Première Année Master M.A.E.F. 2016 – 2017 Statistiques II

Contrôle continu n°1, mars 2017

Examen de 1h30. Tout document ou calculatrice est interdit.

1. On considère une suite $(X_i)_{i\in\mathbb{N}}$ de variables aléatoires indépendantes et identiquement distribuées suivant une loi discrète à valeurs dans $\{-1,0,1\}$ telle que $\Pr(X_0=0)=p_0>0$ and $p_1=\Pr(X_0=1)>\Pr(X_0=-1)>0$. On définit également:

$$Y_n = \sum_{i=1}^n X_i$$
, pour tout $n \in \mathbb{N}^*$.

- (a) Déterminer $\mathbb{E}(X_0)$ en fonction de p_0 et p_1 et montrer que $\mathbb{E}(X_0) = m > 0$ (1pt). Déterminer en fonction de p_0 et p_1 , $\sigma^2 = \text{var}(X_0)$ (1pt).
- (b) Montrer que Y_n est une variable aléatoire discrète et préciser l'ensemble de ses valeurs possibles (0.5pts).
- (c) Déterminer $\mathbb{E}(Y_n)$ puis $\text{var}(Y_n)$ pour tout $n \in \mathbb{N}^*$ (1pt). (Y_n) est-il un processus stationnaire (0.5pts)?
- (d) Montrer que $Y_n \xrightarrow[n \to +\infty]{p.s.} + \infty$ (1.5pts).
- (e) Montrer que $(Y_n)_{n \in \mathbb{N}}$ peut se mettre sous la forme

$$Y_n = m \, n + \sqrt{n} \, \varepsilon_n$$
 pour tout $n \in \mathbb{N}^*$,

où $(\varepsilon_n)_{n\in\mathbb{N}^*}$ est une suite de variables aléatoires centrées de même variance (à préciser) (1pt). Quelle est la tendance de $(Y_n)_{n\in\mathbb{N}}$ (0.5pts)? Montrer que la loi de ε_n converge vers une loi à préciser lorsque $n\to\infty$ (1pt). En déduire que les variables $(\varepsilon_n)_{n\in\mathbb{N}^*}$ ne forment pas un processus stationnaire (1.5pts).

- (f) Déterminer $cov(Y_i, Y_j)$ puis $cov(\varepsilon_i, \varepsilon_j)$ pour $i, j \in \mathbf{N}^*$ (2pts). Que devient cette quantité lorsque |i j| est "grand" (1pt)?
- (g) On suppose maintenant que (Y_1, \dots, Y_N) est un échantillon observé de $(Y_n)_{n \in \mathbb{N}^*}$. On suppose que tous les paramètres m, p_0 , p_1 sont inconnus. Montrer que l'estimateur \widehat{m}_N de m par régression linéaire par moindres carrés est défini par

$$\widehat{m}_N = \frac{6}{N(N+1)(2N+1)} \sum_{i=1}^N i \, Y_i$$
 (3pts).

Calculer $\mathbb{E}(\hat{m}_N)$ et $\text{var}(\hat{m}_N)$ (2pts). L'estimateur \hat{m}_N est-il un estimateur convergent de m (1pt)?

- (h) Montrer que les estimateurs $\widehat{p}_0 = \frac{1}{N} \sum_{i=0}^{N-1} \mathbb{I}_{Y_{i+1}-Y_i=0}$ et $\widehat{p}_1 = \frac{1}{N} \sum_{i=0}^{N-1} \mathbb{I}_{Y_{i+1}-Y_i=1}$ (on pose par convention $Y_0 = 0$) sont les estimateurs de p_0 et p_1 par maximum de vraisemblance (on pourra écrire la vraisemblance à l'aide d'un produit de probabilités conditionnelles) (3pts). En justifiant, donner les théorèmes de la limite centrale vérifiés par \widehat{p}_0 et \widehat{p}_1 (2pts).
- (i) En utilisant l'expression de m en fonction de p_0 et p_1 , en déduire un autre estimateur \tilde{m}_N non biaisé de m (1pt). Converge-t-il plus vite que \hat{m}_N vers m (au sens du risque quadratique) (2pts)?