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Abstract

We consider a new recursive algorithm for parameter estimation from an indepen-
dent incomplete data sequence. The algorithm can be viewed as a recursive version of
the well-known EM algorithm, augmented with a Monte-Carlo step which restores the
missing data. Based on recent results on stochastic algorithms, we give conditions for
the a.s. convergence of the algorithm. Moreover, asymptotical variance of this estimator
is reduced by a simple averaging. Application to finite mixtures is given with a simula-
tion experiment.

AMS Classification Code: 62F 12,62 L 20

Keywords: Incomplete data; EM algorithm; recursive estimation; mixtures; stochas-
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1 Introduction

In many statistical models data are observed only upon some deterministic distorsion. Such
examples include censored data, mixture models and the deconvolution problem. The most
popular parameter estimator for these models is probably the EM estimator found in the
seminar paper (Dempster et al., 1977). An up to date report on its various extensions can
be found in (Meng and van Dyk, 1997) with an extensive discussion.

Nevertheless on-line parameter estimation for theses models has not been fully addressed.
Standard recursive estimation based on the observed likelihood (Fabian, 1978) do not di-
rectly apply, mainly because this likelihood is ill-defined for most of incomplete data se-
quence. Recently, Ryden (Rydén, 1994) develops a projection-based recursive likelihood es-
timator for the mixture problem. However it is not clear how to extend this approach to
other incompletely observed models.

We propose in this paper a new recursive algorithm, called RSEM, which can be viewed
as a recursive version of the EM algorithm, augmented with a Monte-Carlo data imputation
step which restores the missing data. To state the problem, let us call, following (Dempster
et al., 1977), complete data some unobservable random variable X with domain A’. We in-
deed observe a transformation of this, say Y = ®(X), where ¢ is a known non-random map
from X" into some observation space ). Typically ® is a “many-to-one” map, we thus call the
observations Y incomplete data, since many information is lost by ®.

Assume that X (resp. Y) has a density = (z; 6) (resp. g(y; #) ) with respect to some o-
finite measure dz (resp. dy). These densities are linked by the following

g(y;t‘)):/ m(z;0)dx
X(y)

where X' (y) denotes the set {z : ®(z) = y}. It is worth noting that the conditional distribu-
tion of X given Y = y, denoted (X |Y =y ; 6), has the density

k(zly; 0) =1y (z)m(z;0)/9(y; 0) .

Let an i.i.d. sequence Yi,...,Y,,... of Y be successively observed. For the on-line pa-
rameter estimation purpose, we consider the following recursive algorithm, named as RSEM



(for recursive SEM-like algorithm). This algorithm is first introduced in (Duflo, 1996). The
sequence (7,,) below (gains sequence) is any sequence of positive numbers which decreases
to 0. The parameter space is some open subset © of R”,

Algorithm RSEM :

(i) Pick an arbitrary initial value 0, € ©.

(ii) At each time n > 1, perform the following steps with the new observation Y, i :

R-step (restoration) : restore the corresponding unobserved complete data X by drawing
an independent sample X, 1 from the conditional distribution p(X |Y = Y41 ; 0,).
E-step (Estimation) : update the estimation by

6n+1 =0, + ’YnVIOg 7T(Xn+1;9n)- (]-)

In a non recursive framework, the above restoration R-step is the key novelty found in a
class of so-called SEM, MCEM or SRE algorithms as introduced in (Celeux and Diebolt,
1985), (Wei and Tanner, 1990) and (Qian and Titterington, 1991) respectively. For a re-
cent account on SEM algorithms, we refer to (Celeux et al., 1996) or (Lavielle and Moulines,
1995). This R-step plays a similar role as the E-step of the EM algorithm : it enables the
use of the likelihood 7 from the complete data for parameter updating.

This paper is devoted to an accurate study of the RSEM algorithm including convergence
and asymptotic efficiency. We shall first show in §2 that the RSEM algorithm is a stochastic
gradient algorithm which minimizes Kullback-Leibler divergence from the true model. Un-
fortunately, for most of incomplete data models of interest, it is not clear from the current
state of the stochastic algorithms theory (up to our knowledge), whether or not the RSEM
algorithm should converge without transformation (see §2). Therefore, we shall (§3) trun-
cate this algorithm at randomly varying bounds in spirit of (Chen et al., 1988; Chen, 1993).
This technique is surprisingly effective and yields the a.s. convergence of the truncated al-
gorithm.

Finally in §4, we implement the RSEM algorithm for finite mixtures and report a sim-
ulation experiment.

2 Does the RSEM algorithm converge ?

From now on, the true parameter value is denoted 6.. Let us define the Kullback-Leibler
divergence

K(0) = /y oy 0. log %’y : i,*)) dy | (@)

and some assumptions on the smoothness of the likelihood function.

Assumptions (S). O is an open convex set of RP. The likelihood 6 +— logn(z; 6) is twice
differentiable on © such that :

(a). K is twice continuously differentiable on © and the identity (2) can be twice dif-
ferentiated under the integral sign.
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(b). For all § and for all y, we have Vg(y; 6) = fX(y) Vr(z;8)da

These conditions are merely what is necessary for a statistical model to be regular. In
particular, the assumption (S)-(b) implies the following identity which says that the in-
complete score function is equal to the average of the unobserved complete score function:

Viegg(y; ) = /X( | Viegn(z; 0)k(z|y;0)dx . (3)
y

We shall also use the filtration F = (F,,), with 7y = {Q,0}, 7, = o(Y1,..., Y Xq,..., X))
for n > 1, which is the natural filtration associated to the RSEM algorithm.

Lemma 1 Under the assumptions (S)-(a)-(b), the RSEM algorithm is a stochastic gradient
algorithm as follows
071—}—1 = en — Tn [Vl((en) + €n+1] 3

where
Entl = — {Vlogﬂ'(Xn_H ; gn) - E[Vlogﬂ'(Xn-H ; en) |‘7:71]}7

is a F-adapted noise sequence, that is E(e, ,|F,) = 0 for all n.
Proof. We have by (S)-(a)-(b)
h(@) : =E[Viegn(X,41:6,=0)|F,)=E[Vlegn(Xy1;80;,=290)]

= // Viegn(z;0) k(z|y;0)g(y; b.) da dy
yJX(y)

- /y Viogg(y; 0)] g(y:6.)dy=-VE@).  m

Therefore, the RSEM algorithm is a stochastic gradient algorithm obtained by pertur-
bation of the following gradient system

=-VK(@). (4)

The convergence analysis of such an algorithm is usually set up in two steps (see e.g. (Du-
flo, 1996)). First we attempt to stabilize the algorithm, that is to check whether a.s. the
sequence (#,,) would lives in a compact subset of © or not. After the algorithm is stabilized,
there are many methods to ensure the a.s. convergence of (6,,) to an point (equilibrium) of
{VK = 0}. Recent results based on the so-called ODE method (Kushner and Clark, 1978)
is reported in (Fort and Pages, 1996).

The gradient system (4) has a natural Lyapounov function V = K : for any solution
(6¢)¢>0 of the system, the function ¢ — K (6;) is decreasing. If in addition K is inf-compact,
ie.

foralla € R, {K < a} is a compact set of ©, (i.e. elirge K(0) =+4c0) (5)
—

the whole trajectory (6;);>0 would stay in the compact set { K < K(6)}. Therefore this inf-
compacity of K is a basic tool to stabilize such an algorithm. Another widely used require-
ment for stabilization of this system is the following Lipshitz condition

VK is Lipshitz on O. (6)
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Unfortunately, Kullback-Leibler divergence K from incomplete data models often does
not meet both the conditions (5) and (6). In the example below with censorated data, (6) is
not fulfilled, while for a finite mixture (cf. §4), (5) is no longer satisfied. Consequently, we do
not know whether or not the RSEM algorithm could be stabilized without transformation
(actually our simulation experiment in §4 in the mixture case seems to show it would be not).
Therefore we shall develop in the next section a truncated version of the RSEM algorithm
which will converge.

Example with censored data. Let X be a real-valued variable and Y = min (X, ¢) with
a known constant ¢ € R. Let also ¢y = P(X < ¢; 0) and the reference measures be dz =
1ozcdm(z)+ déc(z), dy = 1y<cdm(y)+ di.(y) with the Lebesgue measure m and the Dirac
mass 4, at c. Then

9(y; 0) = m(y; O)lyce + (1 = ag)ly=c,
and

k)= [ w00 T 0) ) 4 (1 ag,) log (L7 %)

—c0 m(y; 0) (1-ag)
Assume the exponential law 7(z ; 6) = 6e=%%, 2 > 0 for X. Thus we find © = (0, ), 90 =
{0,000}, ag, = 1 — e~*’* and in final

1 1

. ¢ . - ag,
K(6) = ag, [— —1—log —] , K'(0) = ay, [E - 5] , K"(0) = 9

Therefore for this simple model, the condition (5) is fulfilled, while (6) is not.

3 Stabilization and convergence of the truncated RSEM al-
gorithm

We investigate in this section a truncated version of the RSEM algorithm. This method,
called truncations at randomly varying bounds, is introduced in (Chen et al., 1988) for the
Robbins-Monro algorithm. Although the initial purpose of these authors seems to weak
conditions on both the regression function and the error process, such a truncation method
proves to be powerful for the stabilization task of a wider class of stochastic algorithms.

An extension of this method for our RSEM algorithm is as follows. Assume we can find
in © a sequence of increasing compact subsets Cy C --- C C; C --- which tends to its
boundary (see Fig. 1)

O C SIHEO 1+C, CO. (T.a)

Let us fix some point in the first compact w € Cy. The basic idea of truncations is to

bring the algorithm (6,,) back to this fixed point w, every time 6,, will leave some compact

Cs. The index s of such a barrier compact C; is randomly selected, according to the own

truncation history of each algorithm path. Moreover, s increases if truncations repeat, so
that next barrier compacts go farther.



Parameter space ©

Cs

G

Figure 1: Barrier compacts used for truncations: case of a parameter space © = (0, c0)2.

More precisely, to truncate the RSEM algorithm, we replace the updating rule (1) by the
following

b, + v Viogw (X115 0,), if 0, 4+ 7. Viegm(Xyt1; ) € Con
Hn—l—l - (7)
w , elsewise .

Here o(n) stands for the number of truncations up to time n — 1
on)=#{i:1<i<n-1and 6, +vViegn(X;11;6;) ¢ Ca(i)} for n > 2,
with (1) = 0.
Furthermore, the compact sequence (C;) should be carefully determined from a theoretic

point of view. First, we shall assume (see Fig. 1)

Cy 1s convex and there are constants 0 < a; < «y such that (T.b)

(i). C:={K < ay}is compact and C C Cj.
(ii). VK #0on{K > oy }.

It is worth noting that unlike the inf-compacity condition (5) where all level sets { K <
a} must be compact, the condition (T.b) requires such a compacity only for small values
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of a. It also happens by (T.b), the set of equilibrium points {VK = 0} is a subset of the
level set { K < ay}. Therefore, the first compact Cy should be large enough to include all
target equilibrium points. On the other hand, the existence of the constants a; and a5 is of
theoretical importance only: practical implementation is always free from these constants
(see §4.3).

Second, we should also select (C) in such a way to get the following control on the noise
sequence (g,,):

Z YnEnt+1 converges almost surely . (T.c)

n

We shall provide a general construction of (C;) fulfilling this requirement in Proposition 1
below, which is postponed at the end of this section.

To state our main theorem, let us fix the gains sequence (v,). Although many suitable
general gains sequences can be used, here we shall only use the following slow gains se-
quence

A 1
n= 7 Do’ ith Py 1 ’
o (Wt By wi 5 <a< (8)
where A, B are some positive constants.

Theorem 1 Assume that
(i) the smoothness condition (S) holds.
(i) the compact sequence (Cs) fulfills Conditions (T.a-b-c).
(iii) the equilibrium points {6 : VK (0) = 0} are isolated.
Then, with the gains sequence (8), the truncated RSEM algorithm (6.,), defined (7), con-
verges a.s. to a point 6., of {VK = 0}.
Proof. We proceed in two steps.

Step (1). First we show that the number of truncations is a.s. finite
a.s. there is a time 7" such that for all n > 7', o(n) = o (7). 9)

It follows in particular that the algorithm lives a.s. in some (path-dependent) compact sub-
set of O (stabilization). This essentially relies on several extensions of Theorem 3 of (Chen
et al., 1988). As stated before, the authors considered the Robbins-Monro algorithm. Also
since the state space for this algorithm is the whole Euclidean space R?, they used for trun-
cations a sequence of discs C's = B(0, M) with radii M; increasing to infinity. Indeed, their
Theorem 3 can be extended in two directions. First we may consider a wider class of recur-
sive algorithm of type
Tpt1 = Tp + Vo [M(Tnt1) + Enpa],

provided £ is continuous and the following condition on the noise process (their condition
A, see also the condition (2.5) in (Chen, 1993)) is fulfilled

as. lim v, 41 =0. (10)

n— 00 e
=0
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Secondly, the original state space R?, as well as the disc sequence for truncation can be re-
spectively replaced by any open convex space and any sequence of compact sets tending to
its boundary. Therefore, to conclude this step we need just check (10) for the RSEM algo-
rithm. Since v,, | 0, (10) follows from (T.c) and Kronecker’s lemma.

Step (2). From the first step, we know that the sequence (6,,) lives a.s. in a compact set of
©. To conclude the convergence of the truncated RSEM algorithm, we just apply a global
Kushner-Clark theorem ((Kushner and Clark, 1978), see also for an improved version, The-
orem 2 in (Fort and Pages, 1996)): since the function K is twice continuously differentiable
and the equilibria set {VK = 0} contains isolated points only, the gradient system (4) has
no quasi-cycles solutions. H

Nature of the limiting points: an important question from Theorem 1 concerns the na-
ture of the limiting point 6., of the algorithm. It is expected that 6., should be (at least) a
local minimum of K (), that is the RSEM algorithm avoids local maxima or saddle points.
This is true, as guaranteed by the following proposition which is a straightforward applica-
tion of Theorem 1 in (Brandieére and Duflo, 1996).

Proposition 1 In the framework of Theorem 1, assume in addition the variance-covariance
matrix I'(0-,) is positive definite. Then the limit point 6, is a local minima of Kullback-
Leibler divergence K (). O

Speed up of the RSEM algorithm by averaging: to reduce the asymptotic variance of
algorithm estimate (6,,), we adopt the averaging technique introduced by (Polyak, 1990)
(see also (Polyak and Juditsky, 1992)). The idea is to use the averages 4, instead of (6,),
which can be recursively computed by

0,=0,_1+ 1 (6, —0,-1) , with p=0. O (11)

n

Explicit construction of a compact sequence (C;) satisfying the noise control (T.c):
Denote the conditional variance-covariance matrix

[(0) =E (epp18" ., | Fr o0y = 0) = Var (Vg 7( X1 00) | Fr 0 = 0 (12)
+1<n41

The p-dimensional martingale )" v,c,4+1 converges if and only if for all « € R?, the scalar
martingales > v, u's,11 converge. To this end, it will be sufficient to ensure

> "2 Amax [['(6,)]  converges a.s. (13)

where A\nax(-) stands for the largest eigenvalue of a positive definite matrix.

If Mnax [[(8)] is bounded on whole O, since > 72 < oo by definition (see (8)), clearly (13)
holds and ) v,£,,4+1 converges without any additional condition on (Cj). Therefore the fol-
lowing construction specifically applies in the more intricate unbounded case
where supg Amax[1'(#)] = oo.

Let us define for large enough p > 0,

D, = {0 cO:d(6,00)>- and ||0] < p}. (14)

1
p
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When p — o0, D, — ©. Assume that on D,, Ap,ax [I'(6)] can be bounded by an increasing map
©(p)

sup Amax [[(8)] < ¢(p) - (15)

Necessarily, lim ¢(p) = co when p — oo. Let be some constants b > 1 and ¢ > 0. We may
take, by inversion of ¢, a strictly increasing sequence (p;) such that

82a—1

(logs)"

plps) < ¢ for s > 2. (16)

For example, if ¢ is continuous in addition, we can take p, = ¢~} <c52°‘—1 (log s)_b) . Finally
let us take for large enough s, say s > sg,

Cs:=D,, . (17)

Thus for n > sg, since 8,, € Con)y CCn =Dy, we have

Hence, (13) as well as (T.c) holds.
Summarizing, we have

Proposition 2  In the case where Apax [['(0)] is unbounded on O, assume there exists an
upper bound ¢(p) satisfying (15) for large p. With the compact sets C defined in (16)-(17), it
holds that > v,€,41 converges a.s. (condition (T.c)).

Such a construction will be explicited in §4 for finite mixtures. O

4 Application to finite mixtures

This section is devoted to show the effectiveness of the truncated RSEM algorithm for mix-
ture model. Since the moment estimators introduced in (Pearson, 1894), finite mixture
models has been and continue to be widely analysed by statisticians. We refer to (Redner
and Walker, 1984) and (Titterington et al., 1985) for classical backgrounds. Recent advances
including Bayesian approach, stochastic estimators or dimension testing can be found in
(Celeux and Diebolt, 1985; Dacunha-Castelle and Gassiat, 1997; Robert, 1996; Richard-
son and Green, 1997; Celeux et al., 1996). For recursive estimation, (Rydén, 1994) pro-
posed a recursive likelihood estimator using projection on some suitable compact subset of
0. Despite of some similarity, several differences arise between Rydén’s algorithm and the
RSEM algorithm. First the RSEM algorithm is based on the complete data likelihood up
to a restoration step; second, instead of projections on a compact subset of © as proposed in
Rydén’s procedure, the RSEM algorithm achieves stabilisation by truncations at randomly
varying bounds.



Let be m a positive integer, I' an open convex set of R? and D ={f(-;¢) ; ¢ € I'} a para-
metric family of univariate densities. A finite mixture with m components is a variable Y
with the following density

g(y; 0) = ax f(y;ox) (18)
k=1

where a := («ay) is a probability distribution (mixing distribution) on the set {1,... ,m}, and
¢ = (¢1,...,¢n) are component parameters of the mixture. Therefore, the whole param-
eter vector is # = («, ¢») which belongs to © = A x [ where A denotes the open simplex

{041 >0,...,05,-1>0, 0+ Fa,1 < 1}
A classical way to view such a mixture model as an incomplete data model is to think
about an unobservable location variable Z on the integers {1, ..., m}, and that the observa-

tionY is drawn conditionally to this location (see (Dempster et al., 1977)). That is to consider
the vector X = (Y,Z) where

Ze{l,...,m}, withP(Z =k) = ax,

and

(Y [ Z=k) ~ fly; on)dy.
It is easy to see that the marginal distribution of Y is exactly the mixture (18). The missing
data here is the location variable 7.

4.1 Kullback-Leibler divergence between finite mixtures

Let us show that in general, the inf-compacity (5) does not hold for mixtures. First con-
sider the case with one of the mixing probability ay, say ai, tends to 0. The density g(-; )
degenerates to the density of a smaller mixture with m — 1 components. Therefore, we may
have

lim K () < oo,
a1 —0

when for example, the probability distributions in D are all equivalents. This finite limiting
behaviour may still happen if the component parameters ¢ go to the boundary. Consider
indeed the family of exponential distributions f(y ;¢r) = ¢re” %Y, ¢p € (0,00) and take
m = 2. The parameter vector is 6 = (o, ¢1,¢3) with © = (0, 1) x (0,00) x (0,00). It is easy to
see that

with fixed (o, ¢1), lim K(f) < oo.

b2 —00

4.2 Ret up of the R¥EEM algorithm for mixtures

Letf, = (a1, ..., tn—1,ny @10y - - - & n) be the current estimate at each step n. The restora-

tion R-step draws a sample 7, from the following conditional distribution (7 | Y = Y,41; 6,)

o O‘k,nf(ytn—}—l ; Qbk,n)
Z?Lﬂ aé,nf(yyn—}—l ; Qﬁé,n)’

The p.d.fof the complete data X = (Y, Z) is7(z;0) = n(y,z; 0) = a. f(y ; ¢.). However, the
mixing probabilities @ := () have to be kept within the simplex A and this constraint is

1<k <m. (19)

P(Z=k|Y = Yoii; 6,)
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particularly hard to satisfy for a recursive computation procedure. For instance, the updat-
ing rule (1) applied to o gives at step n, ay 41 = @1, + 'Yna% log (X ,41;6,), and we see
that even if o , € (0,1), a3 41 may escape from (0, 1) with a positive probability. There-
fore to overcome such numerical instability, we propose a new parametrisation based on the

Logit transformation. That is instead of & := (), we shall use w := (w;) defined as

wkzlog(&>, forl1<k<m, and w, =0 (20)

A,

Note that w := (wy,) belongs to R ~! and this transformation has an easy inversion formula.
Hence the new parameters are § = (w1, ..., Wn—1,01,...0m)-
The estimation E-step writes as

Wkntl — Wknt Yn [1Zn+1:k - ak,n] , 1<k<m
(21)
¢k,n—|—1 = Qﬁk,n + 7n1Zn+1:kV 10g f(Yn—I—l ) ¢k,n) 3 1 S k S m

Recall that the final estimates are the averages (w,,) and (¢,,), as defined in (11).

4.3 A simulation experiment

We shall consider two univariate Gaussian mixtures with two components each, taken in
(Redner and Walker, 1984). Thus 0 = (wy, m1, 0%, m2,02) and g(.;0) = a1 N (my;0%) + (1 —
a1)N (my; 02). The two “true” mixtures are M; = 0.3*A(3; 1) + 0.7*N(-3 ; 1) and My =
0.3*N(1; 1) + 0.7*N (-1 ; 1). The first is a well-separated bimodal distribution, while the
second is an unimodal one. Note that the smoothness conditions (S) are met in this Gaus-
sian mixture case.

We now describe in details the set up of the algorithm and the constants used throughout
all the simulations.

Initialisation: The algorithm starts with

3 1 3 1
b0 = (0, M 5 ot 5 M2 5 a3.)-
Again the same initial value is used in (Redner and Walker, 1984) for their experiments on

the EM algorithm. Note that wy = 0iffay = 1/2. O

Gains sequence: The gains sequence is a piecewise constant version of the general rule
(8) with exponent oo = 3/4: we set

10

for each n € [100(k — 1), 100k) with integer k > 1, 7, = (100% + 10)3/4°

Compacts C for truncation: For sake of simplicity, the description is given by means of
the proportion parameter «;: the actually used bounds for w; could be easily derived. Thus
C, will take a product form A, x M, x V, x M, x V,, for a; € A,, m; € M, and cr,f e V,. We
use a two-staged set-up for (C5).

10



@)

(ii)

For 100 first compacts with 0 < s < 100, a constant step size is used

Ay = 107" =s107% 1 (107" = s107Y)],
M, = [-100-s, 100+ s] ,
V, = [107°—s107° 100+ s] .

Note that the starting compact is
Co={0.1 <y <0.9, |my| <100, 107% < o} < 100} (22)

In particular, the true parameter 6, is believed to belong to Cy. In real data case, Cy
should be set with a rough preliminary estimate of 4,.

For next compacts with s > 100, we use the construction defined in Proposition 2.
Taking into account the believed fact 8, € Cy, this procedure yields the following

1 1
CSZ{_Salgl__7|mk|§ps7 §‘713§P5} (23)
p

with

D=

ps = 103 (1100) > . (24)
og s
(log 100)
Detailed derivations of these formula are postponed to Lemma 2 at the end of the sec-

tion. It is worth noting that pgg = 10° , so that Cyg C Cgg which links up two stages
well.

Finally, the restart value w used after each truncation is set to be the same as the start-

ing value : w = . O

For each of the two mixtures M; and M,, 100 independent runs RSEM over N = 1000

iterations are generated and then averaged. Tab.l and Tab.2 show respectively statistics
about finally minimised Kullback distance K (6y), number of truncations ¢ (V) and the last
truncation time 7" defined as

T = max {n 20, 4 v Viog(X,41;0,) ¢ Co(n) and n < N} .

Mean of K (fy) | Starting value K (6,) | ratio K (n)/K (6o)
Mixture M, 0.0538 2.4819 2.2%
Mixture M, 0.0152 0.2386 6.3%

Table 1: Mean of the minimised Kullback distances from 100 independent runs of the trun-
cated RSEM algorithm, with their ratio to the starting value.
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Number of runs actually truncated | Sum of o(N) | Mean of T’
Mixture My 37 47 119.1
Mixture M, 91 265 243.5

Table 2: Truncation statistics from 1000 independent runs of the truncated RSEM algo-
rithm: number of runs with at least one truncation, total number of truncations > o(N)
over 100 independent runs and mean of the last truncation time 7" from those runs with
truncations.

From Tab.1, we see that the mixture M- is more difficult to handle with since the min-
imisation ratio (6.3%) is about 3 times bigger than for the mixture M; (2.2%), even absolute
Kullback distances are smaller. A histogram of minimised Kullback distances is given on
the top row in Fig. 2. These distances are highly grouped near 0.

For the truncation behaviour shown in Tab.2, the mixture M, need more truncations
(91 truncated runs against 37 ones, and 265 truncations in total against 47). Also the last
truncation can occur much later (243.5 in average against 119.1). The middle row in Fig. 2
show the corresponding histograms. Note that the maximum of the truncation number ob-
served over 100 runs is respectively 9 for My and 4 for M;. Again these histograms are
concentrated near 0. Thus it seems true that few truncations are enough to stabilize the
algorithm.

Fig.3 shows the evolution of a density estimate g(.; 8,,) for time n = 0, 250, 500 and 1000,
taken from one of the 100 generated samples for the mixture M;. This sample run has the
following characteristics: (V) = 1;




Proof. Let us denote respectively by E, y and V,, 4, the conditional expectation and vari-
ance with respect to [F, , 0, = 6]. Recall that I'(§) = V,, o[V log 7(X,,41;6,)]. We have

Amax [I'(8)] < trace [ ZV” 6 [ -log (X413 6)

where 6; stands for w;, m;, and o}. For mixture of two univariate normal variables, we have
by (21)

(‘XTL-H; 071) = 1Zn+1=1 — Q1.
] . _ Yot1—mgp
oy 08T (X3 n) = L0z 207 26)
. _ 1 1 r 2
dgk (Xnt150n) = 1z,,,=k [— 2z, Tt (Yog1 — mgn)

Straightforward computation shows that for § € D,

n€ ]—Zn+1 1 — l,n] S 17

2
n — Mgn
[12n+1 =k +12 ] < 20% (P 4 pax)
Ukn
2
13‘:711_———Yn_n2 < pt(pt + 2u . p? .
0 { Zng1=k [ 20kn+207§n( +1 = M) ” < pt (P 2u2,0° + a,,)

where p; . = E, |Y|/. Hence for p > 1,

trace [['(0)] < 2p* (p* + 4p2p® + pia,, +2) + 1.

It remains to bound the expectations ;.. But if W is a normal variable N (m, c?), we
have ' 4 ‘ '
E|W[ <2771 (Im)! +407) .
Now we have assumed 6. € Cy, so that by (22), |my.| < 100 and 1072 < U,i* < 100. It
follows
fize < 10°,  pg, < 4-10°.
Hence for p > 103,
2p* (p* + Ap2sp® + pa,, +2) +1 < 3p°.
and (25) follows.
Finally, to define p; and Cs; = D, for s > 100, let us take b = 2 in the rule (16). Since
¢ is continuous, and we have chosen the exponent o = 3/4 for (,), we are looking for p;
satisfying

51/2

(log s)
We fix the constant ¢ by the initial condition

¢(ps) =3(ps)® = e——, forlarges.

for s = 100, p, = 10°.
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Hence (24) follows. &
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Figure 2: Histograms from 100 independent runs for the mixture M; (left column) and M»

(right column). Top: minimised Kullback distances K (6,,). Middle: number of truncations
o(N). Bottom: the last truncation time 7.
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Mixture | : density estimate at time O (initialization) Mixture | : density estimate at time 250
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Figure 3: Evolution of density estimates for the M; (dashed lines) : for time 0,250,500 and
1000 from top to bottom and left to right. The corresponding Kullback distances are 2.482,
0.155, 0.104 and 0.076. The true density is shown with solid lines.
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Mixture 1l : density estimate at time O (initialization) Mixture 1l : density estimate at time 250
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Figure 4: Evolution of density estimates for M, (dashed lines): for time 0,250,500 and 1000
from top to bottom and left to right. The corresponding Kullback distances are 0.2386,
0.0254, 0.0255 and 0.0188. The true density is shown with solid lines.
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