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Abstract

We show in a very general framework the a.s. convergence of the 1-
dimensional Kohonen algorithm - after self-organization - to its unique equi-
librium when the learning rate decreases to 0 in a suitable way. The main
assumption is a log-concavity of the stimuli distribution which includes all
the usual (truncated) probability distributions (uniform, exponential, gamma
distribution with parameter- > 1, ...). For the constant step algorithm. the
weak convergence of the invariant distributions toward the equilibrium as the
step goes to 0 is established too. The main ingredients of the proof are the
Poincaré-Hopf Theorem and a result by M. Hirsch about the convergence of
cooperative dynamical systems.

1 Introduction.

In 1982 T. Kohonen (see [14]) introduced what he called the Self Organizing Maps
(S.0.M) which are very simple models of some neural behavior building sensory maps
in various parts of the sensorymotor cortex (for instance the so-called retinotopic
maps) The immediate interest that it raised was probably due to its very simplicity.
The mathematical investigations began with a paper ([14]) by T. Kohonen himself
who gave a sketch of proof of the self-organizing property in the one dimensional
case with uniformly distributed stimuli. Actually it turned out that, even in this
case, the mathematical treatment was not easy. M. Cottrell and J.C. Fort provided
in this particular case a rigorous proof of self-organization and of conditional a.s.



convergence when the step is decreasing (see [5]). These results were then extended
to more general stimuli distributions by C. Bouton and G. Pages in [3]. Recently
J.C. Fort and G. Pages carried out a detailed study of the behavior of the so-
called O.D.E of the algorithm. Namely, they proved that all possible equilibrium
points were asymptotically stable. The result was obtained under some [og-concave
assumption on the density of the stimuli distribution. This assumption turned
out to be quite classical in Information Theory to get the uniqueness of optimal
quantizers (see e.g. [4]). Very recently A. Sadeghi first pointed out the link between
cooperative dynamical systems and the Kohonen S.O.M. in [20]. This is a decisive
remark allowing to use very powerful results in the fields of differential equations.
Meanwhile. some multidimensional results — in the weak sense — were obtained
either by physicist methods (see H. Ritter & K. Schulten [19]) or in a more rigorous
setting (see [7], [6]). Nevertheless, the only strong approximation results — including
this paper - concern the 1-dimensional case. This illustrates the gap between the
simplicity of the definition and implementation of the S.O.M. which made their
success among the users and the difficulty of its mathematical treatment.

In this paper, gathering all these previous results and combining the celebrated
Hopf-Poincaré theorem on the vector fields with a beautiful result of M.W. Hirsch
about the cooperative dynamical systems we derive a quite general result of a.s.
convergence after self-organization for the Kohonen maps. Namely, there exists
a unique equilibrium point for the Kohonen one dimensional S.0.M. and that it
converges weakly or a.s. toward this unique equilibrium point.

As a conclusion, we point out the general feature of our proof by stating an
abstract result for stochastic cooperative algorithms.

The rest of the paper is divided in four parts. In section 2 is recalled the definition
of the Kohonen algorithm, the existing results and finally our main result. Section
3 is a technical one where we prove the asymptotical stability of the equilibrium
points under a weaker assumption than in [7]. Uniqueness of the equilibrium point
is proved in the section 4. In section 5 we show that the ODE is strongly cooperative
and the proof of weak and a.s. convergence is carried out in section 6.

2 Definition and results

2.1 Definition of the algorithm

First we shortly recall the basic definitions and known results about the Kohonen
one-dimensional algorithm.

A set I of units is given, identified to [:={1,2,---, n}. The set I set is endowed
with a neighborhood structure defined through a neighborhood function o : Z —
[0,1]. It satisfies : ¢(0) := 1, o(k) = o(—k) and o restricted to IN is nonincreasing.
For every i, j € I, o(i — j) = o(|i — j|) measures the strength of the “connection”



between i and j. To each unit ¢ is associated an initial weight X?. Let X0 :=
(XiO)ISiS" be the initial weight vector. The Kohonen algorithm adapts this weight
vector using a sequence of stimuli with two goals : first to organize the weights
according to o and then to quantize the stimuli space according to their distribution.
In the special case of one dimension, a weight vector is organized once i — X is
monotone. For a more detailed introduction to mathematical aspects of the Kohonen
algorithm, see [7]. '

The stimuli consist in an i.i.d. sequence (wf., of [0, 1]-valued random variables
with a continuous distribution p. Let Xt:= (Xf) 1<i<n denotes the weight vector at
time ¢. At time ¢ + 1 the algorithm is recursively defined in two phases :

(i) COMPETITIVE PHASE : computation of the winning unit

i = (W't X)) = argmin [w't! — X} (1)
kel

(ii) COOPERATIVE PHASE :
Vie{l,2,---,n}, XFl =X —eo(i - ) (X! - Wt (2)

where (£,);>1 18 a sequence of ]0, I[-valued real numbers. &, is the learning rate —
or step — at time 2.
(X")ien 1s a Markov chain, homogeneous iff £, = ¢ > 0. Furthermore, if z € D :=
{y €[0.1]"/y; # y; if i # j} then, IP;-a.s., X* € D for every t € IN. Thus, as soon
as X € D a.s., the algorithm is a.s. well defined.

As, in the one dimensional setting, self organization means that the weight vector
has monotone components, we define the two sets of possible organized states, say :

noindent Ff:={z€[0,1]",0< 2, <29 < -+ <z, <1},
Fr={rel0,]]"0< 2, <zpy <- <z <1}
and F,.=FfUF_ .

2.2 Previous results and notations

The first studies were mainly devoted to proving the self organizing property. The
results are the following :

SELF-ORGANIZATION (a) If 0 := 1<) (“2 neighbors”, see [5] or [3]) or if, more
generally, k — o(k) is non increasing on NN (see [6] or [7]), then F\ and F, are
absorbing sets.

(b) If the step is constant (e, =¢), then the hitting time 75, of X' in F, is IP,-a.s.
finite and admits an exponential moment, uniformly w.r.t. z € [0,1]", under the
various assumptions that follow :



— 2 neighbors and p=U([0, 1]) (original result, established in [5]).

— 2 neighbors and the support of the continuous part of x4 has a nonempty interior
(see [3]). The supports of such distributions obviously can be not connected.

— The neighborhood function is decreasing on {0,1,...,n—1} (see [6]).

These results cover almost all the cases of interest.

CONVERGENCE After self-organization the algorithm a.s. lives in one of the absor-
bing subsets F'¥ of F,,. That is why a.s. convergence has always been investigated
once the algorithm lives - for instance — in F}} and - for classical reasons — when
the step ¢, is decreasing.

As usual, most works rely on the well-known ODE method for stochastic al-
gorithms or, namely in the uniform setting, on a Robbins-Sigmund martingale ap-
proach. So, let us introduce the continuous time ODE associated with the discrete
time algorithm. It reads :

t = —h(z) where h: D — IR" reads
Vze D, hi(z) = > o(i— k)/~ _ (m—wpldw), 1<i<n,  (3)
k=1 ]xkﬂ?k“]
~ ~ Tk -
where, by convention : T, =0_, I, = ﬂ%, 2<k<n, ZTpy =14

in the following sense : every function g : [0, 1] — IR is assumed to have 0 left limit
at 0 and 0 right limit at 1 (that is g(0_)=g¢(1,)=0).

Here are the main existing results.

(a) If j¢ is continuous, the mean function of the algorithm, denoted by —h (see
(3)), admits a continuous extension on —F: and h has at least an equilibrium point
(i.e. a zero) z* in F,

(b) If i is continuous, if suppu=[0, 1] and if the neighborhood function ¢ satisfies
(H,) = there exists ko < 251, such that o (ko + 1) < o(ko)

then the equilibrium set {h=0} is included in F}.

(¢) If u admits a density function f>0 on 0, 1] satisfying :

(L,) = e f is strictly log-concave on |0, 1]
#7 1 eor f is log-concave on ]0,1[ and f(0;)+ f(1-)>0"

then h is Lipschitz on F: and all equilibrium points are stable (i.e. have a stable
attracting basin in the Kushner & Clark sense, (see [16] or subsection 6.2 for some
background)). Consequently there are finitely many of them.



(d) If ,6, =400 and ¥ ,&? < +0o (the so-called “decreasing step” assumption),
and

— if the assumptions of item (c) are fulfilled then the algorithm conditionally
converges in the K&C sense toward an equilibrium (see [16] or subsection 6.2 for
some background).

—if p:= U([0,1]) then h admits a unique equilibrium z* in F;/ and X* — z*
IP,.-a.s..

Claim (a) is established in [3] for the “2-neighbor” setting and in [7] in full
generality. Claim (b) in its general form is due to Sadhegi in [20]. Claims (c) and
(d) are proved in [7] under a slightly more restrictive assumption. The next section
of the paper is devoted to extend it whenever (a) is established under (H,).

A convention on log-concave densities on [0, 1] : A non negative log-concave
density function defined on [0, 1] is continuous on (0, 1) has a right limit at 0 and a
left limit at 1. So, one may assume that such a function is continuous on the closed
unit interval by setting, if necessary, f(0):= f(0,) and f(1):=f(1-).

2.3 The main result

The aim of this whole work is to prove the following

Theorem 1 If  satisfies condition (L), if o satisfies (H,) for some ky < ";], of

, —_— , . . . .
XYe F, then X' converges IP, a.s. to the uniquc equilibrium point x*, unique zero

of hin F, .

To prove Theorem 1, we proceed in three steps :

1- first we prove that there is a unique equilibrium point z* for the ODE 4 =
~h{o, x),

2- then we verify the assumptions of Hirsch’s Theorem about the strongly mo-
notone dynamical systems,

3- and finally we apply the celebrated Kushner & Clark Theorem to conclude.
Notice that we will need some extension of the definition of the algorithm in order
to include the case where X! belongs to 9F,F. This will be done when needed (see
formula (9) below).

The first step essentially relies on the asymptotical stability of all equilibrium points
under the assumption (H,) (see section 3).



3 Stability of the equilibrium points

Here we extend the result in [7] from the stronger assumption o(3) < ¢(0) to the
weaker assumption (H,).

Proposition 1 If assumption (L,) and (H,) hold then any equilibrium point z*
(lies in F} and) is stable in the following sense

VA€ Sp(Vh(z")), R(A) >0

where Sp(A) := {eigenvalues of A}. x* ts then stable in the K&C sense (see section
6.2).

So, the basic ingredient of this section is the expression of the gradient Vi when
the distribution p has a continuous density function f on (0,1). This computation
was carried out in [7]. W.Lg. on the density function f, we will adopt throughout
the text the following convention :

f(0_)=0 (hence f(z,;)=0) and f(14)=0 (hence f(i,:+;)=0).

Lemma 1 If the density f is continuous on (0, 1) then h is continuously differen-
tiable on F7 and Vh(x) := Diag[Ci, -+ Ca) + laijli<iy<n where

n

n

G o= Z a(1—k) /:kH flw)dw, 1 <1< n, (4)
Qi = O(Hl—j;_a(’[_j)(Ti'—fij)f(ij)‘*‘O(i_'j)ug(i_j_1)(lﬁi—ijﬂ)f(jnl)-

The rest of the section is devoted to the proof of Proposition 1. Actually it is
essentiallv an improvement of that in [7]. Before going into technicalities, let us say
that the approach basically consists in showing that the real parts of the eigenvalues
of the Vh(2*) are positive. It relies on the the celebrated Gershgorin Lemma on
matrices with dominating diagonal and one of its variant (that can be found e.g. in

[7])-
Lemma 2 Let A:=[a;j]1<ij<n be a real valued matriz.
(a) CLASSICAL GERSHGORIN LEMMA (see e.g. [11] for a proof) : if A satisfies
Vi# 4, a; <0 and Vi, Zaij > 0,
J

then : Vv A€ Sp(Vh(z*)), R(A) > 0.

(b)) EXTENDED GERSHGORIN LEMMA : (see e.g. [7] for a proof) : Assume there is
some p€ {1,---,n—1} satisfying



(it) asi2p < 0 wheneveri+pe {1,...,n},
(i) Fiy, i € {1,---,n} st Gxe=kmod.p and ¥ ;a;; > 0.

Then Ve Sp(Vh(z")), R(A) > 0.
Following Lemma 2, it turns out that our main task is to investigate, for every
" 0l
z€ F,f, the sign of components of Vh(z) and of their sum L;(z):=)_ gi(x)
j=197;
-, Ok
Lemma 3 (a)Vze F}, Vi#j, a—(z) <0,
L

(b) If f>0 on the open unit interval (0,1) and assumption (H,) holds, then

Oh;
vie {1,...,n}, Vze F}, :

. () <0 where o(ko+ 1) < a(ko)
aIii(kg«H)

(At least one of these partial derivatives does exist).

Proof : One first notices that matrix a in equation (4) is the sum o := [a;;]+[ai j+1]

SETPN
oli+1-g)=oli ])(a:i—:i‘j)f(ij). Now a;; < 0 (and a;1 = a4 = 0)

<

which implies item (a).

where a;; =

Claim (b) follows from the fact that

J=itko+1 = o(i+tl-j)—0(i—j)=o(ky) —o(ko+1)#0.
j=i—(ko+1) = o(i—j)—o(j—i+1)=0(ko+1)—0a(ks) #0.

This completes the proof. o

Proof of Proposition 1 (step 1) : As we are only concerned here by the gradient
at 2%, we may use the equilibrium equation h{z*)=0:

Zo(i —j)/j'm wf(w)dw

zr =1 ~ L 1<i<n (5)
Soli—g) [ flw)de
j=1 ;

Thus. plugging (5) into the expression (4) of Vh(z*) finally yields

V1<i<n, Liz*):= Di(:r;)] , (6)
>oli—g) [ flw)d



where D;(z*) is given (keeping in mind the conventions £;=0_, Tp41=14) by

D)= ('Zlm -d) /f"?<w>dw) S0l = G 1) = ol = IG5 30li-8) [ 5 fe)de
j=1 T j=1 1 Ja;,

(7)
Equation (7) shows that the problem is equivalent to specifying if D;(z*) is 0 or not
and. if not, its sign.
To this end, we introduce some auxiliary functions ¢, 1 <i:<n on F

3
+

+1 n Uyt1

Vue Fo ol (u) =M (u) — S r(k, i) flue) D oli—5) | (w—w)f(w)dw

k j=1 JUy

Il
—

7(k,1) =0 — k) ljkany —0(i+ 1 = k)1

where n . 2
i) = <Z 7—k/ f(w)d.u)

Equation (7) now reads. for everv i€ {1,...,n},
Diat) = )+ f(O)li—1) ”Z oli = k) [ wf e
k=1 o
+f (1 —n) Z i—k) TH](] —w)f(w)dw.
k=1 I
(still using the conventions I, =0_ and Tpy1=14, f(0):=f(04), f(1):=f(1-)). o

To get the sign of the ¢! functions we will specify the (partial) sign structure of
sonte of their partial derivatives. The next lemima relies on the well-known fact that
a (positive) log-concave function has right derivatives (a little algebra is left to the
reader).

Lemma 4 If the density [ is log-concave, @' has right first partial derwatiwes on
Ff.\ and some right cross second partial deriwatives, namely
(a) For every £€ {1,...,n+1},

=R 1) n+1
%{i(u) = —(u)f(ue)T (ZT(A 1) f (ur) (we ——uk)> flue)T(€,) —

7(C, 1) 1 (ue) (i z—j)/uujﬂ(w—uf)f(w)dw>

where the subscript “.7 denotes right derwative.

8



(b) For every £, me {1,...,n+1}, £ #m,

aujgzm (u) = 7(£,)7(m, i) (ue — um) (fl(u,n)f(ug) — ) f ). (8)

The following two lemmas show that the above partial derivatives (equation (8)) are
sufficient to specify the sign of ¢*. They are proved in [7].

Lemma 5 (o) Vu € [0,1], ¢P(u,---,u) =0,

Vue (0.1). Vle {1,---,n+ 1}, a’L(P?(u, u) = 0.
Jdug
(b) Assume that f >0 on (0,1). If log f s concave and u € F:H N0, 1)"*! then
the symmetrical matriz [é—iig—jm L,me{l,--.,nﬂ} has a sign structure gwen by -
1 1+ 1 n+1
an - -
X <0
>0 X :
i+l - 0 0 x
X >0
<0 X
L >0 x|

the sign of the diagonal terms being unknown a priori.

Lemma 6 Assume that f > 0 on (0,1) and log f ts concave. Then
(a)Vu € F:H, ©t(u) > 0.
(b) If log f 1is strictly concave and o(1) < o(0) then

-+
Vue Foq, t < Up = ¢ (u) > 0.

Proof of Proposition 1 (step 2) :
LOG-CONCAVE ASSUMPTION : For a proof that z* belongs to F,}, see [20] or Lemma
8(c) below. The proof relies on equation (7) :

Di(a) = gr(E) + fOoli—1) Y ollk i) /f“wfw)dw
D k=1 i

+ f(l)o (n*z o(]k—zl)/ (1-w)f(w)dw.



It follows that all the D;(z*)’s are non-negative and, furthermore,

f(0)>0 = Di(z*)>0,1<i<ko+1,
f(1)>0 = Diya") >0, n—ky<i<n,

oh;
since o (ko + 1) <o (ko). Lemma 3 implies that —————— < 0. Hence, as L;(z*) > 0
3$ii(ko+1)
iff Dj(z*)> 0. one derives from Lemma 2(a) (with p==£ko+1) that all the eigenvalues

of Vh(x*) have positive real parts.

STRICT LOG-CONCAVE ASSUMPTION : The aim is now to fulfill the classical Ger-
shgorin Lemma. Let kg be defined by assumption (H,). Then o(0)=...=0(ko) >
U(ko + 1).

Step 1 (ko = 0) : then (1) <o(0) since Z} <z, ,, Lemma 6(b) implies D;(Z*) >0
for every 7.

Step 2 (general case) : One sets aq(i) =0 (1 + ko) for every i€ {0,...,n — ko} (and
ao(n — kg + 1) =0). One checks after some tedious but elementary computations

that, for every u:=(uj....,un41)€ F:H,
Vie {1.... ko}, ¢ (u) = (,93’1(” O)(ul,uﬂkoﬂ, e Ung)
Vie {ko+1,....,n— (ko + 1)}, ¥ (u) = (708’;_228(11/1,...,Ui_k07u1;+k0+l,...,'(Ln_*_l)’
Vie {n—ko.....,n}, ¢i(u) = goé,}'i"&l(ul,...,ui_ko,unH),

where £ denote the ! function related to the ¢ neighborhood function (and its

restrictions to smaller unit sets). Finally, case 1 yields the expected result, that is,

Vue F,,, et (u) >0,

which in turn implies. still using equation (7), that, D;(z*)>0,1<i<n.
This time the classical Gershgorin Lemma and Lemma 3(a) complete the proof :
the eigenvalues of VA(2*) have positive real part, so z* is stable. o

4 Uniqueness of the equilibrium point

We recall the celebrated Poincaré-Hopf’s Theorem (see [12]) :

Theorem 2 (Poincaré-Hopf) Let V be a C° manifold with boundary OV and let f
be a C° vector field on V pointing (strictly) outside V on 0V, having finitely many
zeros (necessarily) inside V. Then the sum of all the Morse indices of the zeros of
f is equal to the Euler characteristics of V.

Theorem 3 If p satisfies condition (L), if o satisfies (Hy) then the ODE has a
unique equilibrium point.

10



Lemma 7 If p is continuous and supp(u)=[0,1] and if the neighborhood function

o s decreasing on {0, ...,n — 1}, the vector field h is pointing (strictly) outside F:
on OF,.

Proof : Let x € OF} and the integral interval [ig,4;] be a cluster of z that is
Lig =Tig41=...=Z;. Lhen I; = x4, 10+1<7<4;. A little algebra yields, that, for
every £€ {ip+1,...,11}

o) = hl®) = (@(0) = ot~ i) [ (i~ w)d)

~ e+1
<

—

>0

<0ifl= 11, O otherwise

+ Z (o(i —¥) —o(z—zo )/m(mzo—w/L((iw)

i=11+1

>0
<0

Zit1

+Z (£ — 1) —o(zo—z))/ (23, — w)pi(dw) < 0.

~ z;
N

<0
>0

This shows that the vector field h(z) is pointing outside the vector subspace
vec{er — e;,. 19 < £ <y} where (ey, ..., e,) denotes the canonical basis of IR". The
same property holds for every cluster of x € JF)", subsequently /(z) is pointing
outside (all) the tangent hyperplane(s) of the convex set F. at z as long as 0 <
xile. . .lex, <1. The cases 1 =0 or z, =1 follow the same way round. ¢

Proof of theorem 3 : The canonical closed simplex _F: is homeomorphic to the
unit closed disk D, : namely, let z¢ € F} be a fixed point. As F: is a closed convex
set. we can define

Mz) :=sup{s >0/ zo+ s(z — x0) € F:}
The map ¥(x): =% 50 Is then an homeomorphism from F onto the disk D,. Thus,
the Euler characteristics of F, . 1s 1. We know from Proposition 1 (Section 3) that
every zero z* of h have a stable attracting basin such that all the eigenvalues of
Vh(z*) have positive real part. Hence, det(Vh(z*)) is positive and the Morse index
of z* is one.
Case 1 (o decreasing) : It straightforwardly follows from Lemma 7 that the sum
of the Morse indices of the zeros of h is 1. This means that there is exactly one
equilibrium point for the O.D.E..

Case 2 (extension to general o functions) : At this stage we need to mention the
o-dependency of the mean function h and we write h(o, =) instead of h(z). The fumc-

Oh(o.2%) _ V.h(c,z")
0z '

tion h : R"x FX — F isclearly C? and its partial derivative

11



is invertible at each equilibrium “couple” (o, z*) such that ¢ satisfies (H,) . Thus
the implicit functions Theorem applies.

Let 0o be a given non-increasing neighborhood function that fulfills (H,) and
assume there arc two different solutions 2z} and z3 of the equilibrium equation
h(og,z) = 0 (necessarily in F,}, see claim (b) of uniqueness and convergence, sub-
section 2.2). There exist an open neighborhood V(o) of 0p in IR™. two open neigh-
horhoods W(z) of 27 and two C! functions ¢; defined on W(z7), i=1,2 such that,
for every 1=1,2:

hio.z) =0, (0,2) € V(gg) x W(z}) iff z=0(0).

First note that the open set V(og) N {0 /k — o(k) is decreasing} is nonempty
since o€ {0 / k +— o(k) is decreasing}. Now, let (0n)n>1 be a sequence in V(ao) N
{0/}~ o(k) is decreasing} that converges to go. Then ¢;(c,) converges toward
27 Now, the uniqueness result in case 1 implies that ¢1(on) =a(0,) for every n>1,
which. in turn, implies that z7 =23. This yields a contradiction. So Theorem 3 1s
proved. o

5 Cooperative dynamical systems and applica-
tions to S.O.M.

We follow here the definitions and results of M. Hirsch about cooperative dynamical
systems. Although “cooperation” and “competition” are two keywords in the very
definition of the Kohonen S.O.N. — and actually in many Neural models - the link
hevond the coincidence of the words with the cooperative systems has been made
verv recently. A. Sadeghi noticed that the non-negativity of off-diagonal terms of
—Vh is exactly the basic definition of a cooperative dynamical system.

Unfortunately, all the assumptions required to apply Hirsch’s convergence flow
Theorem are not satisfied in full generality by the Kohonen S.O.N. maps. Namely
the kind of “strong” irreducibility assumption is not, except when o does decrease.
So we had to slightly weaken this assumption in the original Hirsch’s Theorem to
apply it under the standard “probabilistic” irreducibility assumption for matrices
with non-negative coefficients.

5.1 General background
Definition 1 An autonomous dynamical system © = f(z) defined on a convex open

set W of R™ s cooperative if the vector field f 1s C' and its gradient matriz V f(z)
afi o,
J () >0,i#7].

Lj

has non-negative off-diagonal entries, that is

12



Definition 2 (a) A n x n matriz A is irreducible if one of the following equivalent
properties holds

(a) for every nonempty proper subset I of {1,...,n} there is ani€ I and j €I
such that a;; #0.

(b) for every couple (i,7) € {1,...,n}?, there existsr(i, j) € IN* such that (|A]"®2)),; #
0 where |A}:={|ai;l]-

Put some way round, this definition means that there is a path from 7 to j on the
graph defined by the nonzero coefficients of A (the edge k — [ exists ift Ay # 0).
Item (a) is the original definition used by Hirsch in [13] and Smith [21] while item
(b) is the usual probabilistic definition of irreducibility of stochastic matrices.

The vector order on IR" is denoted < where z < y means that z; <w; for all 7. If
@ <y and z # y then we write z < y. If z; <y, for all 7+ then we write r <<y.

The following theorem, originally due to Hirsch, was first proved for a more
restrictive irreducibility assumption ([12]). It can be found in the recent monograph
by H. L. Smith (see [21]) with the standard probabilistic definition of irreducibility.

Theorem 4 (Hirsch) Let & = f(x) be a cooperative dynamical system defined on the
open, set W IfV f(x) is irreducible then the flow {®,}(* ) induced by f 1is well defined
Ofes (z) for allt>0 and every 1<, j<n.

Ox;

and has positive partial derwatives :

Then. he derives

Theorem 5 (Hirsch) Let W be a convex open set. If the flow {®,} of & = f(x) is
well defined and has positive derivatives then it is strongly monotone on W an the
Jollowing sense

Tz <y= Pz) << D(y)

forallt > 0i.e ®p(x)<Pyi(y) for every i.

We may now state a last theorem by Hirsch in the specific case where the dyna-
mical svstem does have a unique equilibrium point z* in W’

Theorem 6 (Hirsch) Assume that the flow {®,} ts strongly monotone on a convex
open set W and lives in W. If every orbit has compact closure in W and if there s
only one equilibrium point x*€ W, then

Vee W, lim ®,(z) =z".

t—+oo

'The How ®,(z) is defined as a mapping from W x Ry — W satisfying the relation :

VieR,. VzeW, M’ét(z) = f(®(z)).
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5.2 Application to the Kohonen S.O.M.

To apply Theorem 6 to the Kohonen dynamical system, we need to prove that the
ODE = & = (—h)(z) is cooperative, irreducible (probabilistic sense) and that all
trajectories issued from ?: live in F} whenever ¢ > 0 along with all their limit
points. Hence the theorem will work for trajectories starting from 0F, which will
be crucial for the transfer of the converging property to the algorithm.

Proposition 2 (a) If the distribution u has a continuous density on (0,1) and
the neighborhood function o is non-increasing, then the Kohonen S.O.M. ODE 1s

cooperative on Fb

(b) Assume that (L,)) and (H,) hold. Then, Vh(z) 1s wrreducible at cvery x € F;7 iff
assumption (H,) holds for some ko< ”T”l

Proof : (a) straightforwardly follows from the expression of Vii(a) provided in
Lemma 1 and its sign structure from Lemma 3.

(1) (=) If n=2ky+1 (and o(ko) = 0(0)=1) the non diagonal terms of the (ko+1)-th
line of VN(x) are all zero. Hence Vh(z) cannot be irreducible.

(<) assume now that kg < "—'2‘—1 Set
A = ag)i<ijen, iy = lo(li+1—j[) —o(li = 7D Liagi<ny-

On F7. the irreducibility of Vh(z) is clearly equivalent to that of B := [a; +
;e )i<ij<n Where a5 :=0.
Now. a;; =0 (ko + 1) — 0(ke)| >0 whenever j>2 and i — j= ko or — (ko + 1) and
is always non-negative. Let 1€ {1,...,n}.
. . . 2
if i <n—(ky+1) then Ai,1+l > a4+ Ko+ 1%ske+1i + 1 > ()
)

<n

if 7>mn—(ko+1) then A?.i+1 >a ko Qi-koi+1 > 0.

il —

>2

Subsequently. if i, jo € {1,...,n}, 0 < jo, the above sign structure of A implies
that , ) 2
io2ig+ 155 A

Svmmetrically, one shows that A’:= [a; ;1] satisfies A;%_; >0 which in turn implies
that, if ig, jo€ {1,...,n}, 70> jo, then A'? will lead from iy to jg in ig — jo shots.

The irreducibility of B follows from the obvious inequality Bj; > max(Aj;, A;;). o

Remark : The above proof shows that a {1,...,n}-valued Markov chain jumping
with positive probability from i to i + ko, © + ko + 1, i — ko or 7 — (ko + 1) (when it
is possible) is irreducible.

14



Our last task in that subsection is to check that the flow of the ODFE has no
limiting point on 9F) (even when it starts from it).

Proposition 3 Assume that the distribution p has a bounded density, continuous
and positive on (0,1)(%) and that (H,) holds. For every x € F;, the set of the
Limiting values of the flow {@,(z)} of the S.O.M. ODE 1s a compact connected set
of F*.

This proposition relies on a “parting” lemma for the mean function / and a
modified version of the algorithm : we need to define an extension of the algorithm
itself when starting from the boundary of F' that complies with the continuous
extension of the mean function h on 9F (see equation (3)) : so far the algorithm
is only defined when z€ D.

EXTENSION OF THE ALGORITHM ON JF)" : At time ¢ + 1. one has

(1) Competitive phase : computation of the winning unit :

w1 > argming o, [ = X then i(w, X) 1= max argming o, o't = Xil,

L <argming oo, [0t = NP then i(w T XY = minargming o, ' = X
(9)
(ii) Cooperative phase : unchanged.
This new algorithm IP,-a.s. coincides with the original one (see Lenuna 8) whe-
never » € FY (FF € D and 0F] C D). Furthermore. one readily checks the

following important facts
Proposition 4 (a) The closed simplex F: is left stable by the catended algorithm

(9).
() The Markov transitions defined by equation (9) that is

Pan(f)a) = /[ Fla = ey Hiz.w))p(dw)

are Feller on f:,
single point).

(¢) The mean function of the extended algorithm, still denoted h(z)=1E.(H (z,w')),
coincides with the continuous extension of the original algorithm on F, .

whenever the stimuli distribution p is continuous (i.e. weights no

Remark : One must take care that such an extension is only valid on ?:: . The
algorithm has a Feller extension F, which is not compatible with (9). No Feller
version of the Kohonen S.0O.M. can be defined on the original state space [0, 1]" as
it is contradictory with self-organization.

2This is especially satisfied when p has a log-concave density



Lemma 8 (Parting lemma) Assume that (H,) holds, that p s continuous with
supp(p) =10, 1].

(a) Set E(z) := card{z;. 1<i<n}e {1,...,n} (number of distinct values of the
components of the vector T so that E(x)<n iffx€ OF} ). Then, for every x€ OF,,
E(XY) > E(x) Pr-a.s. and PL(E(X?) > E(z))>0. Furthermore, N, :=card{i [/ z;=
a}. a=0.1. satisfy the same property.

(b) For cveryx € OFF, for everyi€ {1,...,n} such that t;=2,51, hi(xz)—hiy1(z) >0
and there exists at least one 1o such that z,,=1z,,+1 and hy,(x) — hiys1(z) > 0.

. . =+ . .
(c) The set of zeros of the continuous extension of h on F 1is contained in F)].

Proof : {(a) For the sake of understanding we will only deal with £. The (prelimi-
nary) treatment of Ap and A is in fact simpler. So, we assume that z€ 9F,; N(0,1)"
is fixed. Py-a.s., X' € F. N (0,1)", hence E(X') > E(z), P,-a.s..

Let [i). 1] be an integral interval whose components made up a full cluster i.c.
oy <y = T, <Lip4d-

Case 1 (iy — i1 > ko +2) : One may assume w.l.g. that 2;, <1. Then, picking up
the stimulus w! in (24, T5,41) will split the cluster [y, 4] into two smaller clusters :
E(X')>&(x) on that event whose probability is not zero since supp(s) =[0, 1].
Case 2 (is — iy < kg + 1) : If there is some cluster [j;. jo] such that i} + ko + 1 <
ji <is+hy+ 1. then, on the event {w' € (Z;,,z;,)}, the cluster [11, 75} is split, hence
E(NH>E(x).

If no such cluster exists, that means that the indices i) + kg + 1.... 40 + kg + 1
(lower than n) are never the lowest point of their cluster. That means that they are
all included in the same one, say [ki, ko], 10 < ki < iy + ko. Now. picking up w! in
(i, .0, ) will split the cluster [ky, Ao]. .. if it exists.

If [k). k] does not exist, that means that z; + ko >n: but, then, 7; > "jl > ko + 1.
The same method as above leads to splitting [iy, 7] with positive probability using
a “lower™ cluster [0y, €] s.t. i1 — (ko + 1) <€y <iy — (ko 4 1) or to splitting a lower
cluster [my.mg). iy — ko <mq <iy and my <min(zy — (ko +1),1) : this time [m;, mo)
necessarily exists and is a true cluster.

(b) The inequalities “>" on the boundary follow from the fact that the continuous
extension of h on —F_: satisfies e.g. (Id — %)h(—F—:) c F. which in turn follows from
the stability of F,} itself by the same application.

The existence of 4o follows from claim (a). Indeed, as IP,(£(X') > &(z)) > 0,
there is at least one 4g such that Ty = Tig41, Xp <X} and Po(X) < X 1) >0.

These inequalities yield, after proper integration, that h; 41(z) — hy(z) >0.

(¢) This point is obvious. given (b). o

Proof of Proposition 3 : Step 1 : (ezistence of the flow) As, for every e € (0, 1)
Id — =h leaves the convex compact set 75: stable, there is at least one 77—: -valued
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solution on IR, obtained e.g. by the Peano-Euler discretization method. The mean
function h is Lipschitz on F, since its gradient (see 1) is bounded on F}. This
implies global uniqueness for the ODE : the flow {®,} of the ODFE is well defined
on the closure F:. As usual, the set of w-limit points for the flow is a compact
connected set of F, .

Our aim is to prove that, for every z € f: , it actually lies in FF

Step 2 (P, instantly leaves OF ) : Let z € OF being fixed and € > 0. It follows
from claim (b) in the above Lemma 8 that there is some o such that z,, =z, ,; and
ap:=(hi+1 — hi)(x) >0. Hence, there is some 7y >0 such that, for every ue (0, 7],
Oyip+1() — Py () > apu and already parted components remain parted. One may
assume w.l.g. that = <no. hence £(®=(z)) > E(z). Carrying on the process finally
yields that there is some ks <n such that

E(D-(2)) = E(Drge (2)) = 1
i.c. ¢ (x)€ FF. This is true for every € >0 which finally shows that
Vxe dF), 3n,>0 such that Yue (0,n,], .(z) € F.

Now, assume that there is some finite time, say v, such that ¢, (z) € 9F,} and
O, (2)¢ OF for u €(0,up). One readily checks that for every ¢ such that ¢, ;(z)=
Dopir1(2), hi( Py (7)) = hiz1 (Do, (x)) which is impossible, still by claim (b) in Lemma
8. Finally, one gets

Vee OF, Yu>0, ®,(z) € F;/.

Step 3 : Let £9>0. © — ., (z) is an homeomorphism from 7: onto its image, hence
O, (F:) is homeomorphic to the closed disk D, so is compact in FF.
O (OFF) is parting F.F into two connected components whose only one contains
O, (FF). Since the flow has an equilibrium point in F,}, it remains inside O, (FF),
thus @ (FF) is a compact connected subset of F,f.

Consequently any positively invariant set of the flow is contain in this compact
subset. The fact that the limiting values of any trajectory of the ODFE is an invariant

set of the flow completes the proof. o

Furthermore

Collecting all the above results, and the Hirsch’s theorem finally provides the
following convergence result for the flow of the Kohonen S.O.M. ODE.

Theorem 7 Assume that (L,) and (H,) hold for some ko <25*, then the flow {®,}
of the Kohonen S.0.M. ODE converges to its unique equilibrium point z* in F}.
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6 Convergence of the one dimensional Kohonen
S.0.M.

6.1 Weak convergence of the invariant distributions

The extended algorithm defined by equation 9 being Feller, its constant step version
g,:=¢ € (0,1) is an homogeneous Feller FI -valued Markov chain with transition
P#(z.dy). Subsequently, F: being a compact set, for every € € (0, 1), this transition
has an invariant distribution v°. Furthermore, the compactness of —F—: implies in
turn that the set of probability measures {v° such that v*P* = v°, ¢ € (0,1)} is
tight for the weak convergence of probability measures.

One way to study the constant step setting for a stochastic algorithm is to
investigate the asymptotic behavior of these invariant distributions v* as € — 0.

Several theoretical results in that direction have been obtained (see [2] or [10]),
namely that any limiting distribution of the v*’s is flow invariant for the ODE.

Applyving these results provide the following weak convergence result.

Theorem 8 Assume that (L£,) holds and so does (H,) for some ky < 5% Let

(%).cq0.1) be a family of invariant distributions for the extended algorithm.
(a) For cvery e € (0.1), v°(F}F) = 1; consequently, v* is an invarant distribution
for the original Kohonen S.0.M. algorithm as well.

D) (R o
(b) ¥ == 6, where == denotes the weak convergence of distribution on I +,

n

Proof : (a) Let € >0. We will assume that v5(9[0,1]") =0. The proof is the very
sanie as that below using the Ay and Nj moduli instead of £.

It follows from Lemma 8(a) that, for every z€ 0F,f, £(z) < E(XN') Py-a.s. and
P, (E(X) > £(x))>0. Note that 9F} ={& <n —1}.

V(OFT) = /g'f(d:c)na(g(xl)<5(x))+§/{ Ve (dz) P (E(XY) < k)

£=k}

<1

+ /{s:n_l} V¥ (dz) P, (E(XY) = £(x))

~~

<1

= [, v o)

where the function p is lower than 1. Finally v*(9F;)=0.
Then, one readily checks that v¢ is an invariant distribution for the original
algorithm as both definitions coincide on Fj}.

(b) It follows from Theorem 7 that the flow of the extended (Feller) algorithm ODE
is converging to the unique equilibrium point z*. Hence, applying the flow invariance
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Theorem (see {2] or [10]) for the weak limiting values of the (v°)cc(0,1) straightfor-
wardly yields that 6, is the only possible weak limiting distribution for the family
(v)eeo.1)- This completes the proof. o

6.2 A.s. convergence

In this section, we show how to transfer the result obtained on the ODFE to the a.s.
properties of the stochastic algorithm itself. This point is not trivial — actually this
mav not hold ! — as mentioned by several authors (see e.g. [1]. [9]).

The algorithm reads in a more compact form

X = X' g H(XY W', (10)
= X! —5t+1h(Xt)+€L+1 X (]L(Xt) —H(Xt,wH_l)) (11)
martingale L°°—b§unded increment
where the reference filtration is & :=o(w!, ..., w'), w" i.i.d. sequence of p-distributed

V.

We apply in this special case the classical Kushner & Clark Theorem by checking
that the whole state space F," of the (extended) algorithm is a (compact) stable
attracting basin for the algorithm in the Kushner & Clark sense.

6.2.1 More on the K& C Theorem

We first recall for the reader’s convenience the well-known result by Kushner & Clark
about conditional convergence of a IR"-valued stochastic algorithm to an asympto-
tically stable equilibrium 2* of the ODE.

Definition 3 An equilibrium point x* of the mean function h is a stable equilibrium
if it has a stable attracting basin I'z- in the following sense : let {®,(x)} denote the
flow of the ODE starting from x. T;- 1s defined as a neighborhood of ™ satisfying

(1) VzeTl,, YVue Ry, @uz)e€Tl,.,
(1) Vze T, limyyoo Pulz) = 27,

VK C T';-, K compact set, Ve > 0, 3n. > 0 such that

(iid)

Vre K, |20 —z*| <n.x =  SuPyeg, [Pulz) — 27| <&

A sufficient condition for the existence of such a stable attracting basin I';- is the
mean function h to be differentiable at z* with a gradient Vh(z*) satisfying :

all the eigenvalues of Vh(z*) have positive real part.
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It has already been shown in section 3 that this is satisfied in our problem by the
unique equilibrium point of the ODE. We put in the lemma below a remark on
the converging flows with unique stable equilibrium point whose proof is obvious in
view of Definition 3.

Lemma 9 Let W IRY be a nonempty open set and let h be a continuous function
defined on W such that

(i) the flow {®,(z)} of the ODE is defined on W x R, and takes its values in W
o)

(ii) {h=0} = {2} where x* has a stable attracting basin [y,

(i4i) For every € W, the flow ®,(z) — z* as u — 400,

then, the whole state space W is a stable attracting basin for x*.

Proposition 5 The whole state space " of the Kohonen S.0.M. algorithm (mo-
dified on OFF by formula (9) is a stable attracting basin.

A useful probabilistic version of the celebrated Kushner & Clark Theorem (see

[16] and [17] for the L? extension) reads as follows
Theorem 9 (Kushner & Clark) Assume that

Q@ 1+4
(i) STEP ASSUMPTION : Zst:+oo and th 2 <400 for some qg>2.

£>0 >0

(#i) MARTINGALE PART ASSUMPTION : the sequence of martingale increments (AM*)i>1
is Li-bounded (AM :=h(X') — H(X'""1 wh)).
(iii) ODE ASSUMPTION : Let 2 be a zero of h and I be a compact subset of its
attracting basin T,

Then. the sequence (X')so “conditionally” (a.s.) converges to x* in the following
sense

N''TES o on the event A% = {(X")is0 is bounded and X' € Kinfinitely often}.
;From Lemma 9 and the Kushner & Clark Theorem, one derives the now obvious

Corollary 1 If a stochastic algorithm (X!)i>o defined by the general formula (10)
satisfies the above assumptions of both Lemma 9 and Theorem 9, then,

Vze F}, IP,-a.s. (and in LY) X' — 1" as t — +o0.

Proposition 5 combined with the above Corollary 1 finally completes the proof
of Theorem 1. Actually, we proved a slightly different result since our convergence
result embodies the extended algorithm i.e. the extended algorithm converges to z*
IP,-a.s.. for every z € _F:.

3This holds whenever h is Lipschitz and, for small enough £>0, (Id — eh)(W) c W.
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7 An abstract result as a (first) conclusion

If one looks carefully to the method of proof, one can easily derive a general theorem
of a.s. convergence for stochastic cooperative algorithms. On a purely technical point
of view, the result below is not powerful enough to embody our Theorem 1 in full
generality. However, when the neighborhood function ¢ is (strictly) decreasing on
{1,...,n}, it works.

Consider on a probability space (€2, A, IP), a C-valued stochastic algorithm by
X = X' — g h(XY) + gAML (12)

where (AM");>; denotes a sequence of martingale increments. It may be seen as
the normalized noise of the deterministic equation z'*! = z* — g,h(z") whence the
name of average or mean function for h.

The general result reads as follows

Theorem 10 Let C be an open bounded convex set of IR™ and C its compact closure.
Consider a stochastic algorithm defined by equation (12) and ssume that the following
assumptions hold :

(/) EXISTENCE OF THE FLOW OF THE ODE : h is Lipschitz on C and

(i) ASSUMPTIONS ON © : e he CY(C),

dh;
<0

0:(;]( z)<0)

— Vh(z) 1s irreducible (in the usual probabilistic sense),

— Vh(z) 1s cooperative (i.e. Vi#j,

e For cvery z€ C.,

e The zeros of h lie in C and at each equilibrium point Vh(z) or its transpose has
strictly dominating diagonal, that s

ahl " 9h,

Vie {1,...,n}, Zaz )>0 or YVje {1,...,n}, 8T1($)>0
] T

1=1

(this implies they are stable),
e V2e dC, Vye C, (h(z)ly—z) <0 (i.e. h 1s pointing outside C on 9C'),

(i11) ASSUMPTION ON THE MARTINGALE PART : the sequence of martingale incre-
ments (AM");>1 are Li-bounded for some ¢=>2,

(v) STEP ASSUMPTION : Y & = +00 and Ze, P 4o (for the same ¢>2),
t>1 t>1

then

(a) {h=0} = {z*} that is h has a single equilibrium point denoted z*,

and

(b)  for every z€ C, P-a.s. (and in LY) X' — z* as t — +o0.
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8 Conclusion about the Kohonen S.O.M.

This result almost ends the rigorous mathematical investigations about the a.s.
convergence properties of the one-dimensional Kohonen S.0.M., even if some further
work is to be carried out to solve the case of the 251 nearest neighbor (n odd).

Of course, even if one can get some satisfaction of having elucidated the one
dimensional case, most of the people using the Kohonen S.0.M deal with multidi-
mensional stimuli and generally with a 2-dimensional array of units. So the next
challenge is to get at least some sufficient conditions to ensure the a.s. convergence
of the Kohonen S.O.M in the higher dimensional cases. One way to proceed is to
deeply investigate the behavior of the ODFE since no hope of finding some nice ab-
sorbing classes is left (see [8]). Clearly the cooperativeness in the usual sense fail
in this setting. Nevertheless the very deep and rich mathematical literature about
differential equations should bring some light to break on through to the solution of
this problem.
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