Première Année Master M.A.E.F. 2012 – 2013 Statistiques II

Contrôle continu n°2, avril 2014

Examen de 1h30. Tout document ou calculatrice est interdit.

- 1. (Sur 10 points) Soit $(\delta_n)_{n \in \mathbb{N}}$ une chaîne de Markov prenant ses valeurs dans $\{0, 1\}$, telle que pour tout $n \in \mathbb{N}$, $\mathbb{P}(\delta_{n+1} = 1 \mid \delta_n = 1) = \mathbb{P}(\delta_{n+1} = 0 \mid \delta_n = 0) = \theta$ avec $\theta \in [0, 1]$.
 - (a) Donner la matrice de transition de $(\delta_n)_{n \in \mathbb{N}}$ (0.5pts). Est-ce une chaîne homogène (0.5pts)?
 - (b) Déterminer les valeurs de θ pour lesquelles (δ_n) est irréductible, et celles pour lesquelles elle ne l'est pas (1pt).
 - (c) Déterminer les mesures invariantes de (δ_n) suivant θ (1pt).
 - (d) On suppose que la loi de δ_0 est $\mathbb{P}(\delta_0 = 1) = p_0$ avec $p_0 \in [0, 1]$. Montrer que $\mathbb{P}(\delta_n = 0) = \frac{1}{2} (1 + (2\theta 1)^n (2p_0 1))$ pour tout $n \in \mathbb{N}$ (2pts). En déduire l'espérance et la variance de δ_n (1pt). A quelles conditions sur p_0 et θ la suite (δ_n) est-elle stationnaire (1pt)?
 - (e) Suivant les valeurs de p_0 et θ , déterminer la loi limite de δ_n quand $n \to \infty$ (1.5pts).
 - (f) Si $\theta = p_0 = 1/2$, montrer que $(\delta_n)_{n \in \mathbb{N}}$ est une suite de variables aléatoires indépendantes identiquement distribuées suivant une loi de Bernoulli dont on précisera le paramètre (1.5pts).
- 2. (Sur 10 points) Soit $\varepsilon = (\varepsilon_t)_{t \in \mathbf{Z}}$ un bruit blanc fort centré de variance $\sigma^2 > 0$, indépendant de $(\delta_n)_{n \in \mathbf{N}}$. On définit le processus $X = (X_n)_{n \in \mathbf{N}}$ tel que

$$X_n = \delta_n(\varepsilon_n - a\varepsilon_{n-2}) + (1 - \delta_n)\varepsilon_n$$
 pour $n \in \mathbf{N}$.

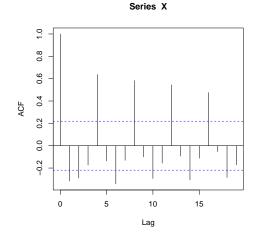
avec $a \in \mathbf{R}$, où (δ_n) est la chaîne de Markov précèdente.

- (a) Lorsque $\theta = 1$ et $p_0 = 1$, montrer que pour tout $n \in \mathbb{N}$, $X_n = \varepsilon_n a\varepsilon_{n-2}$ (0.5pts). Quel processus est alors (X_n) (0.5pts)? Déterminer son espérance (0.5pts) et sa fonction d'autocovariance (1pt).
- (b) On considère maintenant le cas general $\theta \in]0,1/2[\cup]1/2,1[$ avec $p_0=1/2$ ((δ_n) est alors stationnaire). Montrer que (X_n) est stationnaire (**2pts**). Déterminer l'espérance (**0.5pts**) et l'autocovariance de (X_n) (**1.5pts**). Montrer que $\mathbb{E}[X_n^2X_{n+3}^2] \neq \mathbb{E}[X_n^2]\mathbb{E}[X_{n+3}^2]$ (**2.5pts**). En déduire que (X_n) n'est pas un processus MA(2) (**1pt**).
- 3. (Sur 8 points) Voici des simulations effectuées avec le logiciel R.
 - (a) On tape d'accord les commandes suivantes:

```
eps=2*rnorm(81)
X=6-6/c(1:80)+rep(c(3,4,0,-7),20)+eps[2:81]-0.8*eps[1:80]
ts.plot(X)
acf(X)
```

Voici les deux graphes obtenus:





Questions: Quel est le processus simulé par le vecteur X (écrire le processus formellement en détaillant ses éventuelles tendance et saisonnalité) (1pt)? Que peut-on déduire de la commande ACF (0.5pts)?

(b) Voici les commandes tapées ensuite:

Z1=c(1:80) Z2=rep(c(1,0,0,-1),20) Z3=rep(c(0,1,0,-1),20) Z4=rep(c(0,0,1,-1),20) reg=lm(X~Z1+Z2+Z3+Z4) summary(reg)

Voici les résultats obtenus:

Coefficients:

	Estimate	Std.	Error	t	value	Pr(> t)	
(Intercept)	4.88262	0.	64595		7.559	8.21e-11	***
Z1	0.01901	0.	01386		1.372	0.174	
Z2	3.29274	0.	55407		5.943	8.22e-08	***
Z3	2.85634	0.	55372		5.158	1.97e-06	***
Z4	0.31241	0.	55372		0.564	0.574	

Residual standard error: 2.859 on 75 degrees of freedom Multiple R-squared: 0.6656, Adjusted R-squared: 0.6478 F-statistic: 37.32 on 4 and 75 DF, p-value: < 2.2e-16

Questions: Qu'a-t-on fait par ces commandes (1pt)? Expliquer pourquoi la p – value associée à Z1 est importante (0.5pts).

(c) Voici les commandes tapées ensuite:

Z11=1/c(1:80) reg=lm(X~Z11+Z2+Z3+Z4) summary(reg)

Voici les résultats obtenus:

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	6.0998	0.3401	17.936	< 2e-16	***
Z11	-7.2057	2.3984	-3.004	0.00362	**
Z2	3.4665	0.5339	6.493	8.15e-09	***
Z3	2.8463	0.5296	5.374	8.35e-07	***
7.4	0.2434	0.5303	0.459	0.64751	

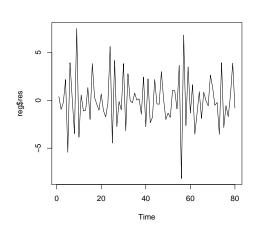
Residual standard error: 2.735 on 75 degrees of freedom Multiple R-squared: 0.694, Adjusted R-squared: 0.6777 F-statistic: 42.53 on 4 and 75 DF, p-value: < 2.2e-16

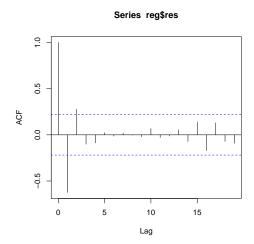
Questions: Qu'a-t-on fait par ces commandes par rapport à celles qui précèdent et a-t-on gagné quelque chose (0.5pts)? Que représentent formellement les valeurs 6.0998, -7.2057, 3.4665 (0.5pts)? S'attendait-on approximativement à ces valeurs et pourquoi (0.5pts)? Quelle sont la tendance et la saisonnalité estimées (0.5pts)? Que peut-on conclure quant au modèle utilisé pour expliquer (X_t) (0.5pts)?

(d) On tape enfin les commandes suivantes:

ts.plot(reg\$res)
acf(reg\$res)

Voici les deux graphes obtenus:





Questions: Que conclure de l'ACF? Les valeurs numériques des deux premières barres sont 1 et -0.64. Pouvait-on s'attendre à cela numériquement (1pt)?

(e) Questions: Donner le code pour simuler une trajectoire de taille 100 du processus ARMA(2,1): $X_t - 0.3X_{t-1} - 0.1X_{t-2} = \varepsilon_t + 2\varepsilon_{t-1}$, avec un bruit (ε_t) qui suit une loi normale de variance 9 (on prendra soin de vérifier auparavant que l'on a bien un ARMA causal...) (1.5pts)