

Centre de Recherche SAMOS

Statistique Appliquée & Modélisation Stochastique

On constrained simulation and optimization by Metropolis chains

J.F. YAO

Prépublication du SAMOS N° 66 (Version révisée) novembre 1998

On constrained simulation and optimization by Metropolis chains

J. YAO* SAMOS, Université Paris 1

Abstract

Given a everywhere positive probability measure π on a finite state space E and the associated energy function H, we propose time-inhomogeneous Metropolis chains to simulate π and to minimize H under some constraints.

Keywords: Constrained simulation; constrained optimization; Metropolis algorithm

1 Introduction and notations

Let π be a everywhere positive probability measure π on a finite state space E given by $\pi(x) = Z^{-1} \exp[-H(x)]$ where $H: E \to \mathbb{R}$ is the associated *energy* function. Assume that we are interested in some subset $E_c \subset E$ defined by a constrained equation $E_c := \{J=0\}$ where the function of constraints $J: E \to \mathbb{R}^+$ is otherwise positive. Let π_c be the restriction of π on $E_c: \pi_c(x) = 1_{E_c}(x)Z_c^{-1} \exp[-H(x)]$ (throughout the note, the letter Z is used to denote generic normalizing factors). We consider the following two problems:

- (i) Problem [S]: simulate the distribution π_c .
- (ii) Problem [M]: minimize H over E_c .

We propose to solve these problems by Markov chains endowed with a time-inhomogeneous Metropolis dynamic. Let (β_k) , (λ_k) be two positive non decreasing sequences and q a symmetric and irreducible Markov transition kernel on E and set

$$H_k(x) := \beta_k [H(x) + \lambda_k J(x)], k \ge 1.$$

$$\tag{1}$$

Let us consider a inhomogeneous Markov chain $X := (X(k))_{k \ge 0}$ with state space E whose transition probabilities at time k is given by the following Metropolis rule (we write a^+ for $\max(a, 0)$):

$$P_k(x,y) = \begin{cases} q(x,y)e^{-[H_k(y) - H_k(x)]^+}, & y \neq x, \\ 1 - \sum_{z \neq x} P_k(x,z), & y = x. \end{cases}$$
 (2)

It is well-known that for each k, P_k is irreducible and reversible with respect to the probability measure (p.m.)

$$\pi_k(x) = Z_k^{-1} \exp[-H_k(x)],$$

and consequently, π_k is the unique invariant probability measure (i.p.m) of P_k . Let us set

$$H_0 := \min\{H(x) : x \in E_c\}, \quad E_0 := \{x \in E_c : H(x) = H_0\},$$

^{*}SAMOS, Université Paris 1, 90 rue de Tolbiac, F-75634 Paris Cedex 13, France (yao@univ-paris1.fr)

and denote by π_0 the uniform distribution on E_0 . It is straightforward to find that

with
$$\beta_k \equiv 1, \lambda_k \uparrow \infty, \qquad \lim_{k \to \infty} \pi_k(x) = \pi_c(x), \qquad x \in E,$$
 (3)

with
$$\beta_k \equiv 1, \lambda_k \uparrow \infty,$$
 $\lim_{k \to \infty} \pi_k(x) = \pi_c(x),$ $x \in E,$ (3)
with $\beta_k \uparrow \infty, \lambda_k \uparrow \infty,$ $\lim_{k \to \infty} \pi_k(x) = \pi_0(x),$ $x \in E.$ (4)

Let us set $P^{(m,k)} = P_{m+1} \cdots P_k$, the transition probabilities from time m to k (k > m). The aim of this note is to establish conditions on the control sequences (β_k) and (λ_k) which guarantee that the chain X is strongly ergodic in the following sense ((Isaacson and Madsen, 1976)): there is some p.m. π_{∞} on E such that

for all
$$m \ge 1$$
, $\lim_{k \to \infty} \sup_{\mu} ||\mu P^{m,k} - \pi_{\infty}|| = 0$. (5)

Here $||\cdot||$ is the total variation distance and the supremum is taken over all p.m.'s on E. The target measure π_{∞} will be π_c or π_0 according to the considered problem.

When E is a product spaces, $E = \prod_{s \in S} F_s$, (Geman, 1990) have proposed a solution to these problems by using Gibbs sampling. Our approach, as well as the their, is based on Dobrushin's ergodicity coefficients ((Dobrushin, 1956)). More precisely, the ergodicity coefficient of a Markov kernel Q is defined as

$$a(Q) := \min_{x, x' \in E} \sum_{y \in E} Q(x, y) \wedge Q(x', y).$$
 (6)

By taking into account the convergences (3)-(4), a well-known result (see e.g. (Isaacson and Madsen, 1976)) implies that the ergodicity (5) is ensured if the following two conditions are satisfied:

(C1)
$$\sum_{k>0} ||\pi_{k+1} - \pi_k|| < \infty$$
;

(C2) for some positive integer
$$p, \sum_{k=1}^{\infty} a(P_{kp+1} \cdots P_{(k+1)p}) = \infty$$
.

For $\beta \geq 0$, $\lambda \geq 0$ and $x \in E$, let us define

$$\Pi(x; \beta, \lambda) := \frac{1}{Z_{\beta, \lambda}} \exp^{-\beta [H(x) + \lambda J(x)]},$$

so that $\pi_k(\cdot) = \Pi(\cdot; \beta_k, \lambda_k)$. The underlying expectations are denoted $\mathbb{E}_{\beta,\lambda}$ and \mathbb{E}_k respectively, with $\mathbb{E}_{\lambda} = \mathbb{E}_{1,\lambda}$.

To solve the problem [S], the sequence (β_k) is kept constant: $\beta_k \equiv 1$ while (λ_k) will be a sequence of positive numbers increasing to infinity. On the other hand, to solve the problem [M], both the sequences are required to increase to infinity (see Eqs. (3)-(4)). We examine in more details the conditions (C1)-(C2) for these two problems.

2 Condition (C1) on invariant probability measures (π_k)

The idea is to show that for large enough k, the sequence $[\pi_k(x)]$ is increasing for x belonging to the target set E_c or E_0 and decreasing otherwise. In this case, since

$$\sum_{k>0} ||\pi_{k+1} - \pi_k|| = \sum_{x \in E} |\pi_{k+1} - \pi_k|,$$

this sum is thus finite.

The simulation problem [S]. Recall that $\beta_k \equiv 1, \lambda_k \uparrow \infty$ for this problem. For $x \in E$, let us set $\varphi_x(\lambda) := \log \Pi(x; 1, \lambda)$. We have

$$\varphi_x'(\lambda) := \frac{\partial}{\partial \lambda} \varphi_x(\lambda) = \mathbb{E}_{\lambda} [J - J(x)] = \frac{\sum_{a \in E} [J(a) - J(x)] \exp \left\{ - [H(a) + \lambda J(a)] \right\}}{\sum_{a \in E} \exp \left\{ - [H(a) + \lambda J(a)] \right\}}.$$

If $\lambda \to \infty$ and $x \notin E_c$, $\varphi_x'(\lambda)$ tends to -J(x) < 0. On the other hand, for all $x \in E_c$, $\varphi_x'(\lambda) = \mathbb{E}_{\lambda}[J] \geq 0$. Hence for large enough k, we have $\pi_{k+1}(x) \leq \pi_k(x)$ for $x \notin E_c$ and $\pi_{k+1}(x) \geq \pi_k(x)$ for $x \in E_c$.

The optimization problem [M]. Here we have $\beta_k \uparrow \infty$ and $\lambda_k \uparrow \infty$. For $x \in E$, let be $\varphi_x(\beta, \lambda) := \log \Pi(x; \beta, \lambda)$. We have

$$\begin{cases} \frac{\partial}{\partial \beta} \varphi_x(\beta, \lambda) = \mathbb{E}_{\beta, \lambda} [H + \lambda J - (H + \lambda J)(x)] \\ \frac{\partial}{\partial \lambda} \varphi_x(\beta, \lambda) = \beta \mathbb{E}_{\beta, \lambda} [J - J(x)] \end{cases}.$$

We will show that for large enough β , λ , the function $(\beta, \lambda) \mapsto \varphi_x(\beta, \lambda)$ is coordinatewise decreasing for $x \notin E_0$ and coordinatewise increasing for $x \in E_0$. So, let $\lambda \to \infty$, $\beta \to \infty$:

- For $x \notin E_c$, $\frac{\partial}{\partial \beta} \varphi_x(\beta, \lambda) \sim H_0 H(x) \lambda J(x)$ and $\frac{\partial}{\partial \lambda} \varphi_x(\beta, \lambda) \sim -\beta J(x)$ which are both negative. Therefore $\varphi_x(\beta, \lambda)$ is coordinatewise decreasing for large enough β and λ .
- For $x \in E_0$, $\frac{\partial}{\partial \beta} \varphi_x(\beta, \lambda) = \mathbb{E}_{\beta, \lambda}[H] H_0 + \lambda \mathbb{E}_{\lambda \beta}[J] \ge 0$ and $\frac{\partial}{\partial \lambda} \varphi_x(\beta, \lambda) = \beta \mathbb{E}_{\beta, \lambda}[J] \ge 0$. It follows that $\varphi_x(\beta, \lambda)$ is coordinatewise increasing for large enough β and λ .
- For $x \in E_c \setminus E_0$,, $\frac{\partial}{\partial \lambda} \varphi_x(\beta, \lambda) = \beta \mathbb{E}_{\beta, \lambda}[J] \ge 0$ and $\frac{\partial}{\partial \beta} \varphi_x(\beta, \lambda) = \mathbb{E}_{\beta, \lambda}[H + \lambda J] H(x)$ that tends to $H_0 H(x) < 0$. The situation is here a little more complicated since these two derivatives have an opposite sign. However, we have

$$\mathbb{E}_{\beta,\lambda}[J] \sim \frac{J^*|E^*|}{|E_0|} e^{-\beta(H^* + \lambda J^*)}, \quad \text{when } \lambda \to \infty, \beta \to \infty,$$
 (7)

where the constants are:

$$J^* = \min \{ J(x) : x \notin E_c \}$$
 (8)

$$H^* = \min \{ H(x) - H_0 : x \notin E_c, J(x) = J^* \}$$
 (9)

$$E^* = \{x : x \notin E_c, J(x) = J^*, H(x) - H_0 = H^*\}.$$
 (10)

Let us take two positive, differentiable and increasing functions $\beta(\cdot)$, $\lambda(\cdot)$ defined on $[0,\infty)$ such that $\beta_k = \beta(k)$ and $\lambda_k = \lambda(k)$. Then

$$\varphi_x'(u) := \frac{\partial}{\partial u} \varphi_x(\beta(u), \lambda(u)) = \beta'(u) \left[\mathbb{E}_{\beta, \lambda}(H) - H(x) + \left\{ \lambda(u) + \beta(u) \frac{\lambda'(u)}{\beta'(u)} \right\} \mathbb{E}_{\lambda\beta}(J) \right]. \tag{11}$$

Note that $\mathbb{E}_{\lambda\beta}(H) - H(x) \sim H_0 - H(x) < 0$ and let us define

$$H_1 = \min \{H(x) - H_0 : x \in E_c \backslash E_0\}.$$
 (12)

Now assume that the following condition is fulfilled:

$$\limsup_{u \to \infty} \beta(u) \frac{\lambda'(u)}{\beta'(u)} e^{-\beta(u)\{H^* + \lambda(u)J^*\}} < \frac{H_1|E_0|}{J^*|E^*|}.$$
 (13)

In this case, the derivative $\varphi'_x(u)$ is negative for large enough u. Hence $k \mapsto \varphi_x(\beta(k), \lambda(k))$ is decreasing for large enough k.

To summarize, for the minimization problem [M], under the condition (13) and for large enough k, $\pi_k(x)$ is decreasing for $x \notin E_0$ and increasing for $x \in E_0$.

Remark 1 For logarithmic functions $\beta(u) \sim \log^a(u)$ and $\lambda(u) \sim \log^b(u)$ (when $u \to \infty$) with a > 0, b > 0, we have:

$$\lim_{u \to \infty} \beta(u) \frac{\lambda'(u)}{\beta'(u)} e^{-\beta(u)\{H^* + \lambda(u)J^*\}} \to 0.$$
 (14)

The condition (13) is thus satisfied. The same is true for functions $\lambda(\cdot)$ and $\beta(\cdot)$ satisfying for some positive constants a, A, b, B:

$$\limsup_{u \to \infty} \frac{\lambda'(u)}{\lambda^a(u)} \le A, \qquad \limsup_{u \to \infty} \frac{1}{\beta'(u)\beta^b(u)} \le B. \tag{15}$$

3 Condition (C2) on the ergodicity coefficients

We write Q > 0 for a Markov kernel Q on E satisfying Q(x,y) > 0, $\forall (x,y)$. Let be:

$$\begin{array}{lll} \delta_{H} & := & \max \left\{ \left[H(y) - H(x) \right]^{+} : & x, y \in E, \quad q(x, y) > 0 \right\}, \\ \delta_{J} & := & \max \left\{ \left[J(y) - J(x) \right]^{+} : & x, y \in E, \quad q(x, y) > 0 \right\}, \\ \gamma & := & \min \left\{ q(x, y) : & x, y \in E, \quad q(x, y) > 0 \right\}, \\ \partial x & := & \left\{ y \in E : \quad q(x, y) > 0 \right\}. \end{array}$$

We first prove two auxiliary lemmas.

Lemma 1 Consider the Metropolis algorithm with transition probabilities (P_k) defined in (2) For both the problems [S] and [M], there are two positive integers p, k_0 such that

for all
$$k \ge k_0$$
, $P^{(k,k+p)} > 0$. (16)

Proof. Case 1. If the kernel q is aperiodic, q is positive recurrent since E is finite. Therefore there is an integer p > 0 such that $q^p > 0$. Since for all x, y and j,

$$P_j(x,y) \ge q(x,y) e^{-[H_j(y)-H_j(x)]^+} \ge q(x,y) e^{-\beta_j(\delta_H + \lambda_j \delta_J)}$$
,

we get for all k,

$$P^{(k,k+p)}(x,y) \ge q^p(x,y) e^{-(\beta_{k+1} + \dots + \beta_{k+p})(\delta_H + \lambda_k \delta_J)} > 0.$$

Case 2. Otherwise, let q be a periodic kernel with period d. Since q is irreducible, there is a partition $E = E_1 + \cdots + E_d$ such that the iterated kernel q^d is positive recurrent on

each subclass E_j . We can then find a s_0 such that for all $s \ge s_0$, $q^{sd}(x,y) > 0$ if (and only if) x, y are two points in a same subclass.

On the other hand, let us take a point $a \in E_c$ for which there is a $b \in \partial a$ but not in E_c . This is always possible since q is irreducible and $E_c \neq E$. Therefore, $H_k(a) = \beta_k H(a) < \beta_k [H(b) + \lambda_k J(b)]$ for large enough k for both the two problems. Hence there is a k_0 such that $P_k(a,a) > 0$ for all $k \geq k_0$. It follows that for $p = 2s_0d + d - 1$ and $k \geq k_0$, we have $P^{(k,k+p)}(x,y) > 0$, for all x,y.

In the sequel, we will write p for the smallest integer satisfying (16).

Lemma 2 With the same assumptions made in Lemma 1, there is an integer k_1 such that for all $k \ge k_1$, we have

$$a\left(P^{(k,k+p)}\right) \ge \gamma^p |E| e^{-p\beta_{k+p}\left(\delta_H + \lambda_{k+p}\delta_J\right)}. \tag{17}$$

Proof. By Lemma 1, for $k \ge k_0$ and $(a,b) \in E^2$, there is a path $a = a_0 \to a_1 \to \cdots \to a_p = b$ for which $P_{k+p-j}(a_j,a_{j+1}) > 0, \ 0 \le j < p$. It is thus enough to prove that for large enough k

$$P_k(x,y) > 0$$
 implies that $P_k(x,y) \ge \gamma e^{-\beta_k(\delta_H + \lambda_k \delta_J)}$, (18)

since in this case, we actually have $P^{(k,k+p)}(a,b) \geq \gamma^p \ e^{-p\beta_{k+p}\left(\delta_H + \lambda_{k+p}\delta_J\right)}$, and the required result (17) follows.

Let us prove (18). For $x \neq y$ or x = y with q(x, x) > 0, we have for all k,

$$P_k(x,y) \ge q(x,y)e^{-[H_k(y)-H_k(x)]^+} \ge \gamma e^{-\beta_k(\delta_H + \lambda_k \delta_J)}$$

A more intricate case concerns those transition probabilities $P_k(x,x)$ for which q(x,x)=0. Let us recall that

$$0 < P_k(x, x) = \sum_{z \neq x} q(x, z) \left(1 - e^{-[H_k(z) - H_k(x)]^+} \right).$$

There is then some $z_0 \in \partial x$ s.t. $H_k(z_0) - H_k(x) = \beta_k \{H(z_0) - H(x) + \lambda_k [J(z_0) - J(x)]\} > 0$. On the other hand, if (x', z') are some neighboring points belonging to the set

$$G := \{(x', z') : z' \in \partial x', \ J(z') < J(x') \quad \text{or} \quad \{J(z') = J(x') \quad \text{and} \quad H(z') \le H(x')\} \ \},$$

there is an integer m(x',z') such that $H_k(z') \leq H_k(x')$ for all $k \geq m(x',z')$. Let be $m^* := \max_{(x',z') \in G} m(x',z')$. For z_0 defined above and $k \geq m^*$, since $H_k(z_0) - H_k(x) > 0$, $(x,z_0) \notin G$ and hence one of the following holds

$$(i). J(z_0) > J(x), \quad \text{or} \quad (ii). J(z_0) = J(x) \quad \text{with} \quad H(z_0) > H(x).$$

In the first case, we get $H_k(z_0) - H_k(x) \to \infty$ and

$$P_k(x, x) \ge q(x, z_0)[1 - e^{-[H_k(z_0) - H_k(x)]}] \to q(x, z_0).$$

And in the second case, we have $H_k(z_0) - H_k(x) \ge \beta_1 [H(z_0) - H(x)]$ and

$$P_k(x,x) \ge q(x,z_0)[1-e^{-[H_k(z_0)-H_k(x)]}] \ge q(x,z_0)[1-e^{-\beta_1[H(z_0)-H(x)]}].$$

Since these lower bounds are positive and independent of k, and γ $e^{-\beta_k(\delta_H + \lambda_k \delta_J)} \to 0$, there is an integer $n(x) \geq m^*$ such that for all $k \geq n(x)$,

$$P_k(x,x) > \gamma e^{-\beta_k(\delta_H + \lambda_k \delta_J)}$$
.

Taking $k_1 = k_0 \vee \max_x n(x)$ proves the inequality (18).

An immediate consequence of the last lemma is that the condition (C2) is fulfilled if

$$\sum_{k=1}^{\infty} e^{-p\beta_{(k+1)p}[\delta_H + \lambda_{(k+1)p}\delta_J]} = \infty.$$
(19)

4 Main results

Summarizing the results established in the previous sections gives the following main results of this note.

Theorem 1 Consider the Metropolis algorithm with (P_k) defined in (2) with $\beta_k \equiv 1$ and $\lambda_k \uparrow \infty$. Let p be the smallest integer satisfying (16). The underlying inhomogeneous Markov chain $\mathbf{X} = (X(k))_{k \geq 0}$ is strongly ergodic with limit p.d.m. π_c if the control sequence (λ_k) fulfills the following condition:

$$\sum_{k=1}^{\infty} e^{-p\lambda_{kp}\delta_J} = \infty.$$
 (20)

Theorem 2 Consider the Metropolis algorithm with (P_k) defined in (2) with $\beta_k \uparrow \infty$ and $\lambda_k \uparrow \infty$. Let p be the smallest integer satisfying (16). The underlying inhomogeneous Markov chain $\mathbf{X} = (X(k))_{k \geq 0}$ is strongly ergodic with limit p.d.m. π_0 if the control sequences (β_k) and (λ_k) fulfill the conditions (13) et (19).

Remark 2 (20) is satisfied for a logarithmic sequence $\lambda_k = c \log(k + D)$ with some constants D > 0 and $0 < c < (p\delta_J)^{-1}$.

Remark 3 The condition (19) is satisfied for sequences $\beta_k \uparrow \infty$, $\lambda_k \uparrow \infty$ satisfying $\beta_k \lambda_k = c \log(k+D)$ with some constants D > 0 and $0 < c < (p\delta_J)^{-1}$. Furthermore, the condition (13) is satisfied for e.g. $\beta_k = [c \log(k+D)]^{1/2}$, and $\lambda_k = [c \log(k+D)]^{1/2}$.

ACKNOWLEDGEMENT. I thank Xavier Guyon and Alain Trouvé for their helpful comments on this work.

References

Dobrushin, R. (1956). Central limit theorems for non-stationary markov chains ii. *Theory of Probability and its Applications*, 15:41–51. English translation.

Geman, D. (1990). Random fields and inverse problems in imaging. In Hennequin, P., editor, *École d'Été de Probabilités de Saint-Flour XVIII- 1988*, number 1427 in L.N.M., pages 113–193. Springer-Verlag.

Isaacson, D. and Madsen, R. (1976). *Markov Chains Theory and Applications*. John Wiley & Sons.