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1. Introduction

The problem:
For a given sampling rate, where should we observe a stationary random field

Z(x),x € R?, in order to make estimation at unobserved points as accurate as
possible ?

The sampling rate is defined as the limit of number of observation points in a

window divided by the volume of the window as the window increases to R4

Applications:

Discretizing multidimensional signals (x represents for instance space and time and

frequency of a tomografic image).

Design of experiments (computer experiments, discovery of active compounds from

a chemical library).
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Simplifying assumptions:
e Linear interpolators only.
e Mean and covariance function K known, covariance function isotropic.
e Observation points form a lattice.

If the covariance function is known, “observation points should be as uniformly as
possible”. For estimating an isotropic covariance function, there should be

observation points at arbitrary distances. These two goals conflict.

To obtain uniform observation points, lattices are a natural choice. However, in
higher dimensions the “most uniform” lattice depends on how we define uniformity.

The standard cubic lattice is very non-uniform with respect to all criteria.
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A lattice A is a subset of R¢ consisting of integer linear combinations of d linearly

independent generating vectors. The generator B is the matrix with the generating

A(B)={u=B"w:wc Z"}.

Example Two possible generators for the hexagonal lattice in R? are
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The basic Voronoi cell {)( B) of a lattice is the set of all vectors in R9 that are at
least as close to the origin 0 as to any other lattice point. All other Voronoi regions
are translates of {2(B). The sampling rate of a lattice is 1 /vol(2(B)).

The packing radius p(B) is half the minimum distance between two points of the
lattice, i.e. the inradius of {(B). The kissing number 7(B) is the number of

lattice points at distance 2p.

Uniform lattices have a large packing-radius. Other measures of uniformity are the
covering radius, i.e. the circumradius of {2( B, and the vector quantization

distortion, i.e. the average square distance of a point in 2(B) from O.
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In the frequency domain, an important role is played by the dual lattice of >Amv.
scaled by 27, which we denote by A(A). It consists of all points A € R such that
ATw is an integer multiple of 27 for any w € A(B). A possible choice of the

generator matrix for the dual lattice is A = 27(B ™).

The functions (w — exp(iul w) : u € A(B)) form an orthonormal base of the
space of periodic functions with periods in A(A). Hence under the usual isometry
Z(x) + exp(iw! x), the subspace generated by (Z (u); u € A(B))

corresponds to the space of periodic functions with periods in A(A).
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3. The main result

Let NARV be the best linear unbiased estimator of Z () based on observations

(Z(w); u € A(B)) on a lattice. The average mean square error of Z () is

7 ave. A(B)) = — mA 5 J, o FlZ@) - Z(x))Ydz.

Now consider lattices A (B) with vol(£2(B)) = 1 and scale each lattice by a
parameter (3, i.e. take A(GB). Then for each (3 we can ask which lattice minimizes
o?(ave, A(BB)). Instead of considering a fixed covariance function and scaling
the lattice, we can also take a fixed lattice and scale the covariance function:

R(x) = Ro(0||x||). For the spectral density f, this means

f(w) = fo(llwl]l/B).
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For a subclass of covariance functions or spectral densities to be defined later, we

have the following results

6] o?(ave, A(BB)) Optimality criterion
0 0 none
small see later dual packing radius
~ 1 ?7? ?7?
large see later packing radius
very large | R(0)(1 — [ p(x)*dz 3~¢) none
00 R(0) none

Here, p is the correlation function: p(x) = R(x)/R(0).
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Example: d=3. Here the packing radius is maximized for the so-called
face-centered cubic lattice which is obtained by adding the centers of the faces to
the cubic lattice. It has 7 = 12 and p = 27°/6 = 0.5612... .

The dual lattice of the face-centered cubic lattice is the body-centered cubic lattice
(the centers of the cubes are added). It has 7 = 8 and p = 2°/331/2
= 0.9456... .

Hence the optimal lattice depends on the sampling rate.

Generator matrices are (up to constants)

1 1 1 0 05 05|
B=1|1 -1 1|, A=|05 —-05 0
11 -1 05 0 —0.5 |

\_ \




4. High rate sampling

First we have a formula for the average MSE in the frequency domain.

Theorem 1 If Z has a spectral density f, then

1 F(w) 2 oxeacangoy f(w+A)

dw.
(2m)? Srenm J@EA)

o?(ave, A(B)) =

For (3 going to zero, the peaks of the integrand on the right hand side become

dominant which allows us to approximate the integral.

N
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Theorem 2 If f(w) = fo(||w]||/B) with fo(r) ~ Cexp(—rP) (r — o) then
(d+1)/2
o’ (ave,A(B)) ~ wm Q%Eiv\wlwv .

folp(A)/B)p(A)H+r(+1)/2

For (3 small enough, the right hand side decreases as p(A) increases. Hence, the

optimal lattice maximizes p(A).
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Steps of the proof:
o Muymibv/*ow f(w + A) is dominated by the largest summand,

e the integrand is maximal for w = A /2 where X is one of the shortest non-zero

vectors in A(A) (thatis || A|| = p(A)).

® near such a point, the integrand is approximately equal to

F@)f(A - w)
flw)+ fA—w)’

e Finally, use Laplace approximations.
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\ 5. Low rate sampling

Theorem 3 If R(0) = 1 and

S |R@)| <1,

ueA(B)\0
then
o (ave,A(B)) =1 — WU WU AF(u)R*? (u).
k=0ucA(B)
where

R(w) = [ R)R( - y)iy,

Ak (u) = D w'eA(B)\O AN u —u')R(u') (k>1)
L{u=0} (k=0)
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using the “infinite matrix inversion formula”

(I—A)" MU%

(Under the conditions above, this is well-defined).

In the infinite sum, the leading term is the one for £ = 0,
o?(ave, A(B)) ~ 1 — R**(0),

which is independent of the lattice.

The next terms are those for K = 1 and the one with £ = 2, u = 0. If R decays
exponentially, sums over u € A(B) are asymptotically equivalent to the largest

summand.

N
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This is an analogue of the usual kriging formulae for countably many observations,
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Theorem 4 If R(x) = Ro(0||x||) with Ro(r) ~ C exp(—rP) (r — o), and
if R(0) = 1, then up to terms of lower order

o’(ave,A(B)) ~ 1— R**(0)+7(B)R(2p(B)e)R**(2p(B)e) —
7(B)R™(0)R*(2p(B)e)
where e is a unit vector. The asymptotic behavior of the right hand side depends on

p, but it is always a decreasing function of p(B). Therefore, the optimal lattice

maximizes p(B).
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6. Cardinal interpolation

If the spectral density f is zero outside of {2( A ), then by Theorem 1 the

interpolation MSE is zero and

where
T

1 :
clx —u) = Vol(Q(A) \@?c exp(i(x — u)” w)dw

does not depend on f. This is called cardinal interpolation.

N
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One can use cardinal interpolation even if the field is not band-limited. How much

does one loose over optimal interpolation ?

By analyzing the formula in Theorem 1, for isotropic and decreasing spectral

densities, the efficiency of cardinal interpolation is at least 0.95.

For high-rate sampling, under the conditions of Theorem 2, the limiting relative

s

1 = 0.785..., independently of the lattice and

efficiency of cardinal interpolation is

the spectral density f.
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