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Abstract

Following a Markov chain approach, this paper establishes asymptotic prop-
erties of the least squares estimator in nonlinear autoregressive (NAR) models.
Based on conditions ensuring the stability of the model and allowing the use
of a strong law of large number for a wide class of functions, our approach im-
proves some known results on strong consistency and asymptotic normality of
the estimator. The exact convergence rate is established by a law of the iterated
logarithm. Based on this law and a generalized Akaike’s information criterion,
we build a strongly consistent procedure for selection of NAR models. Detailed
results are given for familiar nonlinear AR models like exponential AR models,
threshold models or multilayer feedforward perceptrons.

AMS Classification Code: 62F 12,62 M 10

Keywords: Nonlinear AR process; least squares estimation; law of the iter-
ated logarithm; model selection; multilayer perceptron.

1 Introduction

Nonlinear models have become a standard tool for analysis of time series endowed
with a complex dynamic. An important and widely used subclass is R?valued NAR(p)
processes defined by

Xt = f(Xt_17 e 7Xt—p; 9) + Et, t Z 1. (11)

Here (¢;) is an i.i.d. error process and f a known measurable function depending
on some parameter §. As extension of familiar AR models, NAR(p) models include
threshold AR models (Tong, 1983), exponential AR models (Haggan and Ozaki, 1981)
or multilayer feedforward perceptrons, among others. Recent reviews on these mod-
els can be found in (Tong, 1990) and (Pétscher and Prucha, 1997).

For parameter estimation purpose, least squares estimation (LLS) is a mostly used
procedure for these models. Although the method is classical and well-known, its
theoretical properties have been reported in recent years only. The literature can
roughly be classified according to the type of dependence properties of the process
which are exploited to derive the asymptotics of the LS estimator. One approach,
based on stationarity and ergodicity conditions is proposed by (Tjgstheim, 1986).
Another approach is based on mixing conditions or uniform mixing, see e.g. (White



and Domowitz, 1984). A third approach, based on the concept of “near epoch depen-
dence” and “L,-approximability” of a stochastic process, has been proposed, see e.g.
(Gallant, 1987; Gallant and White, 1988; Potscher and Prucha, 1997). A fourth ap-
proach treats the process as a Markov chain (after rewriting it in companion form),
and uses limit theorems for Markov chains. This approach seems to be initiated by
(Tjgstheim, 1990).

In this paper, we follow the Markov chain approach and try to improve some re-
sults of (Tjgstheim, 1986) in the following way. While previous results require the
associated Markov chain to be Harris ergodic (i.e. positive Harris recurrent and
aperiodic), it is known that this requirement is stronger than needed for asymp-
totics of the LS estimator. Actually, we shall show that strong consistency and asymp-
totic normality both hold under a weaker condition, called stability of order a. Roughly
speaking, such a stability holds when the chain has an unique invariant measure
having moments up to order « and such that a strong law of large numbers holds for
functions which are bounded at infinity by the moment function |x|*. As expected, a
Harris ergodic chain with a suitable moment condition fulfills such stability condi-
tion. However, we shall show examples where we are able to establish asymptotic
properties of the LS estimator, although the associated Markov chain is not Harris
ergodic. On the other hand, for exponential AR models or threshold AR models, we
found conditions on the error process which seem to be weaker than previously used
ones.

Another contribution in this paper is a law of the iterated logarithm for the LS
estimator which is established under the above stability condition. This law is not
of theoretical interest only: it has an important application in building a strongly
consistent procedure for selection of NAR(p) models.

It is worth noting that in the specific case of NAR(p) models, application of gen-
eral results on conditional LS estimation as proposed in (Klimko and Nelson, 1978),
and especially (Lai, 1994) is not obvious. Actually, the conditions given in these pa-
pers need to be explicited in such a way that they depend only on the regression
function f and the error process.

An overview of the paper is as follows. In Section 2, the main assumption of sta-
bility of order « is stated and various known criteria are recalled for checking this
stability. Section 3 is devoted to asymptotic properties of the LS estimator, includ-
ing a law of the iterated logarithm (LIL). By using this LIL and Akaike’s principle
of parsimony, we give a strongly consistent procedure for selection of NAR models
(Section 4). To illustrate our results, we treat some important examples in Section
5. Finally, Section 6 collects all proofs.



2 Stability of order « for the associated Markov chain

Let be X; = (X";,..., X" _,41)". Following the Markov chain approach (Tjgstheim,
1990), we rewrite the NAR(p) process in its companion form

Xt f(Xt—h s 7Xt—p ,0) E¢
X Xiq 0

X = : = : + 1 - =: F(X¢_1;0) 4+, t>1
Xipt1 Xip 0

(2.1)
where F' and 7 are implicitly defined. Since (¢;) is an i.i.d. sequence, the vectorized
process (X;) is an homogeneous Markov chain with initial (deterministic) state x, =
(2%, ..., 2" _,41)" € (RY)P.

Some notations are necessary. To any norm || - || on R¢, we associate a norm on
(RY)? by setting |x| := [|z1]| + -+ + ||z,|| for x := (27,...,2%,)" in (R?)?, where =;
are vectors in R%. The true value of the parameter is denoted §, and P, stands
for the probability distribution of the chain (X;) under the true model. Moreover,

any convergence — (resp. 2,) means an a.s. convergence (resp. convergence in
distribution) under Py, which hold independently of the initial state xq.

A basic tool for deriving asymptotic properties of the LS estimator is to exploit
limit theorems of the Markov chain (X;). As stated in Section 1, previous results
mostly required Harris ergodicity for this chain. We shall show that an asymptotic
theory is possible under the following weaker condition called stability of order a.

Definition [S]: stability of order a. Let be a« > 1. We say that under Py, the
chain (X;) has a stability of order a if

(i) The chain has an unique invariant measure g, .

(it) Moment conditions. The marginal distributions of X;, t > 1 as well as the
invariant measure g, has a moment of order a, that is

By, X < o0, t> 1 o] ]") = / x| gy (d) < oo
(R

(iit) Strong law of large numbers (SLLN). For any scalar function ¢ on (R%)? which
IS p1g,-Q.S. continuous and satisfies |¢(-)| < const. (1 +|-|*), it holds

DS 5 [ sl (), 0

(Re)P
In a model where such a stability holds, the above SLLN will be fundamental
to derive asymptotic properties of the LS estimator. Actually, we shall successively

apply this law to the LS criterion function and its first and second-order derivatives.
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Consequently, model assumptions will be set in such a way that these functions are
bounded by a polynomial of type const. (1 + |- |*).

An immediate question from this definition is to find conditions on a NAR(p)
model to guarantee such a stability. For general stability theory of Markov chains,
we refer to representative monographs (Meyn and Tweedie, 1993; Duflo, 1997) and
papers from (Borovkov, 1991; Borovkov and Korshunov, 1993). Here we shall em-
phasize on specific criteria for a NAR(p) model. A clear classification of existing cri-
teria can be obtained according to whether or not the error process is a Lebesgue
noise: we shall call ani.i.d. error sequence (¢;) a Lebesgue noise if ¢; has an every-
where positive density function with respect to the Lebesgue measure.

Criterion [C.1] for a Lebesgue noise. Assume for the NAR(p) model (1.1)

(1) (e:)is a Lebesgue noise and El||e,||* < oo for some a > 1.

(ii) The functionx — f(x;0y) is continuous and there exists positive numbers Ay, ..., A,
satisfying \1 +--- + A\, < 1, and a constant x > 0 such that for some norm || - ||
on R

1F(x:00)[] < Mllzall + -+ Aol + 5, x € (RY)
Then, the NAR(p) model under 6, has the stability [S] of order a. O

In the case p = 1, the criterion [C.1] is well-known, see e.g. (Doukhan and
Ghindes, 1980; Mokkadem, 1987; Tjgstheim, 1990). Based on Tweedie’s results,
these authors proved that under [C.1], the chain (X,) is Harris ergodic with an
(unique) invariant measure py, equivalent to Lebesgue measure. The moment con-
dition in [C.1-i] ensures that g, (] - |*) < co. The required SLLN thus follows from
e.g. Theorem 17.1.7 in (Meyn and Tweedie, 1993). Extensions for general p > 1 are
recent. We are only aware of results from (Duflo, 1997) and (Attali, 1998).

However, Condition [C.1-ii] is an approriate criterion only for those models which
are basically nonlinear. To specify, assume in contrary f(x;6) is close to a linear
model in the sense that

f(X790) = a;r —I_ +ap$p -I—QQ(X,GO) )
where ¢ is a small nonlinear component satisfying

[l (o)l

lim sup ———— =0,
x| —o0 x|

(¢ = 0 corresponds to AR models). For such models, Condition [C.1-ii] is too strong.
Fortunately, the conclusion of [C.1] still holds if we replace [C.1-ii] by the following

(i)’ The function x — f(x; 0o) is continuous and the polynomial 13 . a;2' is causal.



If the error process is no longer a Lebesgue noise, the situation is more intricate
and very few is known. In general, a stronger contraction condition on f is neces-
sary to ensure stability. The following Lipschitz condition is found in (Duflo, 1997).

Criterion [C.2] for arbitrary noise. Assume for the NAR(p) model (1.1)
(1) E||e1]|* < oo for some a > 1.

(ii) there are p positive numbers Ay, ..., A\, such that A\, +---+ X\, < 1, and for some
norm || - || on RY,

1£(x;00) = F(y3 00)l| < Mlles =l + -+ Mol — wll,  x,y € (RO

Then, the NAR(p) model under 6, has the stability [S] of order a. O
For illustration purpose, consider the following univariate AR(1) model

1
X; = §Xt—1 +e, t21

started with X, = 0 and where (¢;) is an i.i.d. Rademacher sequence, i.e. P(c; =
1) = P(e, = —1) = 1. It is known that (X;) is not Harris ergodic. However, by
applying Criterion [C.2], we see that the model is stable with an order which can
be arbitrarily high. Hence our asymptotic results on LS estimator are valid in such
a case.

3 Asymptotic properties of the LS estimator
In the sequel, || - || denotes the usual Euclidian norm with associated inner product

(-,-). Let (X_p41,...,X,) be observations from the NAR(p) model (1.1). The (normal-
ized) sum of squares (U,) is

1 n
Un(ﬁ) = g E ||Xt_f(Xt—hXt—Q;---;Xt—p;0)||2- (31)
t=1

and the LS estimator is defined by

0, = Argrdpelél U,.(0). (3.2)

We shall derive successively strong consistency, asymptotic normality and a law of
the iterated logarithm for this estimator.



3.1 Strong consistency

We shall call continuity modulus any increasing function ¢ satisfying lim, o g(z) =
¢(0) = 0. Let us make the following assumptions.

ASSUMPTION [M]:

(1) The parameter § belongs to a compact subset © in R*. The error process (&:):>o
is centered and i.i.d., with a known covariance matrix .

(it) Under the true model 6,, the Markov chain (X;) has a stability of order a > 1
according to Definition [S].

(iit) (a). For all 0, x — f(x;0) is ug,-a.s. continuous. (b). ||f(x;6)|| < const. (1 +
1x|*/?).  (c). There exists a continuity modulus G such that:

Vz € (RY, V(e,B) €0 ||f(x;a) = f(x;0)|| < G(lla=BIN(1+x|"?). O

Condition (i) is standard. Condition (ii) is the basic requirement that we need on
the stochastic behaviour of the true model. Condition (iii) roughly means that the
autoregression function f is continuous, and with respect to x it is bounded by 1 +
|x|/2 (up to a constant factor). Such a control together with the stability assumption
(ii) guarantee a SLLN for functions like || f|| or || f||?.

First we identify the limit of the estimating function U,.

Proposition 1  Assume that [M] holds. Then for any fixed 6 € O,

Un(6) = Un(o) = - [1£(x;60) — f(x; 00)|[* g, (dx) =: K(0,6o) . (3.3)
R4)p

Moreover, the limit function K(0,6,) is continuous in 6.

Clearly, 6, is a global minimum of the limit function K. Whether or not it is the
unique one depends on the identifiability of the model. We shall use the following

CONDITION OF IDENTIFIABILITY [D]:
forany 0€0, f(-;0)=f(-;00) ps, —a.s. implies 6 =10, O.

The LS estimator is then strongly consistent if both the assumptions [M] and the
identifiability condition [D] hold.

Theorem 1 Assume that both Conditions [M] and [D] hold. Then the least squares
estimator 0, is strongly consistent.



3.2 Asymptotic normality

For asymptotic normality of §n, we typically need some additional conditions on

second order differentiability of the process (U,,). We make the following assump-

tions, where partial derivatives of a scalar function ¢(¢) are denoted D,g = dg/3d6;,
Dig = 9%g/(06:00;).

ASSUMPTION [N] Assume that 6, ECi) and there exists a neighbourhood V' of 6,
where for any x € (R%)?, the d coordinate functions fi,..., fiof 0 — f(x;0) are twice
continuously differentiable such that, forall k. =1,...,dand 1,7 =1,...,s, we have:

(i) forall® eV, x— D, fir(x;0)and x+— D? ~fe(x;0) are pig,-a.s. continuous.

(ii) | Difu(x;00)| < const. (1 + |x|*/?), |DZ fr(x;00)| < conmst. (1 + [x|*/?), x €
(RY).
(iit) there exists a continuity modulus o;;;. such that
| D fi(x:0) — DY fu(x:60)| < oije([0—6o|))(1+]x|*%),  6€V,xe(RY). O
(3.4)

It is worth noting that Conditions [N]-(ii)-(iii) are similar to [M]-(iii). In particu-
lar, they also guarantee a SLLN for functions involving first or second order deriva-

tives of f.
Let us denote the matrices:
Df(x;0) = [D,fu(x;0)], d x s matrix,
M(x;0) = {Df(x;0)}'Df(x;0), s X s matrix, (3.5)
D:if(x;0) = [DIfu(x;0)], d x 1 vector, (3.6)

with 1 <i,7 <sand 1 < k < d. The gradient vector and the Hessian matrix of U,
are respectively:

DU = 2 3 X — fX 0] DAX,50), (3.7
0<t<n

_lD{‘)Un(H) = — Z (X:;0) -1 [Z [(Xepr — F(Xe; O)]'DE f(Xe50) | (3.8)

2 0<t<n " 0<t<n 1<4,5<s

First we prove two results on [DU, ()] and [D*U,,(6)].
Proposition 2 Assume that Conditions [M], [D] and [N] hold. Then

DQUn(GO) 2} [0 with [0 =2 M(X;Ho)/,bgo (dX), (39)
(RY?

VaDU,(0)) 25 N(0,Jo) with Jo:=4 /(Rd (D F(x,00)}TD f(x, 00 ) g, (d63.10)



We now establish the asymptotic normality of the LS estimator.

Theorem 2  Assume that Conditions [M], [D], [N] hold and in addition I, is reg-
ular. Then

NS {ﬁn - 90} Dy N0, IT R I,

One may note that in the univariate case (d = 1), the two matrices /; and .J; are
proportional: .J, = 20?1, with the noise variance ¢*> = I'. In this case, the above
asymptotic covariance matrix is reduced to 2021 '. It is also worth noting that The-
orem 2 can be applied to subhypothesis testing.

3.3 A law of the iterated logarithm

The following law of the iterated logarithm gives exact a.s. convergence rate of
f,. In addition of its own interest, such a law would be a basic step in search of
a strongly consistent procedure for selection of NAR models (see Section 4).

Theorem 3 Assume

(i) Conditions [M], [D] and [N] hold with some a > 1 where the condition [M]-(it)
is strenthened with a replaced by some o' > a.

(it) Both the matrices 1y and J, are regular.

Then, for all u € R®, u # 0, it holds a.s.

n n
1' 7DUn0 5 :\/’TJ’ :—1 i f 7DUn9 s U)y
1 sup V 210glogn< (Bo), ) ot e V 210g10gn< (o), )

(3. 11)
/ n /
li — (0, — 0 = ully oy u = —1i f —40
1mnsup 2log log n 0t “ olg = a n 2 log log n 0t
(3. 12)

4 A strongly consistent procedure for selection of
NAR models

For model selection, (Akaike, 1969) and (Schwarz, 1978) introduced the method of
penalized quasi-likelihood. There is a huge literature on selection of linear models,
see e.g. (Hannan, 1980; Quinn, 1980; Tsay, 1984). In contrast, few well-established
results are known for nonlinear models, despite the widely-spread use of the method
in practice. Some related works can be found in (Nishii, 1984; Haughton, 1991). An
approach based on the accumulated prediction errors has been recently proposed



by (Lai and Lee, 1997). We establish below the strong consistency of a generalized
information criterion based on the LS estimates.

Let us denote by )\,...A and )\,.;, A the greatest and the smallest eigenvalue of
a real symetric matrix A, respectively. Here we follow the presentaion given in
(Guyon, 1995) and consider a generalized information criterion defined in Eqns.
(3.17)-(3.18) there with the sum of squares U, (6). Therefore [¢(n)] denotes some
penalization rate and 6, the selected model based on the observations (X¢)—p<t<n.
Since a law of the iterated logarithm is established for the LS estimator (Theorem 3),
straightforward application of Theorem (3.4.8) from (Guyon, 1995) yields the follow-
ing

Proposition 3  Within the theorem 3 framework, if the penalization rate c(n) is
such that: (n) (n) g
. cln . . cn maz0
1 =0 1 f
e n ’ e 2loglogn > 2 minlo’

(4.1)

then En converges to the true model 6, P, -almost surely.

A popular choice for the penalization rate is a BIC-like rate ¢(n) = const. -logn.
Clearly it satisfies Conditions (4.1). Hence a BIC-style procedure is strongly consis-
tent.

5 Examples

5.1 Threshold-exponential AR process

Let I;, « = 1,..., K be non-overlapping and non-empty intervals of R such that
U;I; = R. A combined threshold-exponential AR process is defined by

K

Xe=Y (ei+ X)) Uy, _er + e Xy + e, (5.1)

=1

with X, = z¢, and where (¢;) is a sequence of i.i.d and zero-mean variables. The
parameters are 6 = («;, 8i,¢,v) of number s = 2K + 2. We shall denote the trues
values by 6, = (a;'ka /32*7 Csy 7*)

Note that when (¢;) is a Gaussian noise, (Tjgstheim, 1990) has proved that the
maximum likelihood estimator is strongly consistent and asymptotic normal. Ap-
plication of previous results will prove the same for the LS estimator with more gen-
eral noise. We also give an LIL for this model. One should remark that the likeli-
hood method is feasible only if the density function of the noise is available.

Theorem 4 Assume

(1) (c¢)i>0 IS an i.i.d., zero-mean Lebesgue noise with o* := Eei < oo;

9



(ii)) c.#0,v >0and || <1foralli=1,... K.
(iii) 6 € ©, a compact set of R***?% such that 6, 0.
Then,
(@) 6, = 6,
) Vo [@ _ 00} 2y N(0,207151),
Moreover, if E<**® < o for some § > 0, then the LIL from Theorem 3 holds.

It may be useful to explicit for this model the information matrix /, defined Eq. (3.9).
Let Y be some real random variable with probability distribution p4, and set

T
—yx Y2 3 _—yY?2
i<k Y€, maY e

w = ([L,(v)] L,(v)]

1<i<K Y|
Straightforward calculus give
Iy = EWW™". (5.2)

5.2 Multilayer perceptrons

Multilayer perceptrons (MP) have become popular in nonlinear modelling due to
its universal approximation ability, see e.g. (Hertz et al., 1991). Such a example
is the model described Eq. (5.3) which has p input units feeding by the variables
Xi1,..., X, at time ¢, a hidden layer with K units and one ouput unit which pro-
vides the variable X;:

K P
X = Z Oéﬂ/J(Z Bi; Xe—i + Boj) + a0 + & (5.3)

Here (¢;) is the system noise. Parameters are § = (ag, ..., 05 ;3,0 <i<p, 1 <j <
K)" with a parametric dimension s = 1 4 K (p+2). Their true values are denoted by
0o = (a},B5). For the so-called activation function v, there are two widely spread
choices: the sigmoid map ¢(z) = tanh(z) or the logistic map ¢(z) = 1/(1 + e™*).
(Cottrell et al., 1995) describes an interesting use of this model in time series fore-
casting.

To simplify, we fix ¢)(z) = tanh(z) and shall assume the univariate case. Appli-
cation of previous results yields

Theorem 5 Consider an univariate MP model (5.3) with i)(x) = tanh(z). Assume

(1) (et)ts0 is an i.i.d., zero-mean Lebesgue noise such that E@‘f” < oo for some
0> 0;

10



(i) 0 € O, a compact subset of R* such that 6 E(S).
(iit) For all 0 different from 0o, there exists x € R” such that f(x,0) # f(x,0).
(iv) The matrix Iy, defined (3.9), is regular.
Then, with o* = Eei,
(@) 6, 22 6.
®) Vi [@ . 00} Dy N(0,20%;0),

(¢) The LIL from Theorem 3, as well as the strong consistency of the model selection
procedure from Proposition 3 both hold with d = 1 and Jy, = 20%1,.

It is worth to point out that the strong consistency of the estimator, statement
(a), is obtained as soon as the noise has a moment of second order.

6 Proofs

The following definitions and notations will be used in proofs. Let 7 = (F,),>0 be
the natural filtration associated to the NAR(p) process where F, = o(e;, 1 <t <
n) for n > 1, and F; is the degenerated o-algebra. If (M, ) is a square integrable
martingale w.r.t. 7, we denote by ((M), ) its increasing process defined by:

<M>0:0, <M>n:<M>n—1+ IE:[||]\4n_A4n—1||2|‘7:'n—1] fOI'nZl-

Proof of Proposition 1
We denote Af; = f(X:;600) — f(X;;6). We have:

B, C,

with:
B = Z AR, Cn=2 Z (€41, Af2).
0<t<n 0<i<n
From [M]-(iii),
|1 f(x;00) — f(x;0)|]* < const. (14 |x|?), x € (R%. (6.4)

Since the true model under 6, meets the assumption of stability [S], the SLLN [S]-
(ii1) ensures that:

Bn a.s. 2
—H/ (55 0) — F(x: 00)|Prs, ().
(R

n

11



M, := C, /2 is a square integrable martingale ([S]-(i)). Its increasing process (M),
is equal to:
(M), = Y A[TAf
0<t<n

and tends to some positive variable (M)., < oo. From the SLLN for square inte-
grable martingale, we know that on {(M).,, < oo}, (see e.g. (Duflo, 1997), Theo-
rem 1.3.15, p. 20), M,, converges to a finite variable, and so M, /n tends to 0. On
{{M)s =}, M, /(M), converges to 0. As almost surely,

Loary, — [ [x:0) = £ 00T [F(x:0) — F(x;00)] sy (dx) > 0,

n (Rd)p

again M, /n — 0. Hence C,,/n tends to 0 in both cases.
On the other hand, the assumption [M]-(iii) and the inequality (6.4) makes the
map 6 — K(6,6,) continuous. i

Proof of Theorem 1

If we denote W, the uniform continuity modulus of U,,, i.e.

Wy(n) == sup |Uu(a) —Un(B)], n > 0.
a,BEO
lla—B]|<7

~

a sufficient condition ensuring the strong consistency of (6,,) is (see (Guyon, 1995),
§3.4) the existence of a deterministic sequence (uy), decreasing to 0, such that for

all &,
Py, {lim sup {Wn <£> > uk}] =0 . (6.5)
n—o0 k

For o, € O, set §(x;a,3) := f(x;a) — f(x;3). From [M]-(iii), we have:
n|Un(a) = Un(B)

Z (0(X4500, ) + 6(Xy 300, 8) + 26041 5(Xt;0175)>‘

0<t<n
< G(lla=BINL+ Xe|*?) > [const. (14 [X|*?) + 2||ei4] ]
0<t<n
< Gllle=BI) Y [lleell* + const. (1+[X.[")] . (6.6)

0<t<n

We denote S, the sum from the last inequality. Applying the SLLN to the integrable
i.i.d. sequence (||¢;41]|*) on one hand, and to the function (1+]-|*) on the other hand,
S,/n tends a.s., to a constant limit / > 0.

12



By (6.6), we find W, (n) < G(n)S./n. For any positive integer k, let us define
ur, = 20G(1/k). This sequence decreases down to 0. Then, for fixed k& (where i.o.
means infinitely often),

AP CTRIEN R PHLIT

n

On A := {15, > 20 i.0. }, LS, can not converge to / ; then A is a null event. The
condition (6.5) is satisfied, and the strong consistency established. i

Some preliminary computations are useful for next proofs. Since © is compact
and by Conditions [N]-(ii)-(iii), there exists v > 0 such that:

Vi, j, k, Y0 € V, Yz € (RY)P, |D? frl(x;0)] < (1 + [x]*/?). (6.7)
It follows an estimate of increasing rate of first order derivatives
Viok, V0 €V, Va € (R, |D;fi(x;0) — Difu(x;00)] < 4[10 = ol |(1 + |x[*?).
And finally, there exists another constant +' such that: ©o
Vi k, V0 € V, Yz € (RY)P, |Difr(x;0)] < 4'(1+ [x|*?). (6.9)

For the matrix function M(x;6,) define Eq. (3.5), the estimates (6.8)-(6.9) lead
to:

[|M(x;0) — M(x; 6o)]
1M (x; 0)]]

< const. [|0 —60o||(1 + |x|*), x€(RH", 0V  (6.10)
< const. (1 +[x|*), x€ (RH), 0V (6.11)

Proof of Proposition 2

Let us first prove (3.9). Within the expression (3.8) of D*U,,(6,), the first term con-
verges a.s. to the matrix /,. Indeed, the SLLN [S]-(iii) can be applied from the con-
trol (6.11) of the matrix function M (x, 6,).

For the second term, its element (z, j), say M, := > ., 5Tt+1ijf(Xt i6p), is a
square integrable martingale. Its increasing process (M), is equal to:

(M), = 3 tr [P { D2 F(D2 1)} (Xi300)]

0<t<n

Given (6.7), an argument similar to the one used at the end of the proof of the propo-
sition 1 ensures that M, /n tends a.s. to 0. The conclusion (3.9) follows.
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For (3.10), let us denote this time:

M, = —%DUR(GO) = Z 1 Df(Xe 5 00). (6.12)

0<t<n

By (6.9), it is a square integrable vector martingale. And (M), is equal to:

(M), = Y {Df(Xs;00)} TDF(Xy 5 60). (6.13)

0<t<n
Still by (6.9), each term of the matrix function x — J(x;0,) := {Df(x;65)} TDf(x; )
is bounded (in norm) by const. (1 + |x|*). So, from the SLLN [S]-(iii),

1 a.s. 1
—(M), — / J(x;00)pg, (dx) = ZJO- (6.14)
(RY)P

n

The CLT (3.10) is proved if (M,,) fulfills the following Lindeberg’s condition (see e.g.
(Duflo, 1997), corollary 2.1.10):

1 P
fOI‘ all ) > 0, Ln = E Z E [||Mt — Mt—1||2][{||Mt—Mt_1||Z5ﬁ} |ft_1] 4 0. (615)

0<t<n
Let be A > 0 and:
1 , 1
Fo(A) = = E[[IMe = Mo |Pyasoar_yyza | Fia] = — D (X, A),
0<t<n 0<t<n

with:
h(x,A) = E [{Df(x;90)}T515T1Df(x;00)][{H{Df(x;é,o)}TEHDA}} .

It is clear that from (6.9),
h(x,A) < const. (1 + |x|). (6.16)

Hence, by [S]-(iii) again,
FaA) 255 6(4) = [ hiox A (),
® Y

The last function ¢ is positive and decreasing. Moreover, by the dominated conver-
gence theorem, ¢(A) tends to 0 as A tends to oc.

On the other hand, when A is fixed, we have §/n > A for n large enough, and
L, = F,(6y/n) < F,(A). So a.s., limsup, L, < ¢(A). Since A is arbitrary, we have
a.s., lim L, = 0. The Lindeberg’s condition (6.15) is thus fulfilled and M, /\/n 2,
N(0, Jo/4). i
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Proof of Theorem 2

Since 8, % 6, for almost all w, there exists no(w) such that 0. cVforalln > no(w).
By Taylor’s formula

0 = DU,L(8,) = DU,(6o) + An(6,,)(8,, — o), (6.17)

where )
A,(8,) ;:/ DU, {@1 + (B, — by)| du.
0

Taking Proposition 2 into account, we deduce Theorem 2 from the following lemma.
|

Lemma 1 Within the context of the theorem 2, we have:
A,(0,) — DU, (6y) = 0, An(8,) 225 I, (6.18)

Proof. For 6 € V and by (3.8), we have

DU, (6) — D*U, (o) = % (4,(0) + Bo(8) + Co(0)]

with
A (0) = 0; [M(X:;0) — M(X¢;00)],
B.(6) = 0; [f(Xe30) = f(Xe300)]" [D5F(Xe50)] e
Co(0) = _z o [DF(Xe30) = DEF(X300)], .,
Furthermore, _

14.(0)]] < const. || —6]] Y (1+|X:|"), by (6.11)

0<t<n

1B.(8)]] < const. G (|10 —6l)) Y (1+[X,|"), by Ml-iii and (6.7)

0<t<n
1C.(0)]] < comst. | > oin(z)| D lleaall(1+1Xe|*?)
Lsj.k 1 o<t<n
< const. | Y oy(2) {Z||5t+1||2+2(1—|-|Xt|“/2) :
ik 1
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On the other hand, by (6.17)
1A(0,) — D*U(60)]

/1 {D2Un {@1 + (@, — 90)} . D2Un(ao)} du

2

Since both L 3" [|e,14]|* and L Y(1 + [|X,]|*) converge a.s., and 6, =% 6y, A, (6,) —
D?U,(0y) converges to 0 a.s. The second result is a consequence from Proposition 2.

Proof of Theorem 3

We shall apply Lemma 2 below to the regressive series

n
M, = = (DU (Bo).u) = Y " DX fo)u.

0<t<n

Following the notaions used there, let ¢, = D f(X; ; §y)u and we check Conditions (i),
(i1) and (iii) of Lemma 2. We have,

Fo=T, T!=u{Df(X,;00)} TDf(Xp;00)u, s2= Y T2

0<t<n

Let « be a positive number such that o < min(1,a’/a — 1). The conditions (i)-(ii) are
clearly fulfilled. For (iii), first note that by SLLN, s2/n tends a.s. to ;u"Jou, which
is strictly positive (see assumption). It is thus sufficient to prove that there exists

ann € (0, 1) for which
T2—|—2a
Z e ) converge a.s. (6.19)

n

Since s? ~ const. n, we have to prove

T2+2a
Z m converge a.s.

Set X, := T{T** 4 ... 4 T**2>_ The choice of o ensures that
‘uT{Df(X 100)Y T{Df(x; 90)}'u‘1+a < const. (1 + |X|“I) . (6.20)

Therefore 3, /n converges a.s. towards some constant v > 0. By Abel’s transforma-
tion rule,

—_

n TkQ-|—2a _ Zn n 1 1 E
kz—; LA=n)(1+a) — pA-n)(1+a) + L-n)(1+a) (k + 1)(1—77)(1+a) k-

1

o~
Il
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Furthermore,

S NN PO Gy R
E=m+a) (k4 1)(-n)(1+a) k L(1-m)(1+a) Pk

Now choosing n < /(1 + «) yields (1 — n)(1 + «) > 1. The last series converges and
¥, /n=mM0+2) tends to 0. So the convergence (6.19) holds. Applying Lemma 2 ends
the proof of (3.11). Finally, (3.12) follows from (6.17) and Lemma 1. i

Lemma 2 (Law of the iterated logarithm for regressive series) Let F = (F,.).>0
be some filtration defined on a probability space (2, A, P), and (¢,)n>0, (¢n)n>0 two
F-adapted sequences of R-valued random vectors. Set for n > 1,

n

My = (pror,er), Tni= Elenpicngn | Fo), 17 =0, Indn, and s2:=>» T}

t=1 t=1
(6.21)
Assume that there exists some o € (0, 1) such that a.s.
(i) foralln >0, E(c,1|Fn) = 0;sup E(]|ensr||*T?|Fn) < oo
(11) liminf ). (T,) > 0.
(iii)) s> — oo, Y. T*H%/s¥2 < oo and T? = o[s*{loglog(s?)}~/7].
Then,
lim sup = 1= —liminf ,  a.s. (6.22)
V/$2_; loglog s2_, V/s2_;loglog s2_,

We do not go into more details since this LIL can be deduced from Stout’s LLI for
martingales, (Stout, 1970) and a troncature technique developped in (Duflo et al.,
1990). It is worth noting that this LIL does not require any moment conditions on
the regressors (¢,,).

Proof of Theorem 4

First by applying results from (Tjgstheim, 1990) (or applying Criterion [C.1]), we
know that, under Conditions (i)-(ii) of Theorem 4, the process (X;) under the true
model f(-;0,) has a stability of order 2 (resp. 2+ 6) if E|e;|* < oo (resp. if E|e; |**® <
o). Moreover, its invariant measure u4, has a everywhere positive density with
respect to the Lebesgue measure. In particular, taking into account (5.2) and the
fact v. > 0, this makes /, regular.
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The remaining conditions in [M]-[N]-[D] could be readily checked. This is mainly
based on the following estimates which hold since the parameter space © is com-
pact:

|f(z;0)] < const. (1+ |z|), (6.23)
|80_870_f(x;9)| < const. (14 |z|), (i1,...,0m) € {1,...,s}", m=1,2,.6.24)
forall z e Rand f € ©. B

Proof of Theorem 5

Note first that the map ¢ (z) = tanh(z) is C*°, and all its derivatives are bounded. In
particular, we have for : € R,0 < ¢(z) <1, 0 <¢'(z) < let -2 <" (x) <N0.

Assumption [M] : [MI]-(i) is clearly fulfilled. Since ¢ is bounded, x — f(x;6,) is
bounded too. The true model under 6, fulfills the stability criterion [C.1] from §2.
The model has the stability property [S] with « = 6 and [M]-(ii) is proved. For [M]-
(iii), let be 6 = (a;, B;;), and 0’ = (a, B;). A straightforward calculus shows that for
all x € R?,

F(x50) — F(x;0')] < const. |10 — #]|(1 + |Ix]]).

Identifiability [D]: Because (¢;) has an everywhere positive density with respect
to Lebesgue measure, the invariant probability y,, of the vectorized chain X(*) (un-
der Py, ) is also equivalent to Lebesgue measure. The condition [D] is met taking
into account the assumption (iii).

Assumption [N]: Consider V' :(2). [N1-(i) is straightforward. For [N]-(ii)-(iii), we
can show easily that, for all x € R?, we have:

|D:if(x;00)] < comst. (1+x]), i=1,...,s
|D? f(x;00)] < comst. (1+[x]?), 4,j=1,...,s

|DZf(x;0) — DX f(x:00)| < const. ||0 — 6o]|(1 + [x]?), 0cO, i,j=1,...s

The upper bound in the last inequality involves a polynomial of degree 3, that is
why we need a moment of order larger than 6 for the noise.
At last, the required conditions in theorem 3 are directly fullfilled. i

ACKNOWLEDGMENTS.  The author is grateful to Xavier GUYON and Marie DU-
FLO for their helpful suggestions on this work. Lemma 2 is due to Marie DUFLO.

References

Akaike, H. (1969). Fitting autoregressive models for prediction. Ann. Inst. Statist.
Math., 21:243-247.

18



Attali, J. (1998). Chaines de Markov Stables. PhD thesis, Université Paris 1.

Borovkov, A. A. (1991). Lyapounov functions and ergodicity of multidimensional
Markov chains. Theory Probab. Appl., 36(1):1-18.

Borovkov, A. A. and Korshunov, D. (1993). Ergodicity in a sense of weak conver-
gence, equilibrium-type identities and large deviations for Markov chains. In
et al., B. G., editor, Probability theory and mathematical statistics, Vilnius.

Cottrell, M., Girard, B., Girard, Y., Mangeas, M., and Muller, C. (1995). Neural
modeling for time series : a statistical stepwise method for weight elimination.
LE.E.E. Trans. Neural Networks, 6:1355-1364.

Doukhan, P. and Ghindes, M. (1980). Etude du processus X, = f(X,_-1) + e,.
C.R.A.S., 290:921-923.

Duflo, M. (1997). Random Iterative Models. Springer-Verlag.

Duflo, M., Senoussi, R., and Touati, A. (1990). Sur la loi des grands nombres pour
les martingales vectorielles et ’estimateur des moindres carrés d’'un modele de
regression. Ann. L. H.P., 26:549-566.

Gallant, A. R. (1987). Nonlinear Statistical Models. Wiley.

Gallant, A. R. and White, H. (1988). A Unified Theory for estimation and Inference
for Nonlinear Dynamic Models. B. Blackwell.

Guyon, X. (1995). Random Fields on a Network — Modeling, Statistics, and Appli-
cations. Springer-Verlag, Berlin.

Haggan, V. and Ozaki, T. (1981). Modeling nonlinear random vibrations using an
amplititude-dependent autoregressive time series model. Biometrika, 68:189—
196.

Hannan, E. J. (1980). The estimation of the order of an ARMA process. Ann. Statist.,
8:1071-1081.

Haughton, D. (1991). Consistency of a class of information criteria for model selec-
tion in nonlinear regression. Commun. Statist. Theory and Methods, 20:1619—
1629.

Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the Theory of Neural
Computation. Addison-Wesley Pub. Co., Redwood City.

Klimko, L. and Nelson, P. (1978). On conditional least squares estimation for
stochastic processes. Ann. Statist., 6:629—-642.

19



Lai, T. (1994). Asymptotic properties of nonlinear least squares estimates in
stochastic regression models. Ann. Statist., 22:1917-1930.

Lai, T. and Lee, C. (1997). Information and prediction criteria for model selection
in stochastic regression and arma models. Statistica Sinica, 7:285-309.

Lai, T. and Zhu, G. (1991). Adaptive prediction in non-linear autoregressive models
and control systems. Statistica Sinica, 1:309-314.

Meyn, S. and Tweedie, R. (1993). Markov Chains and Stochastic Stability. Springer-
Verlag, Berlin.

Mokkadem, A. (1987). Sur un modele autorégressif non linéaire: ergodicité et er-
godicité géométrique. J. Time Series Analysis, 8(2):195-204.

Nishii, R. (1984). Asymptotic properties of criteria for selection of variables in mul-
tiple regression. Ann. Statist., 12:758-765.

Potscher, B. M. and Prucha, L. R. (1997). Dynamic Nonlinear Econometric Models.
Springer-Verlag.

Quinn, B. G. (1980). Order determination for a multivariate autoregression. ¢J. Roy.
Statist. Soc. Ser. B, 42:182—-185.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist., 6:461-464.

Stout, W. (1970). A martingale analogue of Kolmogorov’s law of the iterated loga-
rithm. Z. Wahr. Verv. Gebiete., 15:279-290.

Tjgstheim, D. (1986). Estimation in nonlinear time series models. Stoch. Process.
Appl., 21:251-273.

Tjgstheim, D. (1990). Nonlinear time series and Markov chains. Adv. Appl. Prob.,
22:587-611.

Tong, H. (1983). Threshold Models in Nonlinear Time Series. Springer-Verlag.

Tong, H. (1990). Non-linear Time Series (A Dynamic System Approach). Oxford
Univ. Press, New York.

Tsay, R. S. (1984). Order selection in nonstationary autoregressive models. Ann.
Statist, 12:1425-1433.

White, H. and Domowitz, I. (1984). Nonlinear regression with dependent observa-
tions. Econometrica, 52:143-161.

20



