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Abstract. To forecast a complete curve is a delicate problem, since the
existing methods (vectorial prevision, long-term forecasting) are difficult
to use and often give disappointing results. We propose a new strategy
that consists in dividing up the problem into three sub-problems: pre-
diction of the mean value and of the standard deviation and estimation
of the normalized curve (the profile). The mean value and the standard
deviation are predicted by any classical method (linear or neural). As to
the profile, it is estimated with the help of a previous classification. The
results are very convincing and a real-world application is presented :
the polish electrical consumption.

1 Introduction

We address a particular, but very usual case of long-term prediction. It is very
well suited for the consumption curves, and more generally for all the cases where
there are two time scales. The slow scale represents a fixed duration, which is
divided into a constant number of time intervals, which defines the rapid scale.
For instance, each curve corresponds to a day, and contains 24 values (one per
hour) or 48 (one per half-hour). The goal is to predict at the same time all the
values of the next curve with the same precision.

We could see this problem as a long-term prediction problem, but in that
case the usual method consists in introducing the successive predicted values as
new inputs to compute the future value, and the estimation accuracy is worst
for the most remote values than for the nearest ones. That characteristic is not
at all adapted to the concrete applications where we want the same forecasting
quality along all the curve. As to the non linear prediction method (as multilayer
perceptron model [10], [12], [13], [4]), one knows that the recurrence equation
which defines the model can have several fixed points, which do not have any
real meaning. In that case the long-term forecast values strongly depend on the
initial values and have a chaotic behavior.

On another hand, we could handle the problem as a vectorial prediction
problem, which consists in simultaneously predict all the values of the next
curve. But actually, the mathematical frame for this kind of prediction is not
completely clear so far, it Is necessary to take into account the dependency
between the values, and so on. In fact the parametric methods (linear or not)
seem to be delicate to implement. For example, in [6], the authors propose a



previous classification of all the days, and define as many perceptrons as classes.
In [11], another mixed method is used which needs J x M multilayer perceptrons,
where I is the number of values for a day and M is the number of classes that
are identified. All these methods are somewhat complex. We propose here a
semi-parametric alternative which is particularly well suited for the prediction
of complete curves, as consumption curve, periodic phenomena, etc.

The paper is organized as follows : the section 2 is devoted to present the
method and in section 3, we develop a real-world example that is the Polish
electricity consumption.

2 The Method

The essential of this section reminds the definitions that we presented in [3] and
[5], where artificial and real examples are studied.

Let us consider a time series X (¢,7), with a double indexation. The time is
denoted by (¢, i), where t is the slow scale (the day for example), and i is the
rapid one (the hour for example). For each ¢ € 1, T, the second index takes its
values between 1 and I, where I does not depend on ¢. The successive values are
grouped according to the ¢ index, and we set

X(t) = (X(t,i),i=1,....I)t=1,..T (1)

The time series is assumed to be stationary, or stationarized by a previous
transformation.

For each curve X(t), we define its mean value u(t), its variance o2(t), and
its normalized profile,

P(t)= (P(t,i),1<i<]) = (ﬁ(t_’);ﬂ_(‘)_) .

The prediction problem is then divided into three parts :

1. to forecast the mean value of the next day t + 1, from the previous values
2. in the same way, to forecast the standard deviation of the next day,
3. to estimate the profile of the next day.

That is justified by the fact that for the consumption curves, it is often useful
to distinguish the shape from the level and from the variability.
So the estimation of the complete curve X(t+1) will be

X(t) = a(t)P(t) + u(t) (3)

The previsions of the mean and of the standard deviation are made by any
method. We can use a linear method (ARMA model or ARMAX with exogenous
variables), or a non linear model (a Multilayer Perceptron for example).

The main novelty that we propose is the way to estimate the profile of any
given day. The idea is to classify all the previous profiles (see (2)) into n classes.
This number n has to be chosen with caution. If it is too small, the estimation



will be too rough. If it is too large, the absolute frequency of each class will be
too small and the clusters will not be significant.

Suppose that the T profiles are split up into n classes (C1,Cs,...,Cy) repre-
sented by the centroids Wi, W2, ..., W,.. Suppose that in the past, a given day,
for example a working Monday of February (which is not a public holiday, nor
an extra day), has been classified into one or several classes. Let aj,az,...,an
be the number of occurrences of this kind of day in the classes (C1,Co, .- -, Cn).
Note that a; is 0 if and only if this day never belongs to the class Cj. Then the
estimated profile of this given day is given by

i1 Wi
Z;’lzl aj

After that the estimated curve for that day is computed according to formula
(3).

The remaining point is to choose the clustering method in order to define
the classes and the centroids. We propose to use the Kohonen algorithm [7],
8], [9], [1], [2] with a suited topology for many reasons. First it is an efficient
algorithm, small time consuming, which provides classes and centroids in an
easy way. Secondly, a neighborhood structure is defined between the classes, and
that feature allows an interesting representation of the similarities of the classes.
Since the Kohonen algorithm is “topology preserving”, close inputs are classified
into the same class or neighboring classes, and in fact a given kind of day (e.g. a
working Monday of February) appears only in neighboring classes. This property
is particularly useful.

For example, if a Monday of February belongs to a class that is far from the
others, it is very probable that there is some error in the measured values or that
it was a special day (public holiday, extra day, and so on). In fact the topological
arrangement of the classes allows to decide if some exogenous qualitative variable
has to be taken into account to compute the different types of days. This kind of
control is very easy to realize with a Kohonen classification, and would be very
tedious (or computationally impossible) with any other classification method.

P= (4)

3 Example: the Polish Electricity Consumption

We present an example to show how to implement the method. We deal with
real Polish Power System Data, starting from 1/1/1986to 31/12/1994 and kindly
lent by Pr. Osowski from Warsaw Technical University. The data are hourly (ex-
pressed in 20 000 Mwh). As we do not know the particularities of the Polish
calendar nor the meteorological variables, we cannot take into account the ex-
ternal temperature, the cloudiness, the extra-days, etc. The goal is here only
explanatory.

So we have 3287 24-points daily curves, from which we compute 3287 daily
normalized profiles. We consider a cylindrical Kohonen 10 x 10 network, where
the left and right borders are neighboring. We train this network as usual, by



taking the 3287 profiles as inputs, and renormalizing the code vectors at each
step.

See in Fig. 1 the map of the centroids and the contents of the classes. Observe
the continuity between one class and its neighbors.
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Fig. 1. The left map represents the code vectors, while the right shows the
contents of the class

A hierarchical clustering shows in Fig. 2 how it is possible to gather the 100
Kohonen classes into 10 macro-classes, that can be more easily interpreted. In a

Fig. 2. The grey levels indicate the macro-classes that can be easily interpreted

rough way, by examining the contents of the classes, one can see that the Sundays
are located at the bottom, the Mondays at the top in the middle, the summer
week-days at the right top corner, the winter week-days at the left top corner
and at the left, and so on. At the center, we find April, May and September.
We can also see that the Saturdays are spread over the map. In fact the status



of the Saturday cannot be taken into account, since some of them are worked
like week-days, but we do not know which. In any case, this interpretation is not
used to compute the estimate profile.

The next step is the making of a calendar to calculate for each day the
number of its occurrences in the classes. For example for a worked Wednesday of
November, we have the following distribution (the first number is the class, the
second one the number of occurrences): 3(3), 4(4), 5(2), 12(5), 13(5), 14(3), 22(2),
23(11), 24(2), 34(1). This leads to the estimated profile according to formula (4).

On another hand, the predictions of the daily mean and standard deviation
are achieved by ARMA method. The two models are :

(I-B)(I - BM)u(t) = (I -0.9B)(I - 0.058 — 0.11B% — 0.1B%)<(t)
and (I - B)(I - B)o(t) = (I — 0.8B7)(I — 0.8B)e(t).

We compare with a global ARMA model, defined by the following equation:
(I - B)(I - B"**)(I - 0.2B24)(I - 0.13B*®)Y (h) = (I - 0.2B)e(h)

which explains one half-hour h from the past ones. But for the prediction, we
cannot take into account the just past half-hours, since, for example in the
afternoon of a day, we have to estimate all the curve of the next day. Then we
compute the estimated curve by using the successive estimated values.

See in Fig. 3, two examples of comparisons, between the actual values and
the predicted ones (by the ARMA model and the neural method).
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Fig. 3. For two days, we represent the actual curve (sohd line), the neural
forecast one (large dotted line), the ARMA forecast one (small dotted line). The
neural model swallows the change of structure from January 1 to January 7,
while the ARMA model depends on the same day of the previous week 1n a too
strong way.

4 Conclusion, Performances

The performances could be improved if we could use explanatory exogenous
qualitative variables. That can help to better define the type of days. In fact,



according to the epoch of the changing of hour for example, or of the holidays,
1t can be interesting to use some days of the previous month together with the
next month, etc. In any case here are some the indexes that we use to measure
the performance of the model. There are two first order error indices: the mean

value of the coeficient of variation I; = =3, ”—%t—;\/% 2o (X(t ) - X(t,7))?,

and the mean value of the relative error I, = TN 2ot “ﬂt—)’}(:—f%‘—jm We get
I; = 0.034 and I, = 0.029.

We also use a quadratic error I, to compare to the quadratic corrected total
error per half-hour /4, and per day Js.

We have Iy = 505 3= /(X (t,5) — X(t,§))? = 0.0004, to be compared to
I = 35 Zt’j(X(t,j) - X(.,7))? = 0.0312 and to

Iy = 535 >, (X (t,7) = X(t,.))2 = 0.0063.
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