Licence M.A.S.S. deuxième année 2009 - 2010Algèbre S4

Correction du contrôle continu n°1, mars 2010

Examen de 1h30. Tout document ou calculatrice est interdit.

1. [18 points] Soit $E = \mathbf{R}[X]$ l'ensemble des polynômes à coefficients réels. On considère l'application

$$(P,Q) \in E^2 \mapsto \langle P,Q \rangle = \sum_{k=0}^{\min(deg(P),deg(Q))} P^{(k)}(0)Q^{(k)}(0),$$

où deg(P) désigne le degré de P et $P^{(k)}(0)$ la k-ème dérivée de P en 0.

- (a) Pour $n \in \mathbb{N}$, et $P(X) = X^n$, calculer $P^{(k)}(0)$ pour $k \in \mathbb{N}$, puis $\langle X^n, X^n \rangle$.
- (b) Montrer que pour tout polynôme P de E, pour tout $x \in \mathbf{R}$, $P(x) = \sum_{k=0}^{deg(P)} P^{(k)}(0) \frac{x^k}{k!}$.
- (c) En déduire que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E.
- (d) Calculer $\langle X^m, X^n \rangle$ pour $m \neq n \in \mathbb{N}$. En déduire que $(X^n)_{n \in \mathbb{N}}$ est une base orthogonale sur $(E, \langle \cdot, \cdot \rangle)$. En déduire également une base orthonormale de sur $(E, \langle \cdot, \cdot \rangle)$.
- (e) Soit $F = \{P \in E \text{ tel que } P(2) = 0\}$. Montrer que F est un sous-espace vectoriel de E. Montrer que $\dim(F) = \infty$.
- (f) Déterminer F^{\perp} .
- (g) Soit le polynôme $R(X) = X^2 3X + 2$. Déterminer $d(R, F) = \inf_{P \in F} ||R P||$, où $||\cdot||$ est la norme associée à $\langle \cdot, \cdot \rangle$.

Proof. (a) On a $P^{(k)}(X) = n(n-1) \times \cdots \times (n-k+1)X^{n-k}$ pour $k \le n$ et $P^{(k)}(X) = 0$ pour $k \ge n+1$. Donc $P^{(k)}(0) = 0$ si $k \le n-1$ et $P^{(n)}(0) = n!$, puis $P^{(k)}(0) = 0$ si $k \ge n+1$ [**2pt**]. On en déduit que $(X^n, X^n) = (n!)^2$ [1pt].

- (b) La formule de Taylor à l'ordre deg(P) appliquée à P donne directement $P(x) = \sum_{k=0}^{deg(P)} P^{(k)}(0) \frac{x^k}{k!} + O(x^{deg(P)+1})$. pour tout $x \in \mathbf{R}$. Mais comme P est de degré deg(P), d'après l'unicité d'écriture d'un polynôme de degré deg(P)alors $P(x) = \sum_{k=0}^{deg(P)} P^{(k)}(0) \frac{x^k}{k!}$ [2pt].
- (c) Les propriétés de linéarité et de symétrie sont immédiates. De plus $\langle P, P \rangle = \sum_{k=0}^{\deg(P)} (P^{(k)}(0))^2 \geq 0$. Enfin si $\langle P, P \rangle = 0$ alors $P^{(k)}(0) = 0$ pour tout $k \in \{0, 1, \dots, \deg(P)\}$. Mais d'après la question précédente, cela induit que $P(x) = \sum_{k=0}^{\deg(P)} 0 \times \frac{x^k}{k!} = 0$ pour tout x. Donc $\langle \cdot, \cdot \rangle$ est bien un produit scalaire sur E [2pt]. (d) $\langle X^m, X^n \rangle = 0$ [1pt]. On sait que $(X^n)_{n \in \mathbb{N}}$ est une base de E. De plus, comme X^m et X^n sont orthogonaux

- (d) $\langle X^m, X^n \rangle = 0$ [1pt]. On sait que $(X^n)_{n \in \mathbb{N}}$ est une base de E. De plus, comme X^m et X^n sont orthogonaux dès que $m \neq n$, alors $(X^n)_{n \in \mathbb{N}}$ est bien une base orthogonale de E [1pt]. Enfin, comme $||X^n|| = n!$, alors $(\frac{X^n}{n!})_{n \in \mathbb{N}}$ est une base orthonormale de E [1pt]. (e) F est un sev car $0 \in F$ et si $P, Q \in F$ si $\lambda \in \mathbb{R}$, alors $(P + \lambda Q)(2) = P(2) + \lambda Q(2) = 0$ donc $P + \lambda Q \in F$ [1pt]. Il est clair que $(X^k 2^k)_{k \geq 1}$ est une famille libre de F (car tous les polynômes ont un degré différent). Cette famille étant infinie on en déduit que dim $(F) = \infty$ [2pt]. (f) Soit $P(x) = \sum_{i=0}^n a_i X^i \in F^{\perp}$. Alors pour tout $k \geq 1$, on a $\langle P, X^k 2^k \rangle = -2^k a_0 + (k!)^2 a_k = 0$ quand $k \leq n$ et $\langle P, 1 X^k \rangle = -2^k a_0 = 0$ quand $k \geq n + 1$. Par itération, on en déduit que $a_i = 0$ pour tout i et donc P = 0
- (g) Comme $R \in F$, on en déduit que d(R, F) = 0 [2pt].

2. [5 points] Soit $(E, <\cdot, \cdot>)$ un espace préhilbertien. Soit $u \in E$ tel que $< u, x>^2 = < x, x> < u, u>$ pour tout $x \in E$. Déterminer u.

Proof. On a donc l'égalité de Cauchy-Schwarz, ce qui implique que u et x sont liés, et ceci quelque soit $x \in E$ [1pt]. Aussi, quand $\dim(E) = 1$, ceci est toujours vrai, donc u est un vecteur quelconque de E [1.5pt]. Si $\dim(E) \geq 2$, si $u \neq 0$, il existe toujours $v \neq 0$ tel que u et v sont orthogonaux, soit $\langle u, v \rangle = 0$. Comme $\langle u, x \rangle^2 = \langle x, x \rangle \langle u, u \rangle$ pour tout $x \in E$, ceci est aussi vrai pour x = v donc $||v||^2 ||u||^2 = 0$ soit v = 0 ou u = 0: impossible. Donc u = 0 [2.5pt].