way, we can consider

VB2 ~ = (/m) 3 (Tuell) = 1) 20 (00, B242) 4 (4/m) 3 (00, L2000, 142

IeAm '€A1"

Then IEV () (9*) tends to 4/ h(6o,z)h(6o, )" dz and VarV, %) (0%) < C/(mK), term by

m,K
term.

This gives (13). =

4 The non-Gaussian case.

We assume now that:

e g; are i.i.d (0,1) and their eighth moment pg exists
(],) IEIT,;I(_,)P < 4oo for K > 5

and:

(H’x): (Hx) and IE]I < 4oofor K 25

x (1) l2
Let us recall equation (5): In fnx(l) =g(6,1) + W/ + U, le A,

Theorem 6 Assume (H’x), (H’) and (Cy), (C;) and (C3).
(1) The least square estimate 0, of the regression (5) is weakly consistent.
(it) If moreover F is of class C* w.r.t. 0,

VA (Bn —00) == N(0,1(80)™"J(00)(60) ™)

. _ Ha— 3 " @ " Qg ’ . . ] ]
Zzth J(0) = a2 [/0 20 0, z) d:z] [/0 50 0,z) dx] + 1(0), where 1(0) is defined in Theorem

14



Remark: Looking at the proofs of the Theorems 1 and 3, the assumptions do not provide
sufficient control to allow an almost sure consistency. However, the strong consistency could

1
be obtained with stronger hypotheses: (H’x) and (H’.), (C,1), (C2), (Ca), IE[I‘ (0)® < ©
_ 1
: 18
and E[(L.()) = 1)*] = 0(1{4) and IE[I | <>

Besides, the convergence of the estimator based on the Pseudo periodogram can also be

proved: (Hy), (H’.), (C,;), (C;) ensure weak consistency and if we add IE[

1
m} < o0 and
- 1
IE[(Ins(l) — 1)8] = O(F)’ we will obtain the strong consistency.
Proof of Theorem 6:

(z) For weak consistency, the criteria A, B, C must be replaced by A’, B, C’, where A’ and
C’ are as A and C with convergence in probability instead of almost sure.

From the proof of Theorem 1, we find — Y In I..({)* 7:_%0 0 instead of (6) (almost sure) because
I€Am
we only can check:

Lemma 4 [E[ln I,,.(1)? is of order O(%)

2 .
From the proof of Theorem 3, we also have to control — E UZ, but with no result on

IGA'l’l
1
E{——:/].
b
For all z,y > 0, |ln§|§2< E;;ﬂ_*_ Ij:-yl)'
Indeed, ||n—|—)|1“\/_|<2( 1\/17I+ )

and |z — /y| < /lx —yl. Thus,
. 2
(“ (\/Inx \/jnx(l))) }

3.()] D
I_nX(l)an(l)
A(1)?] [mb + (IE [6,(0)%) IE [Jnxl(l)z])— +2IE

The order of this last expression is given by the one of |/IE [Sn(t)z] which is not summable but

tends to zero.

2
That finally gives — Z U? — 0 in Py, -probability.
™M 1cAm

E[U}] < 4E

IN
N
TN
&
| —— |

(=%
=1
~

| W |
+
&

——

NS

~

=

| ISR )
4
[\]
&

IN
NS
TN
N
&
>

Lix(D)Jax (1)
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Thus, we get the convergence in L' (and so in probability) of the contrast process towards the
same contrast function as in A, which implies A°.
Also, we supply criterion C by C’:

lim Pa,(Wp (%)z@:o

m,K—o00

which will be obtained in a same way.

(12) For sake of simplicity, we give the proof of (:7) for @ scalar. The extension to the vectorial
case is straightforward.

Looking at the proof of Theorem 4, as the result of Priestley is given without Gaussianity
assumption but needs only independence and equidistribution with eighth moment, we see that
under (H’.), (H’x) and (C3), we can report to regression (4). This means that, keeping the

notations of Theorem 4, \/7_1\/(1 ((0) = T1 + Ty + T3, the previous remark implies T3 —L 0.
e We have [ ()—1=n"" Z(e, —1)+n7" Y e, at —s) with a(j) = K1 Y cos 2rkj/n.

t=1 ’;t:tl keI,
Then Cov(I,.(I)-1, l_m(l’) —1) = (pa —3)/n+ Ay with Ay = (2/n?) E ai(t—s) ap(t—s).
s,t=1

We know that in the Gaussian case, this is zero if [ # !’ and K~ if | = . Then Ay =6 ,//I\
Therefore,

H4 — 3 51,1'
n K

COV(I_M(I) -1, I—ne(ll) - 1) = (14)

We need now the following lemma which is the analogue of Lemma 2:

Lemma 5 Under (H’), [|In Tull) = (Tne() = D). = O(%)

A

Thus, we can consider again I.({) — 1 in place of In I,,.({) under (C,), (C3) and (H’.). So
that, 73 5 0.

e Let A be a continuous function deﬁned on [—m, 7], symmetric and Riemann square integrable.

Let L{™ = (2v/n/m) > h(E) (Ine(l) - 1).

l€Am
According to (14), VarL{™ tends to 4A?(h) = 4 [(#4 - 3)( ! / h(z)dz)® + -1— /7r /12(15)(13:].
2n
Applying this result to 7y = —2L{™ —(4y/n/m) > A(3)In(1+ ) with /z(z"l) 99 (00, [)and

00
h€EAm
as we know from the proof of Theorem 2 that the second term has no weight in the asymptotic

variance, we have nlglolo VarTy = 16J(6p). The following weak convergence result:

Lemma 6 L{™ — N(0,44%(h)).
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implies the convergence in law of T} to N (0, 16J(6y)), as its second term tends to 0 in probability.
On the other hand, IE[V,,(E:}((HO)] —2 41(bo) and Var Vm 1 (00) tends to zero with (14).
This ensures Theorem 6. =
Proof of Lemma 4: We still write I.([) =1 =n"") (el —1)+n™" > ee, ai(t — s). Then
t=1

s,t=1
s#¢t

we calculate (fn,(l) - 1)4. Since the ¢ are independent variables (0,1), we find that the order
of the expectation will be given by terms involving the square of A

2
1
P E —_ = —.
Al,l = ( 2/n al t S ) [‘,2

s, t=1
Then we get the result with (H’,) and [E[ln I,.({)?] < (IE[(I_M(I) - DYE[(+H ot 1)“])i .

Proof of Lemma 5:

Lne(1) = (Tne(l) = 1 l—IEl(lnI o) = (Toeld) = 1)) 1oy |
+IB| (10 Tne (1) = (Fne(l) = 1)) 11, <2
Because g(2) = 2z — 1 —1Inz — (z — 1) < 0 on (3,00, the first term is less or equal to
21E( Lie() — 1) which is of order O() with (14).

1
L (1)

E (ZInZZ—Zj:l) 1z52.

Now we use g(z) = zlnz—2+4+1—2(2—1) < 0for 2 > 1 and then £, <IE[(Z — 1)1z52].

So that we have:
1 1 - L.()\*]? [ 1
< — =11, gl < 17 nell) 1
b < B [( ne(l) 1) 11"‘(1)<§ <k [( L (1) ) } P ne(l) < 2]

< (007 B w0 <)

J is constant; then IP [I_M(l) ] <P [

o Let Z7 = Then the second term, say FE,, is equal to IE(% —1+1In Z) lzs2 =

™

Under (H’,), E

1 = 2
T Le() = 1| > §] <4 [(1,15(1)— 1) ]
1 .
which is of order e with (14), and we know from the proof of Lemma4 that 1IE [( Le(l) — 1) l] =
O (1\%) which ends the proof. = ‘

n—1
Proof of Lemma 6: - We have L{™) = \/_[ m(0)(Cn(0) — 1) + 2 Z An(5)(1 = 3/n)Ch(y )]
7=1
n—j
with A, (7) = (2/m) Y. h(Ea(j), and Cu(j)=(n—j)' D cew;, j=0ton—1.
leAm t=1
n—1
Then Var L{™ = (ug — 1) AZ(0) +4 > (1 — j/n) A% (5) which tends to 4A%(k) with (14).
i=1

17



Note that we can also write

I€EAm l€Am

VarLi = 4(us 1) (m > h(%")) [ RPLHC (m-l Zh(%ﬁ")) }

1 [~ .
-V5e{0,1,...,n -1}, .A()—)A() ;r-/ h(z) cosjz dz.
Let B,.(5) = /1 — j/nAn(s). Note that, for any fixed 7, 7 <n, B..() — A(j).

Let L&) = /n{A(0)(Ca(0) = 1) +2 Z AWV = 5/nCu(3))-

We also have Var L{®) = (u, — 1).A%(0) + 4 Z A5

i=1

From —/ h*(z) dz = A*(0) + 2> A%(j), we obtain Var L(°°) — 4A%(h).

1>1
- So we have a sequence of *(IN)  B,, = (Bwm(3), 7=0,...,n—1), B,.(j) =0 if j > n, such
that

2 =L [T 1/ 2
1Bull? —2 C(h) = %/0 h2(z) d:z:+2(27r/0 h(z) dz)’,

and one element of [2(IN), A = (A(j) , j = 0) such that ||A4]|?> = C(h).
Moreover, B,.(j) = A(7) for every fixed j. Using the following result:

Lemma 7 B, — Ain I*(IN)

We have: Var(L{™ L(°°)) (ua — 1)(B,,(0) — )+42 m(J) — ))2

<sup{us —1, 4} ||Bn — A||* which tends to zero.
- Finally, let

Yo = VA(AO)CH0) = 1)+ 2L AGNT = §/nC(0)

Because of the normal convergence of the (1/n(Cn(0) — 1) , v/nCu(J) , 7 > 1), as stated in

Corollary 8.4.1 of Theorem 8.4.2 of Anderson (1971), we know that Y, —£> Y, ~ N(0,02),

with 0 — 4A%(h); then Y, 5 Y ~ N(0,4A%(h)). As Var(L® — Y,,) = 45 A%(j) — 0
>p

uniformly in »n when p — 400, Proposition 6.3.9 in Brockwell and Davis (1991) implies that

L) 5 N(0,4A%(R)). =

Proof of Lemma 7: We have

[e o] n—1 n—-1

1B — All> = > (Bn(5) — ZB +ZA —22 1 = j/nAn()AQG).

= Jj= j=0
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We know that

lim B = C(h) and oO.A'z-—-C'h.
piim Z_% (h) ; () (h)
We have to prove that the cross product term has the same limit. For that purpose, we write
1~ 1m
A(j) = _/ h(z) cos(jz)dz = —/ (%) cos(ui)du/n
7 Jo
so that
n-l - ‘n. 1 n—
— 1 y Y — 27rl — .L ,) ;: i
g\/l n-Am(J)A(J) 7rmK lg kEZI / ( V1 cos( 7rl ) cos(u )) du

1 "-
\/1 - -7- cos(2mk) cos( ul / \/1— ycos 27rky) cos(uy)dy + 5= + O(n~2),

with the trapezoxdal rule, and we find that
= : N L/ 2
Jm Y V1= 5 /nAn()AG) = 2 (%/o h(a:)d:z) + lim T,
where
T = (2/mmi) Y > h(2) / " (/ /1 — z/n cos(%) cos 2"““)dz/n) u
leAm k€T
with the change of variable y = z/n.
T, = —/ V1—z/n(1/mK) > h(Z) D" cos(Zxkz) / h(v) cos(vz)dv dz
l€EAm keI,

with the change of variable v = u/n.
Then as
1

(1/mK) > h(3) Y cos(2zzk) =3
™

I€EAm ke

2
nli’rlloo T, = nli}r_glooél \/1 —z/n ( / h(z) cos(z:c)dx) dz.

Then the Plancherel formula for continuous Fourier Transform applied to h(z) = h(z)l{_pm
gives

/ h(z) cos(zz)dz + O(n™'),

we find that

+00 1 ™ 2 1 L 2
4/0 <-2_7r/o h(z) cos(u:z:)da:) du=o— [ h(u)*du.

T Jo

Then as /1 — z/n is dominated by 1, Lebesgue Theorem implies that

lim Z 1-3/nAL(7)A(7) = 2(27T/"h(x)d:v)2+2i7r/wh2(:c)dx .

'n.—)+oo
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5 Simulation results

We give simulation results obtained both in the Gaussian and the non Gaussian (e uniform
U(0,1)) cases, and with both Whittle and LRP methods.

The process we consider is a non-long memory process we call FRAC(1) because of an
apparent fractional feature: (1 — aL)!X; = &, |a| < 1, & iid (0,0?). The spectral density can
be written here f();d, a) = 02|1 — ae™*|™% = (1 4+ a? — 2a cos )40,

T

From model (1), we generate truncated series X; = > aje;—; with 7' = 8000 (instead of

J=0
T = +00), the a;’s being computed recursively (see Goncalves (1987)); more precisely, for
+o0o .
an MA process with transfer function A(z) = Za_,-z’, let B and C be polynomials with
i=0
1 dA B(z .
no common roots such that: A(z) diz) = E ; B(z) = by + byz + ... 4+ bx_12K7! and

C(z)=co+ciz+ ...+ cxzl,c # 0. Then the a;’s satisfy the equation:

(cog)a; + (=bo +c1(j —1))ajo1 + ...+ (=bx-1 + ek (j — K))aj_x = 0.

We have, for the FRAC(1) process: Alz dzziz) =7 _C_Ydaz
obtain ap =1, a; =a(yj — 1 + d)a;—1/j, 72> 1.

Then we estimate the parameters d, @ and o2 by the two methods. For instance, Whittle’s
contrast can here be written:

, where A(z) = (1 — az)™% so we

LY =Ino? +

1 T
[ T — e PaA = Luo? + / Lo (27)[1 — cre™ 57 P,
2wo? Jon
so that dw and é&w minimize the integral term, and then o2, = [/* 1,2 Lux (2mw) x
Il — awe—2nrw|2dwdw.

On the other hand, we obtain JLRP, aLrp and L;ELRP from the following regression equation:
In Lix(l) = Ino? + dg(a, ) + & [=0,...,m/2 -1

where here §(a,l) = —In|1 + o® — 2a cos 2r (1K + ££L /n)).
a is sampled by 1072 steps; for each value we calculate d and choose (&LRP,(ZLRP,IHAUELRP)
which minimize ¥ €?.

Table 1 gives the results obtained from 100 simulations, n = 4096, m = I = 64. Note that
here, the choice m = K is a limiting case that is clearly not fulfilling condition (C,) and that
the regressions are performed with only about 30 data.

Finally, we would further point out that we have also applied the ”log-periodogram” regres-
sion (LP) proposed by Kashyap and Eom (1988); we obtained good results, also illustrating
the 72/6 ratio between the LRP (and Whittle) and LP estimators’ variances.
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FRAC(1)
Gaussian Non Gaussian (2(0,1))

W LP LRP w LP LRP
d =0.30 0.2980  0.3005 0.2981 0.3000  0.2999 0.3013
DSE x10° 1.41 2.38 1.46 8.38 16.5 8.20
a =0.80 0.8022  0.8063 0.8029 0.7975  0.7968 0.7961
DSE x10° 3.90 6.20 4.01 2.88 5.41 2.85
ol =1 1.0014  1.0027 0.9933 1.0009  1.0036 0.9936
DSE x10* 2.11 7.66 5.33 1.87 4.88 2.44
d=0.45 0.4689  0.4719 0.4696 0.4535  0.4441 0.4548
DSE x10° 7.64 10.4 7.91 4.41 9.20 4.73
o =0.60 0.5940  0.5867 0.5941 0.6051  0.6202 0.6044
DSE x10° 6.94 12.1 7.22 6.01 10.2 6.24
at=1 1.0017  1.0007 0.9944 0.9997  1.0005 0.9925
DSE x10* 4.01 6.89 4.73 2.02 5.13 2.74

Table 1: Simulation results for a FRAC(1),
W: Whittle method, LP: Log-periodogram method, LRP: Log Regularized Periodogram method.

n = 4096, m = K = 64, 100 simulations.

ACKNOWLEDGEMENTS

The authiors thank Professor X. Guyon for useful advices and helpful discussions.

REFERENCES

AMEMIYA, I, (1986) Advanced econometrics. Blackwell, Oxford.

BRILLINGER, D.R. (1981) Time series. Data analysis and theory. Holden Day.

BROCKWELL, P.J. and DAVIS, R.A. (1991) Time Series: Theory and Methods. 2nd Edn. Springer-Verlag,
New-York.

DACUNHA-CASTELLE, D. and DUFLO, M. (1986) Probability and statistics. Vol.2. Springer Verlag.
DAHLHAUS, R. (1989) Efficient parameter estimation for self-similar processes, Annals of Stalistics 17, 4,
1749-1766.

DAVIS, H.T. and JONES, R.H. (1968) Estimation of the innovation variance of a stationary time series. Amer-
ican Stat. Assoc. Journal March, 141-148.

FOX, R. and TAQQU, M.S. (1986) Large sample properties of parameter estimates for strongly dependent
stationary time series. Annals of Statistics 14, 2, 517-532.

GEWEKE, J. and PORTER-HUDAK, S. (1983) The estimation and application of long memory time series
models. J. Time Series Anal. 4, 4.

GONCALVES, E. (1987) Une généralisation des processus ARMA, Annales d’Economie et de Statistique 5,
109-145.

GRAY, H.L., ZHANG, N.F. and WOODWARD, W.A. (1989) On generalized fractional processes. J. Time
Series Anal. 10, 233-257.

GUYON, X. (1995) Random fields on a network. Modeling, Statistics and Applications. Springer Verlag.
HARDOUIN, C. (1992) Quelques résultats nouveaux en statistique des processus : contraste fort, régression a
résidus a longue portée, estimation par log-périodogramme. PhD University Paris 7.

21



HASSLER, U. (1993) Regression of spectral estimators with fractionally integrated time series. J. Time Series
Anal. 14, 369-380.

KASHYAP, R.L. and EOM, K.B. (1988) Estimation in long memory time series model. J. Time Series Anal.
9, 1.

KUNSCH, H. (1986) Discrimination between monotonic trends and long range dependence. J. Appl. Prob. 23,
1025-1030.

PRIESTLEY, M.B. (1981) Spectral analysis and time series. Vol 1, Academic Press: London.

ROBINSON, P.M. (1994) Semiparametric analysis of long-memory time series, Annals of Statistics 22, 1, 515-
539.

TANIGUCHI, M. (1979) On estimation of parameters of Gaussian stationary processes. Journal of Applied
Probability 16, 575-591. ‘

TANIGUCHI, M. (1980) On estimation of the integrals of certain functions of spectral density. Journal of
Applied Probability 17, 73-83.

22



Prépublications du SAMOS

1991

1 - Catherine BOUTON, Marie COTTRELL, Jean-Claude FORT, Gilles PAGES
Self-organization and convergence of the Kohonen algorithm. 21p.

2 - Ellen SAADA
Seuil critique dans un réseau de neurones complétement connecté par des liens inhibiteurs. 6p.

3 - Xavier GUYON, Cécile HARDOUIN
The chi-square coding test for nested Markov random field hypotheses. 11p.

4 - Xavier GUYON
Variations et identifications de champs gaussiens sur R2. 6p.

5 - Xavier GUYON, Hans R. KUNSCH
Asymptotic comparison of estimators in the Ising model. 22p.

6 - Xavier GUYON
Meéthodes de pseudo-vraisemblance et de codage pour les processus ponctuels de Gibbs. 19p.

1992

7 - Collectif - SAMOS
Résumés des exposés : Séminaires 1990/91 et 1991/92. 42p.

Hors Série
Actes du Congrés Satellite du Congrés Européen de Mathématiques
Aspects Théoriques des Réseaux de Neurones
Paris, 2 et 3 Juillet 1992, M.Chaleyat-Maurel, M.Cottrell, J.C.Fort (Editeurs)

8 - Gilles PAGES
Mosaiques de Voronoi, algorithmes de quantification de I'espace et intégration numérique. 21p.

1993

9 - Claude BOUZITAT, Gilles PAGES
Frangaise des Jeux, biographie non autorisée. 21p.

10 - Jean-Claude FORT, Gilles PAGES
Sur la convergence p.s. de l'algorithme de Kohonen généralisé. 7p.

11 - Jian-Feng YAO
Détection de défauts de cuir et leur classification. 11p.

12 - Actes de la Rencontre Franco-Suisse 93 : Laboratoire d'Econométrie de Genéve et SAMOS
112p.

13 - Morgan MANGEAS, Corinne MULLER
Réseaux de Neurones et Prévision de Séries Temporelles :
Premier Rapport CERD SOAD/SAMOS. 33p.



14 - Morgan MANGEAS
Réseaux de Neurones et Prévision de Séries Temporelles :
Deuxiéme Rapport CERD SOAD/SAMOS. 71p.

15 - Marie COTTRELL et Jean-Claude FORT
Bases Mathématiques pour les Réseaux de Neurones Artificiels
Cours COMETT-NEURAL. %4p.

16 - Marie COTTRELL et Jean-Claude FORT
Mathematical Bases for the Artificial Neural Networks
Cours COMETT-NEURAL 9%4p.

17 - Marie COTTRELL
Les Mathématiques des Réseaux de Neurones
Cours donné a Neuro-Nimes 1992.

18 - Marie COTTRELL
Cours NSI 93 (Saint Jean du Gard) _
Apprentissage et Chaine de Markov, Analyse de Données et Réseaux de Neurones. 76p.

19 - Marie COTTRELL, Patrick LETREMY et Elisabeth ROY
Analysing a Contingency Table with Kohonen Maps : a Factorial Correspondence Analysis. 7p.

20 - Marie COTTRELL, Bernard GIRARD, Yvonne GIRARD, Morgan MANGEAS et Corinne
MULLER
Neural Modeling for Time series: a statistical Stepwise Method for weight elimination. 21p.

21 - Xavier GUYON, Philippe JOLIVALDT
Description de l'ensemble de bon choix de mod¢le par le critére du minimum de contraste
pénalisé. Application a l'identification de modgle. 30p. ’

22 - Xavier GUYON, Philippe JOLIVALDT, José¢ R. LEON
Schémas de discrétisation d'un processus gaussien pour la similation et I'estimation. 41p.

23- Morgan MANGEAS
Réseaux de Neurones et Prévision de Séries Temporelles :
Troisiéme Rapport CERD SOAD/SAMOS

24- Jean-Claude FORT, Gilles PAGES
Réseaux de neurones: des méthodes connexionistes d'apprentissage. 19p.

25- Fabienne COMTE, Eric RENAULT
Non causality in continuous time models. 36 p.

26 - Fabienne COMTE, Eric RENAULT
Long memory continuous time models. 48 p.

27 - Xavier GUYON, Cécile HARDOUIN, Jian-Feng YAO
Test de Différences de Contrastes et Somme Pondérés de Chi-deux, 24 p.

28 - Jean-Claude FORT, Gilles PAGES
A non linear Kohonen algorithm, 6 p.



1994

29 - Jean-Claude FORT, Gilles PAGES
About the a.s. convergence of the linear Kohonen algorithm with a generalized neighbourhood

function, 26 p.

30- Marie COTTRELL, Bernard GIRARD, Yvonne GIRARD, Morgan MANGEAS, Corinne MULLER
SSM: A Statistical Stepwise Method for Weight Elimination, 6p.

31- Marie COTTRELL, Jean-Claude FORT, Gilles PAGES
Two or three things that we know about the Kohonen algorithm, 10 p.

32- Marie COTTRELL, Jean-Claude FORT, Gilles PAGES
Comments about "Analysis of the Convergence Properties of Topology Preserving Neural
Networks" by Zhen-Ping Lo, Yaoki Yu and Behnam Bavarian pp 207-220, Vol 4, N°. 2, March 1993. 5 p.

33 - Jean-Claude FORT, Gilles PAGES
Convergence d'algorithmes stochastiques: le théoreme de Kushner & Clark revisité, 33 p.

34 - Claude BOUZITAT, Gilles PAGES
Tant qu'il y aura des routes... 12 p.

35 - Xavier GUYON
Modeéle d'équation différentielle stochastique linéaire échantillonnée & temps discret. 13 p.

36 - Carlo GAETAN
A stochastic algorithm for maximum likehood of Gibbs point processes. 14 p.

37 - Smail IBBOU, Patrice GAUBERT, Christian TUTIN
Prix des logements et prix du sol en Ile de france. 34 p.

38 - Catherine BOUTON, Gilles PAGES
Convergence in distribution of the multidimensional Kohonen algorithm with 0 neighbour. 30 p.

39 - Samuel BAYOMOG, Xavier GUYON, Cécile HARDOUIN, Jian-Feng YAO
Test de différence de contrastes et somme pondérée de Chi-deux. 24 p.

1995

40 - Claude BOUZITAT, Gilles PAGES
Pour quelques images de plus..., 12 p.

4] - Jean-Claude FORT, Gilles PAGES
About the Kohonen algorithm: Strong or Weak Self-organisation? 15 p.

42 - Marie COTTRELL, Patrick LETREMY
Classification ct analyse des correspondances au moyen de l'algorithme de Kohonen: application a
1'é¢tude de données socio-économiques. 10 p.

43 - Jo&l CHADOEUF, Xavier GUYON, Jian-Feng YAO ,
Sur l'ergodicité de I'estimation par Restauration-Estimation de modeéles incomplétement observés.

11 p.



44 - Jean-Gabriel ATTALI Gilles PAGES
Approximation of functions by perceptrons, a new approach. 11 p.

45 - Marie COTTRELL, Bernard GIRARD, Yvonne GIRARD, Corinne MULLER, Patrick

ROUSSET
Daily electrical power curves : classification and forecasting using a Kohonen map. 8 p.

46 - Fabienne COMTE, Cécile HARDOUIN
Regression on log-regularized periodogram for fractional models at low frequencies. 19 p.

47 - Fabienne COMTE, Cécile HARDOUIN
Regression on log-rey: 'rized periodogram under assumption of bounded spectral densities: the
non fractional and the fraction: * cases. 14 p.

48 - Patrick ROUSSET
Prévision des courbes demi-horaires au moyen d'une classification de Kohonen. 25 p.

49 - Smail IBBOU et Marie COTTRELL
Multiple Correspondence analysis of a crosstabulations matrix using the Kohonen algorithm. 6 p.

50 - Philippe JOLIVALDT
Schémas de discrétisation pour la simulation et I'estimation d'un CAR(2): une étude expérimentale.

22 p.

51 - Philippe JOLIVALDT
Utilisation de méthodes implicites pour la simulation et I'estimation de modéles CAR(2) . 14 p.

1996

52- Samuel BAYOMOG
Estimation of a Markov field dynamic. 14 p.

53- Morgan MANGEAS ct Jinn-feng YAO
Sur Pestimaterr des 1 dres carrés des modéles auto-régressifs fonctionnels. 19 p.

54- Marie COTTRELL, Florence PIAT, Jean-Pierre ROSPARS
A Stochastic Mlodel {1 nterconnected Neurons. 17 p.

55. Marie COTTRELL, Jean-C''aude FORT, Gilles PAGES
Two or three mathema!ical things about the Kohonen algorithm. 31 p.

56- Marie COTTRELL, Bemard GIRARD, Patrick ROUSSET
Forecasting of curves using a Kohonen classification. 14 p.

57- Jean-Claude FORT. Gille- " AGES
Quantization 1+ Orga: -ation in the Kohonen S.OM.5p.

58- Eric de BODT, Maric CC7TRELL, Michel LEVASSEUR
Réseaux de ncurones - linance.33 p.

59- Maric COTTRELL, Eric ¢ - B0ODT, Emmanuel HENRION, Ismail IBBOU, Annick WOLFS,

Charles Van WYMEL'RSCH
Comprendre |1 décision A Iaide d’une carte de Kohonen. Une étude empirique. 16 p.



60 Marie COTTRELL, Eric de BODT
Understanding the lcasing decision with the help of a Kohonen map. An empirical study of the
Belgian market. 5p.

61 Marie COTTRELL, Eric de BODT, Philippe GREGOIRE
The relation between interest rate shocks and the initial rate structure: an empirical study using
a Kohonen map. 16p.

62 Marie COTTRELL, Eric de BODT, Philippe GREGOIRE
A kohonen map representation to avoid misleading interpretation. 8p.

63 Marie COTTRELL, Eric de BODT
Analyzing shocks on the interest rate structure with Kohonen map. 6p.

64 Marie COTTRELL, Eric de BODT, Philippe GREGOIRE
Simulating interest rate structure evolution on a long term horizon. A kohonen map application.

5p.

65 Fabienne COMTE, Cécile HARDOUIN
Log-regularized periodogram regression. 22p.



