Première Année Master M.A.E.F. 2016 – 2017 Statistiques II

Contrôle continu n°1, mars 2017

Examen de 1h30. Tout document ou calculatrice est interdit.

1. On considère une suite $(X_i)_{i\in\mathbb{N}}$ de variables aléatoires indépendantes et identiquement distribuées suivant une loi discrète à valeurs dans $\{-1,0,1\}$ telle que $\Pr(X_0=0)=p_0>0$ and $p_1=\Pr(X_0=1)>\Pr(X_0=-1)>0$. On définit également:

$$Y_n = \sum_{i=1}^n X_i$$
, pour tout $n \in \mathbb{N}^*$.

- (a) Déterminer $\mathbb{E}(X_0)$ en fonction de p_0 et p_1 et montrer que $\mathbb{E}(X_0) = m > 0$ (1pt). Déterminer en fonction de p_0 et p_1 , $\sigma^2 = var(X_0)$ (1pt).
- (b) Montrer que Y_n est une variable aléatoire discrète et préciser l'ensemble de ses valeurs possibles (0.5pts).
- (c) Déterminer $\mathbb{E}(Y_n)$ puis $\text{var}(Y_n)$ pour tout $n \in \mathbb{N}^*$ (1pt). (Y_n) est-il un processus stationnaire (0.5pts)?
- (d) Montrer que $Y_n \xrightarrow[n \to +\infty]{p.s.} + \infty$ (1.5pts).
- (e) Montrer que $(Y_n)_{n \in \mathbb{N}}$ peut se mettre sous la forme

$$Y_n = m n + \sqrt{n} \varepsilon_n$$
 pour tout $n \in \mathbb{N}^*$,

où $(\varepsilon_n)_{n\in\mathbb{N}^*}$ est une suite de variables aléatoires centrées de même variance (à préciser) (1pt). Quelle est la tendance de $(Y_n)_{n\in\mathbb{N}}$ (0.5pts)? Montrer que la loi de ε_n converge vers une loi à préciser lorsque $n\to\infty$ (1pt). En déduire que les variables $(\varepsilon_n)_{n\in\mathbb{N}^*}$ ne forment pas un processus stationnaire (1.5pts).

- (f) Déterminer $cov(Y_i, Y_j)$ puis $cov(\varepsilon_i, \varepsilon_j)$ pour $i, j \in \mathbf{N}^*$ (2pts). Que devient cette quantité lorsque |i j|est "grand" (1pt)?
- (g) On suppose maintenant que (Y_1, \dots, Y_N) est un échantillon observé de $(Y_n)_{n \in \mathbb{N}^*}$. On suppose que tous les paramètres m, p_0 , p_1 sont inconnus. Montrer que l'estimateur \widehat{m}_N de m par régression linéaire par moindres carrés est défini par

$$\widehat{m}_N = \frac{6}{N(N+1)(2N+1)} \sum_{i=1}^{N} i Y_i$$
 (3pts).

Calculer $\mathbb{E}(\widehat{m}_N)$ et $\text{var}(\widehat{m}_N)$ (2pts). L'estimateur \widehat{m}_N est-il un estimateur convergent de m (1pt)?

- (h) Montrer que les estimateurs $\widehat{p}_0 = \frac{1}{N} \sum_{i=0}^{N-1} \mathbb{I}_{Y_{i+1}-Y_i=0}$ et $\widehat{p}_1 = \frac{1}{N} \sum_{i=0}^{N-1} \mathbb{I}_{Y_{i+1}-Y_i=1}$ (on pose par convention $Y_0 = 0$) sont les estimateurs de p_0 et p_1 par maximum de vraisemblance (on pourra écrire la vraisemblance à l'aide d'un produit de probabilités conditionnelles) (3pts). En justifiant, donner les théorèmes de la limite centrale vérifiés par \hat{p}_0 et \hat{p}_1 (2pts).
- (i) En utilisant l'expression de m en fonction de p_0 et p_1 , en déduire un autre estimateur \tilde{m}_N non biaisé de m(1pt). Converge-t-il plus vite que \widehat{m}_N vers m (au sens du risque quadratique) (2pts)?

- Proof. (a) On a $\mathbb{E}X_0 = 2p_1 + p_0 1 > 0$ (car $p_{-1} = 1 p_0 p_1 < p_1$) et var $X_0 = 1 p_0 + (2p_1 + p_0 1)^2$. (b) Pour tout $n \in \mathbb{N}^*$, Y_n est une somme de variables discrètes donc Y_n est aussi une variable discrète est ses valeurs appartiennent à $\{-n, -(n-1), \cdots, n-1, n\}.$
- (c) On a $\mathbb{E}Y_n = n m$ et var $Y_n = n \sigma^2$ comme somme de variables i.i.d. L'espérance dépendant de n ce ne peut être un processus stationnaire.
- (d) D'après la Loi des Grands Nombres forte comme les X_i sont des v.a.i.i.d. telles que $\mathbb{E}|X_i| < \infty$ alors $\frac{1}{n}Y_n \xrightarrow[n \to +\infty]{p.s.} m$ avec m > 0. Ainsi $\mathbb{P}(\lim_{n\to\infty} Y_n > \frac{1}{2}m n) = 1$; ceci entraı̂ne que $Y_n \xrightarrow[n\to+\infty]{p.s.} + \infty$.

(e) Pour tout $n \in \mathbb{N}^*$, $Y_n = \mathbb{E}Y_n + (Y_n - \mathbb{E}Y_n) = mn + \sqrt{n} \frac{(Y_n - \mathbb{E}Y_n)}{\sqrt{n}}$. Soit $\varepsilon_n = \frac{(Y_n - \mathbb{E}Y_n)}{\sqrt{n}}$. Alors $\mathbb{E}\varepsilon_n = 0$ et var $\varepsilon_n = \frac{1}{n}$ var $Y_n = \sigma^2$: les (ε_n) sont bien centrées et de même variance. D'après le Théorème de la Limite Centrale (que l'on peut utiliser car les X_i sont des v.a.i.i.d. de variance σ^2 finie), $\varepsilon_n = \sqrt{n} \left(\frac{1}{n} Y_n - m \right) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, \sigma^2)$. En conséquence, comme à n fini les ε_n ont une loi discrète, leur loi dépend de n (la loi normale n'est pas discrète): elles ne forment une suite stationnaire.

dépend de n (la loi normale n'est pas discrète): elles ne forment une suite stationnaire. (f) On a $\operatorname{cov}(Y_i, Y_j) = \sum_{k=1}^i \sum_{\ell=1}^j \operatorname{cov}(X_k, X_\ell)$. Or pour $k \neq \ell$ alors $\operatorname{cov}(X_k, X_\ell) = 0$. Donc $\operatorname{cov}(Y_i, Y_j) = \sum_{k=1}^i \sigma^2 = \min(i, j)\sigma^2$. En raison de la définition de ε_n , on en déduit que $\operatorname{cov}(\varepsilon_i, \varepsilon_j) = \frac{\min(i, j)}{\sqrt{ij}}\sigma^2$. Enfin, si $|j - i| \to \infty$ avec par exemple $j/i \to \infty$ alors $\operatorname{cov}(\varepsilon_i, \varepsilon_j) \to 0$.

(g) On pose $Z={}^t(1,\cdots,N)$ car Y=Z(m)+U avec $\mathbb{E} U=0$, d'où ${}^tZZ=\sum_{i=1}^N i^2=\frac{1}{6}N(N+1)(2N+1)$. En conséquence $\widehat{m}_N=({}^tZZ)^{-1}{}^tZY=\frac{6}{N(N+1)(2N+1)}\sum_{i=1}^N i\,Y_i$. On sait que \widehat{m}_N est sans biais soit $\mathbb{E}\widehat{m}_N=m$ car $\mathbb{E} U=0$. Pour le calcul de la variance, la matrice de covariance de Y n'étant pas diagonale,

$$\begin{aligned} \operatorname{var} \widehat{m}_N &= \left(\frac{6}{N(N+1)(2N+1)}\right)^2 \sum_{i,j=1}^N i j \operatorname{cov}(Y_i, Y_j) \\ &= \sigma^2 \left(\frac{6}{N(N+1)(2N+1)}\right)^2 \left(\sum_{i=1}^N i^3 + 2\sum_{1 \leq i < j \leq N} i^2 j\right) \\ &= \sigma^2 \left(\frac{6}{N(N+1)(2N+1)}\right)^2 \left(\frac{1}{4}(N^4 + 2N^3 + N^2) + \sum_{1 \leq i \leq N-1} i^2 (N(N+1) - i(i+1))\right) \\ &= \sigma^2 \left(\frac{6}{N(N+1)(2N+1)}\right)^2 \left(\frac{1}{4}(N^4 + 2N^3 + N^2) + \frac{1}{6}N^2(N^2 - 1)(4N^2 - 1) - \sum_{1 \leq i \leq N-1} i^4 + i^3\right) \\ &= \sigma^2 \left(\frac{6}{N(N+1)(2N+1)}\right)^2 \left(\frac{1}{4}(N^4 + 2N^3 + N^2) + \frac{1}{6}N^2(N^2 - 1)(4N^2 - 1) - \frac{1}{30}\left(6(N-1)^5 + 15(N-1)^4 + 10N^3 - (N-1)\right) - \frac{1}{4}((N-1)^4 + 2(N-1)^3 + (N-1)^2)\right) \\ &= \sum_{N \to +\infty} \frac{21}{5} \sigma^2 \frac{1}{N}. \end{aligned}$$

Comme var $\widehat{m}_N \xrightarrow[N \to +\infty]{} 0$ et \widehat{m}_N sans biais on en déduit que \widehat{m}_N est convergent.

(h) La vraisemblance est

 $\mathbb{P}\left((Y_1,\cdots,Y_N)=(y_1,\cdots,y_N)\right)=\mathbb{P}\left(Y_N=y_N|(Y_1,\cdots,Y_{N-1})=(y_1,\cdots,y_{N-1}))\right)\times\mathbb{P}\left(Y_{N-1}=y_{N-1}|(Y_1,\cdots,Y_{N-2})=(y_1,\cdots,y_{N-2}))\right)\times\mathbb{P}\left(Y_{N-1}=y_{N-1}|(Y_1,\cdots,Y_{N-2})=(y_1,\cdots,y_{N-2})\right)\times\mathbb{P}\left(Y_1=y_1\right).$ Comme on a des chaînes de Markov on peut simplifier et

$$\mathbb{P}\big((Y_1, \dots, Y_N) = (y_1, \dots, y_N)\big) = \mathbb{P}\big(Y_N = y_N | Y_{N-1} = y_{N-1})\big) \times \mathbb{P}\big(Y_{N-1} = y_{N-1} | Y_{N-2} = y_{N-2})\big) \times \dots \times \mathbb{P}(Y_1 = y_1),$$

soit $\mathbb{P}\left((Y_1,\cdots,Y_N)=(y_1,\cdots,y_N)\right)=p_1^{\widehat{Np_1}}p_0^{\widehat{Np_0}}(1-p_1-p_0)^{N-\widehat{Np_1}-\widehat{Np_0}}.$ On peut alors chercher le maximum en dérivant par rapport à p_0 et p_1 et en annulant les dérivées: on arrive ainsi au fait que $\widehat{p_0}$ et $\widehat{p_1}$ sont les estimateurs de p_0 et p_1 par maximum de vraisemblance. Comme les $Y_{i+1}-Y_i=X_{i+1}$ sont des v.a.i.i.d., il en est de même pour les $\mathbb{I}_{Y_{i+1}-Y_i=c}$ avec c=1 ou 0, et on peut appliquer un Théorème de la Limite Centrale (la variance des $\mathbb{I}_{Y_{i+1}-Y_i=c}$ existe car ce sont des variables de Bernoulli d'espérance $\mathbb{P}(X_i=c)$). Ainsi on obtient:

$$\sqrt{N}\left(\widehat{p}_{0}-p_{0}\right) \xrightarrow[N \to \infty]{\mathcal{L}} \mathcal{N}\left(0, p_{0}(1-p_{0})\right) \quad \text{et} \quad \sqrt{N}\left(\widehat{p}_{1}-p_{1}\right) \xrightarrow[N \to \infty]{\mathcal{L}} \mathcal{N}\left(0, p_{1}(1-p_{1})\right).$$

(i) On peut donc considérer $\tilde{m}_N=2\hat{p}_1+\hat{p}_0-1$. On peut calculer $\operatorname{cov}(\mathbb{I}_{X_i=0},\mathbb{I}_{X_i=1})=\mathbb{E}\mathbb{I}_{X_i=0},\mathbb{I}_{X_i=1}-p_0p_1=-p_0p_1$. Donc $\operatorname{cov}(\hat{p}_0,\hat{p}_1)=\frac{1}{N^2}\sum_{i=1}^N(-p_0p_1)=-p_0p_1\frac{1}{N}$. En conséquence, $\operatorname{var}\tilde{m}_N=\frac{1}{N}\left(4p_1(1-p_1)+p_0(1-p_0)-4p_0p_1\right)=\frac{1}{N}\left(4p_1+p_0-(2p_1+p_0)^2\right)$. Il est possible alors de comparer les variances et il suffit alors de comparer $4p_1+p_0-(2p_1+p_0)^2$ et $\frac{21}{5}\left(1-p_0-(2p_1+p_0-1)^2\right)$. On montre après quelques calculs que $\operatorname{var}\hat{m}_N\geq\operatorname{var}\tilde{m}_N$: il vaut mieux utiliser \tilde{m}_N pour estimer m (ce qui est normal car c'est aussi l'estimateur du maximum de vraisemblance de m).