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On constrained simulation and optimization by Metropolis chains
J. YAO* SAMOS, Université Paris 1

Abstract

Given a everywhere positive probability measure 7 on a finite state space F and
the associated energy function H, we propose time-inhomogeneous Metropolis chains
to simulate 7 and to minimize H under some constraints.
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1 Introduction and notations

Let = be a everywhere positive probability measure 7 on a finite state space E given by
m(z) = Z 'exp[-H(z)] where H : E — R is the associated energy function. Assume
that we are interested in some subset E. C F defined by a constrained equation E. :=
{J = 0} where the function of constraints ./ : ¥ — R™ is otherwise positive. Let 7. be the
restriction of 7 on E. : 7 (z) = 1g,(z)Z 1 exp[— H(z)] (throughout the note, the letter 7
is used to denote generic normalizing factors). We consider the following two problems:

(i) Problem [S]: simulate the distribution =..
(ii) Problem [M]: minimize H over FE..

We propose to solve these problems by Markov chains endowed with a time-inhomogeneous
Metropolis dynamic. Let (), (Ax) be two positive non decreasing sequences and ¢ a sym-
metric and irreducible Markov transition kernel on F and set

Hy(z) := Bp[H () + A (2)] k> 1. (1)

Let us consider a inhomogeneous Markov chain X := (X (k))>o with state space £/ whose
transition probabilities at time k is given by the following Metropolis rule (we write a™
for max(a, 0)):

q(x’y)e_[Hk(y)_Hk(ﬁ)]-l-’ y# z,

P, = 2
(@ y) 1—ZPk($,z), y=uz. @

zF#x

It is well-known that for each &, P, is irreducible and reversible with respect to the prob-
ability measure (p.m.)
Tr(z) = Zk_1 exp[—Hg(z)],

and consequently, 7, is the unique invariant probability measure (i.p.m) of P;. Let us set
Hy = min{H(z):z € E.}, Eo:={z € FE.: H(z)= Hp},
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and denote by 7 the uniform distribution on Ej. It is straightforward to find that

with 8, = 1, A\, T oo, klim me(z) = w.(z), x ek, 3)
—00
with 8 1 oo, Ag 1 oo, klim mr(z) = mo(z), z €F. 4)
— 00
Let us set Pmk) — m+1 - -+ Pg, the transition probabilities from time m to & (k >

m). The aim of this note is to establish conditions on the control sequences (3;) and (Az)
which guarantee that the chain X is strongly ergodic in the following sense ((Isaacson
and Madsen, 1976)): there is some p.m. 7, on F such that

forall m > 1, lim sup ||uP™" —7,]|=0. (5)
k—co o
Here || - || is the total variation distance and the supremum is taken over all p.m.’s on FE.

The target measure 7., will be 7. or 7y according to the considered problem.

When F is a product spaces, £ = Il;csF;, (Geman, 1990) have proposed a solution
to these problems by using Gibbs sampling. Our approach, as well as the their, is based
on Dobrushin’s ergodicity coefficients ((Dobrushin, 1956)). More precisely, the ergodicity
coefficient of a Markov kernel () is defined as

. !
a(Q) == I{Q}QEZQ(%y) AQ(',y). (6)
yeE
By taking into account the convergences (3)-(4), a well-known result (see e.g. (Isaacson
and Madsen, 1976)) implies that the ergodicity (5) is ensured if the following two condi-
tions are satisfied:

(©1) Y [[miss — mil < o0
£>0

(C2) for some positive integer p, Z a(Prpy1 - Pleyryp) = 00
k=1

For 3> 0,A > 0and z € F, let us define

exp—PHEHM @]

1
O(z; 8, A) : 7o
so that 71 (-) = II(-; B, Ax). The underlying expectations are denoted Ej \ and E;, respec-
tively, with Ey = E; ».

To solve the problem [S], the sequence () is kept constant: 5, = 1 while (\;) will
be a sequence of positive numbers increasing to infinity. On the other hand, to solve the
problem [M], both the sequences are required to increase to infinity (see Eqs. (3)-(4)). We
examine in more details the conditions (C1)-(C2) for these two problems.

2 Condition (C1) on invariant probability measures (7;)

The idea is to show that for large enough &, the sequence [7(z)] is increasing for z be-
longing to the target set F. or Fj; and decreasing otherwise. In this case, since

Y ks = mll = D Imegr — mel

k>0 relR



this sum is thus finite.
The simulation problem [S]. Recall that 3, = 1, A; 1 oo for this problem. For
z € F,let us set ¢, (A) :=logIl(z;1, A). We have

>aen /(@) — J(z)]exp {—[H(a) + AJ(a)]}
2aepexp {=[H(a) + AJ(a)]}
If X\ > ccand ¢ ¢ E., ¢.()\) tends to —J(z) < 0. On the other hand, for all z € FE,,

¢2(A) = Ey\[J] > 0. Hence for large enough %, we have 7141 (2) < mi(z) for 2 ¢ E. and
Trt1(z) > mp(z) for z € E..

AN = pe(N) = Byl — J(a)] =

The optimization problem [M]. Here we have G, T oo and A T oc. For z € E, let
be ¢, (3, A) :=logll(z; 3, A). We have

{ Zr02(8,A) = Ba A [H + M — (H + AJ)(x)]

w5 2a(8,2) = BEgp[J — J ()]

We will show that for large enough 5, A, the function (5, A\) — . (5, A) is coordinatewise
decreasing for = ¢ Ey and coordinatewise increasing for z € Ey. So, let A — oo, § — oo :

J

e Foraz ¢ F., é—ﬁqw(ﬂ, A)~ Hy— H(z)— AJ(z) and %@I(ﬁ, A) ~ —pBJ(z) which are

both negative. Therefore ¢, (3, A) is coordinatewise decreasing for large enough 3
and \.

e Forz € Eo, %gﬁx(ﬁ, /\) = E@/\[H] — Ho + /\E,\Q[J] Z 0 and %@x(ﬁ, /\) = ﬁE@)\[J] Z 0.
It follows that ¢, (3, A) is coordinatewise increasing for large enough 5 and .

0 d
e For z € E\E,, 8_>\%(ﬂ’ A) = pEgA[J] > 0 and %@m(ﬂ, A) =FEg\[H+ MN]— H(z)
that tends to Hy — H(z) < 0. The situation is here a little more complicated since
these two derivatives have an opposite sign. However, we have

B\ [J] ~ TIE st

T , when A — oo, 8 — oo, @)
where the constants are:
J* = min{J(z) : ¢ ¢ E.} (8
H* = min{H(z)—Hy : 2 ¢ E., J(z) =J"} 9)
E* = {o :2¢FE, J(x)=J", Hz)—Hy=H"}. (10)

Let us take two positive, differentiable and increasing functions (), A(-) defined
on [0, c0) such that 3, = §(k) and Ay = A(k). Then

/ 0 ) N (u)
(1) = Lo (), A(w) = (@) |Bon (H) — H(z) + {Aw) + 8w 2 L i <J>J .
Ou ! { ﬁ(U)} e
Note that Exg(H) — H(z) ~ Hy — H(z) < 0 and let us define
H1 = min {H(.f) — HO LT e EC\E()} . (12)
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Now assume that the following condition is fulfilled:

>

()~ {42y o HilFol (13)

(w) JH B

lim sup §(u)

U—r 00

=)

In this case, the derivative ¢/, (u) is negative for large enough u. Hence &k — ¢, (3(k), A(k))

is decreasing for large enough .

To summarize, for the minimization problem [M], under the condition (13) and for
large enough k, 7 (z) is decreasing for z ¢ F, and increasing for = € E.

Remark 1  For logarithmic functions (3(u) ~ log®(u) and A(u) ~ log”(u) (when u — o)
with a > 0, b > 0, we have:

. /\’(u) B . .

lim G(u)—=—=%e B{H+Aw)J"} (14)
The condition (13) is thus satisfied. The same is true for functions A(-) and ((-) satisfying
for some positive constants a, A, b, B :
N () 1

lim su
u—)oop Aa(u)

3 Condition (C2) on the ergodicity coefficients

We write () > 0 for a Markov kernel () on F satisfying Q(z,y) > 0, V(z,y). Let be:

Sy = max{[H(y)—H(m)]"’ oz, y€eE, q(z,y) >0}7
6; = max{[J(y)—J(z)]*: wx,yeE, q(z,y) >0},
v = min{¢(z,y): z,y€E, q(z,y)> 0},

Jdr = {yeFE : q(z,y)>0}.

We first prove two auxiliary lemmas.

Lemma 1 Consider the Metropolis algorithm with transition probabilities (P;) defined
in (2) For both the problems [S] and [M], there are two positive integers p, kq such that

forall k> ko, PHFP) 5 0. (16)

Proof. Case 1. If the kernel ¢ is aperiodic, ¢ is positive recurrent since F is finite.
Therefore there is an integer p > 0 such that ¢? > 0. Since for all z,y and j,

Pi(z,y) > q(z,y) e~ H W) —H; @)+ > g(z,y) e Catrss)
we get for all £,

P(kJC-I-p) (x7 y) > qp(x7 y) e—(ﬁk+1+~~~+ﬁk+p)(5H+/\k5J) > 0.

Case 2. Otherwise, let ¢ be a periodic kernel with period d. Since ¢ is irreducible, there
is a partition £ = F; + - - - + E; such that the iterated kernel ¢? is positive recurrent on
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each subclass E;. We can then find a sy such that for all s > sg, ¢°¢(z,y) > 0 if (and only
if) z, y are two points in a same subclass.

On the other hand, let us take a point a € E. for which there is a b € da but not in E..
This is always possible since ¢ is irreducible and E. # E. Therefore, Hy(a) = f,H (a) <
Br[H (b) + AxJ ()] for large enough £ for both the two problems. Hence there is a ky such
that Py(a,a) > 0 for all £ > kq. It follows that for p = 2spd + d — 1 and k£ > ko, we have
PEAP) (4 y) > 0, forall z,y. W

In the sequel, we will write p for the smallest integer satisfying (16).

Lemma 2 With the same assumptions made in Lemma 1, there is an integer k, such that
for all k > ki, we have

a (P(k,k+p)) > 7P| | e PBr+p (A ktp67) a7

Proof. By Lemma 1, for & > kg and (a,b) € E?, thereisapatha = ag — a3 — -+ —
ap, = b for which Py, ;(a;,a;41) > 0, 0 < j < p. It is thus enough to prove that for large
enough &

Py(z,y) >0 implies that Py(z,y) > v e Catieds) (18)

since in this case, we actually have P**17) (¢, b) > 47 ¢~ PPitp (B +2k4591) and the required
result (17) follows.
Let us prove (18). For = # y or = y with ¢(z,z) > 0, we have for all £,

P (x, y) > q($7 y)e—[Hk(y)—Hk(I)]+ > 5 e Br@rt+Ards)

A more intricate case concerns those transition probabilities P;(z, z) for which ¢(z, z) = 0.
Let us recall that

0< Pe(z,2) = gl,2) (1 _ e—[Hk<z)—Hk<m)]+) _

There is then some zy € dz s.t. H(z0)—Hg(2) = Br {H (20) — H(z) + Ax[J(20) — J(z)]} > 0.
On the other hand, if (z/, z’) are some neighboring points belonging to the set

G:={(a",2") : 2 €dd, J(') < J(') or {J()=J(2) and H(Z')< H(z")} },
there is an integer m(a’, z’) such that Hy(z") < Hy(2') for all k¥ > m(a’,2’). Let be m* :=
max s ,neq m(z', 2'). For zo defined above and k > m*, since Hy.(20) — H(z) > 0, (7, 20) ¢ G
and hence one of the following holds

(1). J(z0) > J(x), or (i1).J(z0) =J(z) with H(z) > H(z).
In the first case, we get Hj(z9) — Hr(z) — oo and
Py(z,2) > g(w, 20)[1 — e HC) =] o g (2, 2).
And in the second case, we have Hy(zo) — Hp(z) > f1[H (20) — H(z)] and

Pe(z,z) > q(z, 20)[1 — e HrG)=H @) > g0 20)[1 — e~ ArlH (z0)=H @),
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Since these lower bounds are positive and independent of k, and v e PxCrtX:ds) _
there is an integer n(z) > m* such that for all £ > n(z),

Pe(z,z) > 7 e Pr(6a+Ards)

Taking k1 = ko V max, n(z) proves the inequality (18). ®
An immediate consequence of the last lemma is that the condition (C2) is fulfilled if

(o]
Ze_pﬁ(k+1)p[5H+/\(k+1)p5J] — 0. (19)
k=1

4 Main results

Summarizing the results established in the previous sections gives the following main
results of this note.

Theorem 1 Consider the Metropolis algorithm with (P;) defined in (2) with §; = 1 and
Ar T oco. Let p be the smallest integer satisfying (16). The underlying inhomogeneous
Markov chain X = (X (k))r>o is strongly ergodic with limit p.d.m. = if the control se-
quence (\y) fulfills the following condition :

Ze_p”\kP5] = 00. (20)

k=1
Theorem 2 Consider the Metropolis algorithm with (Py) defined in (2) with (3 1T co and
Ar T oo. Let p be the smallest integer satisfying (16). The underlying inhomogeneous

Markov chain X = (X (k))x>o is strongly ergodic with limit p.d.m. wq if the control se-
quences (0;) and (\;) fulfill the conditions (13) et (19).

Remark 2 (20) is satisfied for a logarithmic sequence \, = clog(k + D) with some con-
stants D > 0and 0 < ¢ < (péy)~L.

Remark 3 The condition (19) is satisfied for sequences (3 1 oo, A\, T oo satisfying Bp i =
clog(k + D) with some constants D > 0 and 0 < ¢ < (pd;)~'. Furthermore, the condition
(13) is satisfied for e.g. By, = [clog(k 4+ D)]'/? and M\ = [clog(k + D)]'/2
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